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ABSTRACT

In this paper, we numerically computed the analytical
solution of the initial-boundary poroelasticity problem. We
applied parallel computation for inverse Laplace
transformation and consecutive computation forinverse
Fourier transformation to obtainthe two-dimensional time-
dependent solution. Visualization of the dynamic solution
functions is presented for the fixed time values and confirms
that the boundary conditions are satisfied at zero and in
infinity.
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1. INTRODUCTION

Computer and mathematical modelling of a non-stationary
physical processes taking place in porous mediums saturated
with liquid plays an important role in studying the fluid
flows in porous structures.

It is particularly important due to the complexity, both
forexperimental and theoretical study, of the internal
structure of porous medium.While a wide application of
computer simulations based on realistic mathematical models
drives further research in that direction [1]-[11]. The latest
advances in such mathematical modelling and simulations
help to develop many other areas of research, including earth
and material sciences, mechanics, biotechnology and
medicine,the theory of energy and filtration theory.Frenkel-
Biottype theories [12], [13] areoften used for studying
dynamic processes in porous media. Although, there is no
sufficient evidence of comparison of the theoretical results
obtained based on Frenkel-Biot theory with experimental
results based on natural samples. An alternative continuous
filtration theory based on methods of conservation laws and
first physical principles was proposed by V.N.Dorovsky in
1989 [14], whereasFrenkel-Biot theory was built within a
variation approach. Both theories consider propagation of
three types of acoustic waves, two longitudinal and one
transversal. In the Frenkel-Biot model, the wvelocities of
seismic waves propagatingporous media are described by
four elastic parameters for given physical parameters of the
media. Whereasthe Dorovsky model obtained by

linearization of the continuous filtration theory equations
describes the porous medium saturated with liquid by only
three elastic modules [15]-[16].In this paper we provide
computer simulation of the solution functionsof a two-
dimensional dynamic problem presented in the form of the
hyperbolic inhomogeneous system of partial differential
equations(PDE) with initial and boundary conditions.By
application of the spectral method with analytical integral
Fourier-Laplace transforms the solution of the initial PDE
problem is reduced to solving the simpler ordinary
differential equations problem, which has a derivative with
respect to only one spatial variable. The sufficient condition
of resolvability of the problem and the exact solution
functions in explicit form are obtained in (17) by applying
inverse Fourier-Laplace transforms. In [18], [19] another
method is proposed for periodic solutions for nonlinear
systems of integro-differential equations.

2. STATEMENT OF THE PROBLEM

Let us turn to the mathematical formulation of the model for
the two-dimensional dynamic problem. The governing
equations are based on the conservation and Hook's laws and
are consistent with the thermodynamics conditions. We

consider the half-plane X, > Ofilled with porous media and

saturating liquid with parameters characterizing each of
them. So, the propagation of seismic waves in these
environments in the absence of loss of energy is described by
the following initial-boundary problems in terms of the
velocity of the saturating liquid, the velocities of the solid
matrix, the liquid pressure, and the stress tensor.

The considered problem is stated as follows:

Momentum Conservation Law for an elastic medium:

ou. 0o., OO.
iy 1 [ i O'sz+iﬁzpj'(1)
oA pos\ X 0K Po X
Momentum Conservation Law for a liquid:
oV,
_J+ia_p: |:J_, (2)
ot p, X,

Hooke's Law for a solid matrix (elastic medium):
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Hooke's Law for a liquid :
% —(K—ap,p, )divi +ap,p, ,divy =0, (4)

Initial conditions:
=V L:o = Ok L:O = PL:O =0,

Boundary conditions on a free surface in the plane X, =0

=0, (6)
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For the two-dimensional case j=1,2; k=12 and the
system (1)-(4) consists of eight partial differential equations
with eight initial conditions (5) at t =Qand three boundary

conditions (6) at X, =0, where U=(u,,U,)" and
V=(v,V, )T are the velocity vectors of an elastic porous

medium and a liquid with the following physical parameters:
Pys - Partial density of an elastic porous medium;

Py, -partial density of a saturating liquid,

Po=Pos t Por-

Pos = pof,s 1-d,).

Po) = pofvldo,where pof'S and pof'I are, respectively, the
physical densities of the porous medium and of the liquid,

d, is the porosity

and P is the porous pressure,

O j, are the stress tensor components,

5jk is the Kronecker symbol.

Moreover, K = A +§#, where A >0 and u >OQare the

Lame coefficients,a:p0a3+£2, pga3>0is the bulk
0

compression modulus of the liquid component of a

heterophase medium.

Elastic modules K >0, > 0and o, >0

(K, u,a €l1) are expressed in terms of transverse wave

propagation velocity C.,and two longitudinal waves

velocities C;, C,,as follows:

pL:
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3. SOLUTION ALGORITHM

The forward Laplace-Fourier transformations with respect to
atime variable tand a spacious variable X are used as a tool

to convert the initial difficult hyperbolic two-dimensional
boundary PDE problem (1)-(6) into a simpler boundary ODE

problem with respect to one spacious variable X, . The ODE
problemconsists of six differential equations with respect to
X, , which can be presented in the normal form as follows:

W =BW+B,, @)

where W =W(0,,0,,V,,6,,,5,,, P)" . The system (7) is

solved using a spectral method.The two remaining solution
functions are expressed in terms of the other six solutions as
follows:

G =—— ik p+i
S0, S

“ 5 . S . ~
o= _.i 001 _ Pos p- -pO,s u, + /.)O'S F9)
ik, X, P, ik, ik

The spectrum of the matrix B, in (7) is computed using

MATLAB software and consists of three pairs of mutually
opposite eigenvalues as follows:

21 2}
Z! Z!
sp(B) = |=| ©
T, -7,
T -1
Ts T3

The components of the spectrum SP(B,) is computed in a
symbolic form and depend on physical values of elastic
modules K, o, M and parameters, O, Poys andpovs,
characterizing the porous medium, which are calculated
using the physical input parameters Pof,s1 p({,, d0 of the
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porous matrix and a saturating liquid and Cpiv Cpar G the

velocities of seismic waves propagating the porous medium.
It was proved by the numeric experiments, that there are

such values of parameters for which all six eigenvalues 7, ,

k =1,...,6 of the spectrum Sp(B,) are the distinct values,
which is the important fact for the possibility to express the
solution functions in the explicit form. And the matrix of
eigenvectors denoted as
P=(z|2,|22,|25|z5) e Mg s(J)is  such that
B,z, =7,Z, k=1,...,6. The expressions of the elements of
the eigenvectors matrix are too long algebraic expressions,

and the relevant MATLAB code of computing it is included
in the software complex for solving this dynamic problem.

The whole algorithm used to solve this difficult hyperbolic
two-dimensional time-dependent problem (1)-(6)is presented
in Figure 1:

Apply analytically Laplace-Fourier
Transforms £ - ,.'F to

a Difficult Time-Dependent
Hyperbolic Problem

P{w(t.x.x)} ;=1 3
Solve Simpler
ODE Problem for

W,k %), =18
{
For each pair (ﬁ‘i‘k:} eK x X, we

substitote (fl‘i .\'Jl;:lmto solution

ﬁ. (s, k]: hel Jto find a parameterized solution

11;.-_};.:(5},ﬂ C—>C.

|

Lt

Numerically Linverttoa
time-dependent solution using
Talbot method W(I, 7, 1)

|

f_l invert to a spatial
three-dimenzional
solution function

— W%, %)

|

N
Animated visualization of eight
dynamic solution functions

W (f, 2,3, ) at fixed time f
using PyPlot package

Figure 1: Solution algorithm.
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It is shown in (17) that the analytical solution can be
expressed in the following form:

% o 3
W, (t, X, X,) ZI I{_; Z,, 8" [(' Peads+ pk4d4)><
0 =

—00

xTe_Tk' F,(1)dl + kapOTe_Tk' F,(1ydi]+

X2 X2

6 3 .
+kz 7 e [_Z P ((| Pysds + pq4d4)><
4

= j.q=1

%[ R(1)dl + pgs oy [ €' F, (1)) +

0 . 0 (10)

+(ipeyds + Py dy ) [ e R (1)l +
0

+pk6p0fefm' F, (1)d1] }dk,ds,
0

wherem = 1,...,6

Let’s denote |, the following integral:

I, =je-fk' F (Dl 11)

0
which we can first solve analytically for a particular kind of
function to save a lot of computational resources for

computing (10).

Table 1 Physical parameters

o 1400.0 Kg /m?
oo, 997.0 Kg /m?
C,, 2000.0 m/s
Cp, 1300.0 m/s

C, 1300.0 m/s

d, 0.3

F(t,x,X,)= gt (t, %, %,) €[0,00) x[] x[0,0).(12)

To compute numerically the solutions(10) we take the
valuesof the input parameters asstated in Table 1 and a form
of a sample external force function (12) satisfying the
resolvability conditions of the problem:

We first apply Laplace-Fourier transform to function
F(t, ., X,)in (12).Then we substitute the resulted function

IE(S, K, X%,) into I, (11)for
approximationof the double integrals in solution functions

integral further

(10).We can first solve I, analytically to save computational
resources as follows:
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where erfc is complimentary error function.

4. SIMULATION RESULTS

Visualizationof the solution functions is done in animated 3-
dimensional format using PyPlot packages. While for the
purposes of the paper the sample graphs of the solution
functions are presented for two differentfixed time values

t =1(when n=32,where n is a number of nods), and for

t =53 (when n=64, where n is a number of nods) as

follows:
t=1

¥ 200 -500

Figure 2: Solution function U, (t, X, X,) at t =1

t=1
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Figure 3: Solution function U, (t, X, X,) at t=1s
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Figure 4: Solution function V, (t, X, X,) at t=1s
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Figure 5: Solution function U, (t, X, X,) at t =53s
t=53

Figure 6: Solution function V, (t, X, X,) at t =53s
t=53
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Figure 7: Solution function o, (t, X, X,) at t =53s

It can be seen on Figures 1-6 that the solution functions
satisfy the boundary conditions, i.e. threeof them are fading

to zeroat X, =0 and all in infinity, when x, — o0 .

5. CONCLUSION

Computer simulation and visualization presented in this
paper have demonstrated that the solution functions
expressed in (10) have been efficiently computed using
Matlab, Julia, and PyPlot packages. Computed solution
functions have been obtained following the steps of the
algorithm shown in Figure 1 and describewave propagation
processes in the complex porous media saturated with liquid
and satisfy the necessary boundary conditions. Computations
are performed using testing input data and have shown the
stability of the developed algorithm for the modeled
environment.
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