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ABSTRACT 
 
In this paper, we numerically computed the analytical 
solution of the initial-boundary poroelasticity problem. We 
applied parallel computation for inverse Laplace 
transformation and consecutive computation forinverse 
Fourier transformation to obtainthe two-dimensional time-
dependent solution. Visualization of the dynamic solution 
functions is presented for the fixed time values and confirms 
that the boundary conditions are satisfied at zero and in 
infinity.  
 
Key words: Porous media, Fourier-Laplace transformations, 
poroelasticity theory, acoustic waves. 
 
1. INTRODUCTION 

 
Computer and mathematical modelling of a non-stationary 
physical processes taking place in porous mediums saturated 
with liquid plays an important role in studying the fluid 
flows in porous structures. 
 
It is particularly important due to the complexity, both 
forexperimental and theoretical study, of the internal 
structure of porous medium.While a wide application of 
computer simulations based on realistic mathematical models 
drives further research in that direction [1]-[11]. The latest 
advances in such mathematical modelling and simulations 
help to develop many other areas of research, including earth 
and material sciences, mechanics, biotechnology and 
medicine,the theory of energy and filtration theory.Frenkel-
Biottype theories [12], [13] areoften used for studying 
dynamic processes in porous media. Although, there is no 
sufficient evidence of comparison of the theoretical results 
obtained based on Frenkel-Biot theory with experimental 
results based on natural samples. An alternative continuous 
filtration theory based on methods of conservation laws and 
first physical principles was proposed by V.N.Dorovsky in 
1989 [14], whereasFrenkel-Biot theory was built within a 
variation approach. Both theories consider propagation of 
three types of acoustic waves, two longitudinal and one 
transversal. In the Frenkel-Biot model, the velocities of 
seismic waves propagatingporous media are described by 
four elastic parameters for given physical parameters of the 
media. Whereasthe Dorovsky model obtained by 

linearization of the continuous filtration theory equations 
describes the porous medium saturated with liquid by only 
three elastic modules [15]-[16].In this paper we provide 
computer simulation of the solution functionsof a two-
dimensional dynamic problem presented in the form of the 
hyperbolic inhomogeneous system of partial differential 
equations(PDE) with initial and boundary conditions.By 
application of the spectral method with analytical integral 
Fourier-Laplace transforms the solution of the initial PDE 
problem is reduced to solving the simpler ordinary 
differential equations problem, which has a derivative with 
respect to only one spatial variable. The sufficient condition 
of resolvability of the problem and the exact solution 
functions in explicit form are obtained in (17) by applying 
inverse Fourier-Laplace transforms. In [18], [19] another 
method is proposed for periodic solutions for nonlinear 
systems of integro-differential equations. 

 
2. STATEMENT OF THE PROBLEM 

 
Let us turn to the mathematical formulation of the model for 
the two-dimensional dynamic problem. The governing 
equations are based on the conservation and Hook's laws and 
are consistent with the thermodynamics conditions. We 
consider the half-plane 2 0x  filled with porous media and 
saturating liquid with parameters characterizing each of 
them. So, the propagation of seismic waves in these 
environments in the absence of loss of energy is described by 
the following initial-boundary problems in terms of the 
velocity of the saturating liquid, the velocities of the solid 
matrix, the liquid pressure, and the stress tensor.  
 
The considered problem is stated as follows: 
 
Momentum Conservation Law for an elastic medium:
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Momentum Conservation Law for a liquid:  
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Hooke's Law for a solid matrix (elastic medium): 
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Hooke's Law for a liquid :    
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Initial conditions:    

0 0 0
0,j j jk t ot t t
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Boundary conditions on a free surface in the plane 2 0x  : 
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For the two-dimensional case 1, 2;j  1, 2k   and the 
system (1)-(4) consists of eight partial differential equations 
with eight initial conditions (5) at 0t  and three boundary 

conditions (6) at 2 0x  , where 1 2( , )Tu u u and 

1 2( , )Tv v v are the velocity vectors  of an elastic porous 
medium and a liquid with the following physical parameters: 

0,s - partial density of an elastic porous medium; 

0,l  -partial density of a saturating liquid, 

0 0, 0,s l    ,  

0, 0, 0(1 )f
s s d   ,  

0, 0, 0 ,f
l ld  where 0,

f
s  and 0,

f
l  are, respectively, the 

physical densities of the porous medium and of the liquid,  

0d  is the porosity 
and p is the porous pressure,  

jk are the stress tensor components,  

jk is the Kronecker symbol.  

Moreover, 2 ,
3

K    where 0   and 0  are the 

Lame coefficients,
0 3 2

0

K  


  , 3
0 3 0   is the bulk 

compression modulus of the liquid component of a 
heterophase medium.  
 
Elastic modules 0K  , 0  and 3 0 
( , , )K   � are expressed in terms of transverse wave 

propagation velocity sc and two longitudinal waves 

velocities 1pc , 2pc as follows: 
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3. SOLUTION ALGORITHM 
 
The forward Laplace-Fourier transformations with respect to 
a time variable t and a spacious variable 1x are used as a tool 
to convert the initial difficult hyperbolic two-dimensional 
boundary PDE problem (1)-(6) into a simpler boundary ODE 
problem with respect to one spacious variable 2x . The ODE 
problemconsists of six differential equations with respect to

2x , which can be presented in the normal form as follows: 

1 2ˆ ˆw B w B   ,                          (7) 

where 1 2 2 12 22ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , , , , )Tw w u u v p  . The system (7) is 
solved using a spectral method.The two remaining solution 
functions are expressed in terms of the other six solutions as 
follows: 

1
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The spectrum of the matrix 1B  in (7) is computed using 
MATLAB software and consists of three pairs of mutually 
opposite eigenvalues as follows: 
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The components of the spectrum 1( )Sp B is computed in a 
symbolic form and depend on physical values of elastic 
modules K ,  ,   and parameters, 0 , 0,l , 0,sand , 
characterizing the porous medium, which are calculated 
using the physical input parameters 0,

f
s , 0, ,f

l 0d  of the 
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porous matrix and a saturating liquid and 1pc , 2pc , sc the 
velocities of seismic waves propagating the porous medium. 
It was proved by the numeric experiments, that there are 
such values of parameters for which all six eigenvalues k , 

1,..., 6k   of the spectrum 1( )Sp B are the distinct values, 
which is the important fact for the possibility to express the 
solution functions in the explicit form. And the matrix of 
eigenvectors denoted as 

1 2 3 4 5 6 6 6( | | | | | ) ( )P z z z z z z M   � is such that 

1 k k kB z z 1, ,6k   . The expressions of the elements of 
the eigenvectors matrix are too long algebraic expressions, 
and the relevant MATLAB code of computing it is included 
in the software complex for solving this dynamic problem.
  
The whole algorithm used to solve this difficult hyperbolic 
two-dimensional time-dependent problem (1)-(6)is presented 
in Figure 1: 
 

 
Figure 1: Solution algorithm. 

It is shown in (17) that the analytical solution can be 
expressed in the following form: 
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where   1, ,6m    
 
Let’s denote kI the following integral: 

1
0

ˆe ( )k l
kI F l dl


  ,(11) 

which we can first solve analytically for a particular kind of 
function to save a lot of computational resources for 
computing (10).  
 

Table 1 Physical parameters 

0,
f

s  1400.0  3/Kg m  

0,
f
l  997.0  3/Kg m  

1pc  2000.0  /m s  

2pc  1300.0  /m s  

sc  1300.0  /m s  

0d  0.3   

 
2 2 2

1 2
1 2 1 2( , , ) e , ( , , ) [0, ) [0, ).t x xF t x x t x x       � (12) 

 
To compute numerically the solutions(10) we take the 
valuesof the input parameters asstated in Table 1 and a form 
of a sample external force function (12) satisfying the 
resolvability conditions of the problem: 

 
We first apply Laplace-Fourier transform to function 

1 2( , , )F t x x in (12).Then we substitute the resulted function 

1 2
ˆ ( , , )F s k x  into integral kI (11)for further 

approximationof the double integrals in solution functions 
(10).We can first solve kI analytically to save computational 
resources as follows: 
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where erfc  is complimentary error function. 
 
4. SIMULATION RESULTS 
 
Visualizationof the solution functions is done in animated 3-
dimensional format using PyPlot packages. While for the 
purposes of the paper the sample graphs of the solution 
functions are presented for two differentfixed time values

1t  (when n=32,where n is a number of nods), and for
53t  (when n=64, where n is a number of nods) as 

follows: 

 
Figure 2: Solution function 1 1 2( , , )u t x x  at 1t s  
 

 
Figure 3: Solution function 2 1 2( , , )u t x x  at 1t s  
 

 
Figure 4: Solution function 2 1 2( , , )v t x x  at 1st   

 
Figure 5: Solution function 1 1 2( , , )u t x x  at 53t s  

 
Figure 6: Solution function 2 1 2( , , )v t x x  at 53t s  

 
Figure 7: Solution function 22 1 2( , , )t x x  at 53t s  
 
 
It can be seen on Figures 1-6 that the solution functions 
satisfy the boundary conditions, i.e. threeof them are fading 
to zero at 2 0x   and all in infinity, when 2x  . 
 
5. CONCLUSION 

 
Computer simulation and visualization presented in this 
paper have demonstrated that the solution functions 
expressed in (10) have been efficiently computed using 
Matlab, Julia, and PyPlot packages. Computed solution 
functions have been obtained following the steps of the 
algorithm shown in Figure 1 and describewave propagation 
processes in the complex porous media saturated with liquid 
and satisfy the necessary boundary conditions. Computations 
are performed using testing input data and have shown the 
stability of the developed algorithm for the modeled 
environment.   
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