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ABSTRACT 
 

Optimization of mobile devices to be used as early 
identification tools of plant diseases using an application 
based on Convolutional Neural Network (CNN), with a high 
degree of accuracy and low power consumption is the focus of 
this study. The study was conducted using a dataset consisting 
of 38 different classes of PlantVillage dataset, which were 
then expanded using 2 classes of coffee plants and 4 classes of 
rice plants. The models that are going to be tested and 
compared consists of MobileNet V2, NasNet Mobile, 
DenseNet 121 layer, and InceptionV3. In the experiments, it 
was found that there was a decrease in accuracy when the 
application was run on a mobile device when compared to 
when it was run on a PC. Experiments also show that 
InceptionV3 is the most stable model and reaches the highest 
level of accuracy, which is 98.45% on mobile devices. 
However, InceptionV3 consumes a lot of resources when used 
on mobile devices. Meanwhile, MobileNet V2, NasNet 
Mobile, dan DenseNet 121, do not consume a lot of resources 
when tested on mobile devices. In terms of accuracy, NasNet 
Mobile reached 97.31%, then MobileNet V2 reached 96.55%, 
and DenseNet 121 reached 96.21%. Based on the research 
criteria, it can be concluded that the CNN model that is most 
suitable to be used on mobile devices is NasNet Mobile. 
Because it has a high degree of accuracy with low resource 
consumption.  
 
Key words:  Plant Disease Identification, PlantVillage 
Dataset, Deep Learning, Convolutional Neural Networks, 
Mobile Application.  
 
1. INTRODUCTION 
 

Plants are a classification of living beings that have a very 
important role, especially for humans. However, dangerous 
diseases often found on plants that could cause a decrease of 
quality and quantity from the produced product. Detecting 
and preventing the disease immediately is very important to 
be able to solve the problem before it becomes a more severe 
and widespread stage. A quick and accurate diagnosis of 
disease severity will help to reduce the loss of yield [1].   

There are various parts of plants that attacked by diseases, 
such as leaves, stems, fruits and others. It would be difficult if 
the disease qualification was done using the naked eye. 
Therefore, an understanding of specific and accurate picture 
patterns is now in demands. And here the role of image 
processing plays an important role[2]. 

Though the process of classification and identification of 
plant diseases can be done using image processing at a small 
cost, the use of technology as a tool to detect plant diseases has 
not been used to the fullest. This leads to financial losses and 
profit reduction to farmers[3]. 

A mechanism is needed to be able to detect disease on leaf 
images, which are expected to provide accurate disease 
information from a plant. The information that referred to is 
the relevance between the diseases on picture of plant with the 
actual plant's disease. One mechanism that able to detect 
diseases in plants quickly and accurately is by using a 
machine learning algorithm. 

The main area of research in machine learning is that a 
computer program should be learning automatically to 
recognize complex patterns and makes it's own intelligent 
decisions based on data [4]. The machine learning method 
used in this study is image classification. One algorithm that 
is currently popular to solve image classification problems is 
Convolutional Neural Network (CNN) [5, 6] which is 
included in the deep learning algorithm.  

There have been a lot of studies that use deep learning to 
identify diseases in plants, as has been done by Zhang et al. 
[7] by increasing two deep convolutional neural networks 
models, each of which achieved an accuracy of 98.9% and 
98.8%. In addition, Ferentinos [8] has achieved identification 
accuracy of 98.53% and 98.49% from the two models of 
convolutional neural networks (VGG and AlexNetOWTBn) 
using a database of 87,848 photographs which taken under 
laboratory conditions and real conditions in cultivation. Then 
Too et al. [9] used several deep convolutional neural network 
architectural models including VGG 16, Inception V4, 
ResNet with 50, 101 and 152 layers and DenseNet with 121 
layers for image-based plant disease classification. Brahi,I et 
al. [10] classify plant diseases and achieve the highest 
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accuracy of 99.76%, using the Inception V3 model of several 
different CNN architectures using the public PlantVillage 
dataset. Then the results of experiments that have been 
carried out by Jadhav et al. [11], GoogleNet and VGG16 
reached an accuracy rate of 96.4%, followed by AlexNet with 
an accuracy rate of 95%, then DenseNet at 93.6%, and finally 
ResNet101 at 92.1%. 

Based on previous research, there has not been a research 
that focus on the application of deep learning techniques to be 
used on mobile devices, especially the research of plant 
disease classification.  

To optimize the use of mobile devices, this study will 
evaluate CNN models that have a high degree of accuracy and 
are created specifically to run on mobile devices. The 
conclusion is to get the most effective model which have a 
high degree of accuracy, low latency, and relatively small 
resource consumption. 

Based on the problem, the authors used several 
architectural models such as MobileNet V2, NasNetMobile, 
Inception V3 and DenseNet with 121 layers to be compared. 
Then the model will be compared again after being applied to 
mobile device application with the aim of evaluating and 
finding a suitable model for mobile devices.  
 
2. RELATED WORKS 
 

In their study [7], they used two models of improved deep 
convolutional neural networks (GoogLeNet and Cifar10) that 
achieved high identification accuracy of 98.9% and 98.8% 
respectively. Experiments in this journal show that it is 
possible to improve recognition accuracy by increasing the 
diversity of merge operations, a reasonable addition of the 
Relu function and dropout operations, and including some 
adjustments of the model parameters. 

In research that has been done by Ferentinos [8], two CNN 
models (VGG and AlexNetOWTBn) achieved identification 
accuracy of 98.53% and 98.49% respectively. Model training 
was carried out using a dataset of 87,848 photographs which 
taken under laboratory conditions and conditions evident in 
the field of cultivation. Data in this journal consists of 25 
plant species in 58 different classes using combinations 
[plants, diseases], including several healthy plants. The 
architecture of the VGG model, a convolutional neural 
network, achieved a success rate of 99.53% (top error -1 by 
0.47%) in the classification of 17.548 plant leaf images which 
had not been previously trained on the model. 

In their research [9], they used several deep convolutional 
neural network architectural models that were evaluated 
including VGG 16, Inception V4, ResNet with 50,101 and 
152 layers and DenseNet with 121 layers for image-based 
plant disease classification. DenseNets obtained a test 
accuracy score of 99.75%. However, despite its good 
architectural performance, further research needs to be done 
to improve computing time. 
 Brahimi et al. [10] in their research focused on the 
superiority of the deep learning technique of visualization 
method in providing transparent information, so that an 

explanation and details of the classification mechanism could 
be obtained. In their research, performance of various 
variations and types of CNN learning architecture were 
compared based on the time required in the learning process. 
The results of the comparison will be useful for future 
researchers to choose the best CNN architecture in building a 
practical system for the detection of plant diseases. The 
evaluation process was done using the PlantVillage dataset. 
In process of training and evaluating CNN's state-of-art 
performance, the open Caffe framework, the deep learning 
framework developed by Berkley Vision and Learning Center 
would be used. In this study, the highest accuracy was 
achieved using the inception_v3 model with a value of 
99.76% and a time of 5.64 hours, while the least time was 
achieved using shallow type learning in the Squeeznet model 
of 0.85 hours with an accuracy of 96.26%. 
 In the research conducted by Jadhav et al. [11], several 
CNN models were implemented using 1,200 data of sick and 
healthy soybean leaves. Classification is carried out on the 
proposed model by modifying various hyperparameters, such 
as minibatch size, max epoch, and learning rate bias. The 
results of experiments showed that GoogleNet and VGG16 
reached an accuracy level of 96.4%, followed by AlexNet with 
an accuracy rate of 95%, then DenseNet at 93.6%, and finally 
ResNet101 at 92.1% 
 
3. RESEARCH METHODOLOGY 
 

The methodology in this study mainly involve two stages, 
which is retraining stage and testing stage. The retraining 
stage is carried out by retraining the pretrained CNN model. 
The testing page is carried out by testing the model on both 
PCs and mobile device. Illustration depict in Figure 1 shows 
the sequence of work processes in the study. 

 
Figure 1: Proposed Method 
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The retraining stage begin with data preparation, then 
collecting image data and finally applying an in-depth 
learning to learning transfer method. The next stage, which is 
testing stage, consist of testing process of the output file from 
retraining stage. 

 
3.1 Retrain Stage 

The design of system in retraining stage were illustrated in 
a flowchart which can be seen in Figure 2. 

 
Figure 2: Retrain stage process 

 
The CNN training process is carried out using the 

TensorFlow framework, the learning model in Python 3.6, 
TensorFlow-lite, Android Studio, and PyCharm community 
edition. The experiments were carried out on a PC which has 
the specifications that illustrated in Table 1. 
 

Table 1: Specifications and Configuration on PC 
No Hardware and 

software 
Characteristics 

1 Memory  16 GB 
2 Processor (CPU) Intel Core i3-7100 CPU @ 3.90 GHz 

(4 CPUs) 
3 Graphics (GPU) NVIDIA GeForce GTX 1050 Ti 12 GB 
4 Operating system Linux Debian GNU/Linux 9.11 (stretch) 
 
3.1.1  Dataset Preparation 

There are several sources of datasets used in this study. 
These include [12], then the coffee plant dataset that used in 
the study [13] and finally the rice plant leaf dataset [14] which 
was also combined with the rice leaf dataset by Aldrin Kein G. 
Francisco [15]. In addition to these sources, researchers also 
added several pictures of rice leaf leaves obtained by taking 
portraits of several rice leaf samples as well as downloading 
from several agricultural sites that list rice leaf diseases. Total 
images that collected were 57551 images consisting of 18 
plant species in 44 different classes with 30 combinations of 
diseased plants and 14 healthy plants. The dataset will be 
divided into 3 parts, consisting of 60% of training data, 20% 
of validation data, and 20% of test data, thereby producing 
34531 training data, 11500 validation data, and 11520 test 
data summarized in Table 2. The system used to carry out the 

testing process on mobile devices will select images one by 
one to be tested. Because testing would be done one by one, 
then in this study 5% of the entire testing dataset, i.e. as many 
as 580 images will be separated by class for testing on PCs 
and mobile devices. 
 
Table 2: PlantVillage dataset, which in addition two coffee 

leaf classes and four rice leaf classes were included. 
No Class Training Validation Testing 

1 Apple-Apple-scab 378 126 126 
2 Apple-Cedar-apple-rust 165 55 55 
3 Apple-Frogeye-Spot 373 124 124 
4 Apple-healthy 987 329 329 
5 Blueberry-healthy 901 300 301 
6 Cherry-including-sour- healthy 512 171 171 
7 Cherry-including-sour -Powdery-mildew 631 210 211 
8 Coffee-healthy 115 38 39 
9 Coffee-Leaf-rust 682 227 228 

10 Corn-maize-Cercospora-leaf- spot-Gray-leaf-spot 308 102 103 
11 Corn-maize-Common-rust 715 238 239 
12 Corn-maize-healthy 697 232 233 
13 Corn-maize-Northern-Leaf- Blight 591 197 197 
14 Grape-Black-rot 708 236 236 
15 Grape-Esca-Black-Measles 830 276 277 
16 Grape-healthy 254 84 85 
17 Grape-Leaf-blight-Isariopsis-Leaf-Spot 646 215 215 
18 Orange-Haunglongbing- Citrus-greening 3304 1101 1102 
19 Peach-Bacterial-spot 1378 459 460 
20 Peach-healthy 216 72 72 
21 Pepper-bell-Bacterial-spot 598 199 200 
22 Pepper-bell-healthy 887 295 296 
23 Potato-Early-blight 600 200 200 
24 Potato-healthy 91 30 31 
25 Potato-Late-blight 600 200 200 
26 Raspberry-healthy 223 74 74 
27 Rice-Bacterial-leaf-blight 74 24 25 
28 Rice-Brown-spot 240 80 80 
29 Rice-healthy 631 210 210 
30 Rice-Leaf-blast 206 68 69 
31 Soybean-healthy 3054 1018 1018 
32 Squash-Powdery-mildew 1101 367 367 
33 Strawberry-healthy 274 91 91 
34 Strawberry-Leaf-scorch 665 222 222 
35 Tomato-Bacterial-spot 1276 425 426 
36 Tomato-Early-blight 600 200 200 
37 Tomato-healthy 955 318 318 
38 Tomato-Late-blight 1145 382 382 
39 Tomato-Leaf-Mold 571 190 191 
40 Tomato-Septoria-leaf-spot 1063 354 354 
41 Tomato-Spider-mites-Two- spotted-spider-mite 1006 335 335 
42 Tomato-Target-Spot 842 281 281 
43 Tomato-Tomato-mosaic-virus 224 74 75 
44 Tomato-Tomato-Yellow-Leaf-Curl-Virus 3214 1071 1072 

Total 34531 11500 11520 

 
3.1.2  CNN Architecture 

Generally, CNN model has similar architecture which can 
be illustrated in Figure 3. The architecture starts with input in 
images form and then followed by convolutional operations in 
convolutional layer, pooling operations in pooling layer and 
fully connected layer 

 

 
Figure 3: Convolution Neural Network (CNN) architecture 

 
The pre-trained model will be stored in the cloud, this is 

done so that the model can be reused and downloaded from 
the framework provider. 
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 MobileNet V2 
MobileNet V2 is a neural network developed from its 

predecessor MobileNet V1. MobileNet V2 has a significant 
increase from MobileNet V1, and encourages the progress of 
the state-of-the-art visual recognition on mobile devices. In 
MobileNet V2 there are two types of blocks, one block is a 
residual block with stride 1, and the other block is a block 
with stride 2 and used for downsizing. There are three 
different layers for the two block types. 

Overall, the model produced by MobileNet V2 has a faster 
runtime for the same accuracy on all spectrum when 
compared to MobileNetV1 [16]. In addition, MobileNetV2 
was able to show better accuracy with the use of fewer 
parameters when compared to MobileNetV1. 

 
 NasNet Mobile 

NASNet is a machine learning model that proposes to look 
for architecture of blocks in small datasets, which then said 
blocks will be transferred to large datasets [17]. In its 
application to ImageNet image classification, NASNet was 
able to obtain prediction accuracy of 82.7% in the validation 
dataset [18]. In that study, the NASNet model obtained results 
that achieved state-of-the-art, but the results were obtained 
with a smaller model size and a lighter level of complexity. 

The architectural blocks or cells that are sought on NASNet 
can then be arranged in such a way as to produce a variation 
from the NASNet architecture, where smaller variations are 
called NASNetMobile or NASNet-A (4 @ 1056). 
NASNetMobile has a number of parameters that resemble 
MobileNet, but is able to provide better accuracy 
performance. NASNet architecture itself consists of 2 
different cells, namely normal cells and reduction cells. 
Furthermore, the exact layer arrangement for the two layers is 
searched by using recurent neural network. 

 
 InceptionV3 

Inception V3 is the third edition of Google's Inception 
Convolutional Neural Network that was developed to resolve 
ImageNet large Visual Recognition Challenge. Inception 
itself is a machine learning model that was first introduced in 
the GoogLeNet architecture by [19]. The purpose of the 
inception model is to act as a multi-level feature extractor by 
counting convolution filters in the same module. The results 
of the filters are then stacked into the channel dimensions 
before inserted into the next layer. 

 
 DenseNet 

DenseNet is a machine learning model architecture which 
has a condition where every layer will be connected to all 
layers directly. Layers on DenseNet will get input which is the 
output of all layers that were passed before. In addition, layers 
on DenseNet will produce output that will be used on all 
layers which will then be traversed. This allows the networkk 
formed to be more streamlined. The process on DenseNet is 
different from the traditional Convolutional layer, where a 
layer takes input from the previous layer and provides output 
for the next layer [20]. From the several variants, one of the 
smallest DenseNet types to be used on ImageNet is 

DenseNet121. DenseNet121 is a variation of the DenseNet 
model that has a small number of parameters which is similar 
to MobileNet. 

 
3.2 Testing Stage 

The process of the testing stage on PC and mobile device 
illustrated in Figure 4 
 

 
Figure 4: Testing stage process 

 
In the testing stage, a comparison between model testing on 

a PC device and model testing on a mobile device will be 
carried out. To conduct testing on a mobile device, it is 
necessary to carry out a conversion process so that the file can 
be optimized to run on the mobile device. Several file that 
produced from the training process, such as "output.pb" was 
converted to " output.lite". The conversion process was 
carried out using "TensorFlow Lite Optimizing Converter" 
program (tflite_convert) which was already included in the 
installation of TensorFlow.   

Serialization format used in TensorFlow Lite (TFLite) is 
different from the serialization format used in TensorFlow,  
where FlatBuffers were used in TFLite, meanwhile Buffer 
protocol were used in Tensorflow. The advantage of using 
FlatBuffers is that the data can be mapped into memory and 
the used directly from disk without having to be loaded and 
parsed before. This results in a much faster startup time, as 
well as enabled the operating system to avoid running out of 
memory by giving them the choice which required pages will 
be loaded and unloaded from the model file. After the 
conversion is done, the file then copied into the assets folder 
on the mobile device . 

For evaluation process on mobile devices, android based 
mobile applications were built using application samples 
from Tensorflow and then modifying it, as illustrated in 
Figure 5. 
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Figure 5: Test application on mobile device 

 
The deployment process on mobile devices will be carried 

out on devices with the specifications described in Table 3. 
 

Table 3: Mobile device specifications 
No Hardware and 

software 
Characteristics 

1 Memory  4 GB 
2 Processor (CPU) Octa-core, 4 x ARM 

Cortex-A73 2 GHz + 4 x ARM 
Cortex-A53 2 GHz 

3 Operating system 
Linux  

Android 9 Pie;ColorOS 6 

4 Rear Camera  16 MP, f/1.8, phase detection 
autofocus, LED flash 

 
4. EXPERIMENT 
4.1 Experimental Design 

The experiment was separated into two main stages, which 
is retraining stage and testing stage. In retraining stage, 
researchers would calculate the evaluation and comparison of 
time, accuracy and loss used by the pretrained architecture. 
The output produced by this stage is in the form of a output 
file (.pb), which then converted into a tflite (.lite) file to be 
used in the evaluation phase on mobile devices. 

The next step is to evaluate testing data using PC and 
performance testing using mobile device. The two devices 
used will then be measured based on the resources needed, 
such as the size of memory used and the use of energy 
resources (batteries). The results of these measurements will 
then be used in determining the minimum requirements for 
hardware specifications on mobile devices, as well as the most 
effective model to be used on mobile devices. 

In this experiment, environment setting used is PC or 
workstation which equipped with a tool used to do deep 
learning processes, python 3.6, OpenCV, TensorFlow, Keras 
and NumPy module. While on a mobile device, an 
Android-based application will be built using Android Studio. 
Output generated from the application is an explanation of the 

time required to process an image in millisecond (ms), 
predictions of certainty presentation, predicted labels, use of 
batteries in microampere (µA) and battery usage in kilobytes 
(KB). 

Same separate images were used to conduct comparative 
testing between the performance on PC and mobile device. 
This was conducted with the aim to measure the value of 
accuracy, latency and resource consumption of mobile 
devices. 

The testing process on PC was started by executing the 
output.pb file using a script that has been built specifically to 
carry out the testing process. Meanwhile, the testing process 
on mobile devices is done by using a plant disease 
classification application by manually checking the images 
one by one. The results of the testing process will then be sent 
to an online matrix calculator [21]. Before the training 
process on a mobile device is carried out, power charging will 
be carried out on the device until the battery is full and then 
the device would be restarted. That was done in an effort so 
the device would have the best initial conditions and to ensure 
there are no unnecessary applications that run at the same 
time. 
 
4.2 Experimental Result 
4.2.1  Retraining on PC 

The first experiment was done by running a script program 
in Jupyter notebook format that is distinguished on each 
model. With some special conditions, where it will run with a 
maximum of 30 epochs, using the early stopping method by 
applying min_delta of 0.001 and patience per 5 epochs, using 
the same hyperparameter, using learning rate of 0.01, as well 
as a dataset that has been separated between train set and 
validation set. The performance of each model trained is 
illustrated graphically in Figure 6 for performance of 
accuracy and Figure 7 for performance of cross entropy. 

 

 
Figure 6: Accuracy performance on each model 

 
Figure 6 shows that the retention process of MobileNet V2 

stops at epoch 24 with an accuracy value of 0.9890 or 98.90% 
and a validation accuracy value of 0.9706 or 97.06%. While 
the retaining process of NasNet Mobile stops at epoch 17 with 
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an accuracy value of 0. 9920 or 99.20% with the validation 
accuracy value is 97.98 or 97.98%. 

Then the retaining process in the Inception V3 model stops 
at the epoch 15 with an accuracy value of 0.9857 or 98.57% 
and the validation accuracy value of 0.9860 or 98.6%. The 
end of the DenseNet 121 retaining process stops at epoch 16 
with an accuracy value of 0.9784 or 97.84%, with a validation 
accuracy of 0.9558 or 95.58%. 

While in Figure 7, the NasNet Mobile Loss value is the 
lowest with a loss accuracy in the epoch 17 is 0.0277, with a 
validation loss value of 0.0011 compared to NasNet Mobile 
and MobileNet V2. 

 
Figure 7: Categorical-cross entropy loss on each model 

 
The second experiment tested empirically using native 

python scripts to produce accuracy values, a measure of the 
size of the output file in the form of a protobuf file and also the 
time required for a cycle of retraining or runtime retraining. 
The experimental results are summarized in Table 4. 

The final evaluation on the PC retraining experiment 
shows that although the Inception V3 model runs only up to 
15 epochs, the test results on Inception V3 get the highest 
accuracy level of 98.68% followed by NasNet Mobile with 
98.23%, then MobileNet V2 with 97.31% and finally 
DenseNet 121 that reaches the level accuracy of 96.94%. 
While validation losses were recorded on NasNet Mobile, 
MobileNet V2, Inception V3 and DenseNet 121 respectively 
from lowest to highest. In the .pb file output size, MobileNet 
V2 generated 21.2 MB, while NasNet Mobile generated 39.9 
MB, then Inception V3 generated 171 MB and finally 

DenseNet 121 generated 59.5MB. Training time on the 
DenseNet 121 model took longer than other models by taking 
as many as 15177 second per epoch. 

4.2.2  Comparison test PC and mobile device 
 Accuracy and Latency on PC and mobile device 

An experimental comparison of performance between a PC 
and a mobile device was carried out using 580 images shown 
in Table 5 with overall accuracy and average latency. 

 
Table 5: Comparison report of accuracy and latency on PC 

and mobile device 

Model Accuracy (%) Average Latency 
(ms) 

PC Mobile PC Mobile 
MobileNet V2 97.07% 96.55% 47 104 
NasNet Mobile 98.28% 97.31% 64 243 
InceptionV3 98.62% 98.45% 105 773 
DenseNet 121 96.55% 96.21% 121 474 
 

The numbers in Table 5 show that the accuracy on mobile 
devices hit some loss, while Inception had a high latency rate. 
However, Inception V3 experienced the lowest loss with 
0.17%, followed by DenseNet 121 with 0.34%, then 
MobileNet V2 with 0.52%, and finally Nasnet Mobile with 
0.97%. 
 
 Confusion Matrix on PC 

Figure 8 through figure 11 are illustrating performance of 
classification output for each model and class that has been 
tested on PC. The performance illustrated using confusion 
matrix where Y axis represents the correct label and X axis 
represents the prediction label. 

 
Figure 8:  Confusion matrix for MobileNet V2 on PC 

Figure 8 shows good performance in most classes, while in 
the Tomato Target Spot class, it shows a significant decrease 
in performance. 

Table 4: Retraining result accuracy, loss, output, and time 

Model Epoch 
Accuracy 

(%) Loss Output File 
(MB) 

Time 
/Epoch 

(Second) Train Valid Test Train Valid .pb .lite 
MobileNet V2 24 98.91% 97.06% 97.31% 0.0378 0.0011 21.2 10.2 4971 
NasNet Mobile 17 99.2% 97.98% 98.23% 0.0277 0.0011 39.9 18.17 9361 
Inception V3 15 98.57% 98.61% 98.68% 0.0486 0.0012 171 89.25 10179 
DenseNet 121 16 97.84% 95.58% 96.94% 0.0766 0.0232 59.5 28.96 15177 
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Figure 9: Confusion matrix for NasNet Mobile on PC 

 
Figure 9 shows the Squash Powdery Mildew class and 

Tomato Target Spot class getting better performance on 
NasNet Mobile. 

 
Figure 10: Confusion matrix for Inception V3 on PC 

 
Figure 10 shows that the Tomato Target Spot and Potato 

Late Blight classes get better performance in Inception V3 
than two previous models. However, the Corn Maize 
Northern Leaf Blight class, Pepper Bell Healthy class and 
Tomato Leaf Mold class show a slight decrease in 
performance. 

 
Figure 11: Confusion matrix for DenseNet 121 on PC 

 

Figure 11 shows the underperformance of the other 3 
models, such in the Coffee Leaf Rust class, the Potato Early 
blight spot class and the Tomato Yellow Leaf Curl Virus 
class. 
 
 Classification Performance Comparison 

Table 6 through table 9 are showing the result of 
experiments which carried out by testing and comparing of 
output files that generated from retrain process. 
 
Table 6: Classification comparison report on Mobilenet V2 

No Class 
Mobile PC 

Support 
Precision Recall F1 Score Precision Recall F1 Score 

1 Apple___Apple_scab 1 1 1 1 1 1 6 
2 Apple___Cedar_apple_rust 1 1 1 1 1 1 3 
3 Apple___Frogeye_Spot 1 1 1 1 1 1 6 
4 Apple___healthy 1 1 1 1 1 1 16 
5 Blueberry___healthy 1 1 1 1 1 1 15 
6 Cherry_including_sour___healthy 1 1 1 1 1 1 9 
7 Cherry_including_sour___Powdery_mildew 1 0.91 0.95 1 0.91 0.95 11 
8 Coffee___healthy 0.50 1 0.67 0.50 1 0.67 2 
9 Coffee___Leaf_rust 1 0.82 0.9 1 0.82 0.9 11 

10 Corn_maize___Cercospora_leaf_spot_Gray_leaf_sp
ot 0.71 1 0.83 0.83 1 0.91 5 

11 Corn_maize___Common_rust 1 1 1 1 1 1 12 
12 Corn_maize___healthy 1 1 1 0.92 1 0.96 12 
13 Corn_maize___Northern_Leaf_Blight 0.89 0.8 0.84 1 0.9 0.95 10 
14 Grape___Black_rot 1 1 1 1 1 1 12 
15 Grape___Esca_Black_Measles 1 1 1 1 1 1 14 
16 Grape___healthy 1 1 1 1 1 1 4 
17 Grape___Leaf_blight_Isariopsis_Leaf_Spot 1 1 1 1 1 1 11 
18 Orange___Haunglongbing_Citrus_greening 1 1 1 1 1 1 55 
19 Peach___Bacterial_spot 1 1 1 1 1 1 23 
20 Peach___healthy 1 1 1 1 1 1 4 
21 Pepper_bell___Bacterial_spot 1 1 1 1 1 1 10 
22 Pepper_bell___healthy 0.94 1 0.97 0.94 1 0.97 15 
23 Potato___Early_blight 0.91 1 0.95 0.91 1 0.95 10 
24 Potato___healthy 1 1 1 1 1 1 2 
25 Potato___Late_blight 1 0.9 0.95 1 1 1 10 
26 Raspberry___healthy 1 1 1 1 1 1 4 
27 Rice___Bacterial_leaf_blight 1 1 1 1 1 1 2 
28 Rice___Brown_spot 0.8 1 0.89 0.8 1 0.89 4 
29 Rice___healthy 1 1 1 1 1 1 11 
30 Rice___Leaf_blast 1 0.67 0.8 1 0.67 0.8 3 
31 Soybean___healthy 1 1 1 1 1 1 51 
32 Squash___Powdery_mildew 1 0.83 0.91 1 0.83 0.91 18 
33 Strawberry___healthy 1 1 1 1 1 1 5 
34 Strawberry___Leaf_scorch 1 1 1 1 1 1 11 
35 Tomato___Bacterial_spot 1 1 1 1 1 1 21 
36 Tomato___Early_blight 1 0.9 0.95 1 0.9 0.95 10 
37 Tomato___healthy 0.7 1 0.82 0.67 1 0.8 16 
38 Tomato___Late_blight 0.9 0.95 0.92 0.95 1 0.97 19 
39 Tomato___Leaf_Mold 0.91 1 0.95 1 1 1 10 
40 Tomato___Septoria_leaf_spot 1 0.94 0.97 1 0.94 0.97 18 
41 Tomato___Spider_mites_Two-spotted_spider_mite 0.94 1 0.97 0.94 1 0.97 17 
42 Tomato___Target_Spot 1 0.50 0.67 1 0.50 0.67 14 
43 Tomato___Tomato_mosaic_virus 1 1 1 1 1 1 4 
44 Tomato___Tomato_Yellow_Leaf_Curl_Virus 0.98 1 0.99 1 1 1 54 

 
From Table 6 it is know that some classes have decreased 

accuracy on mobile device, such as potatoes, some diseased 
corn and some diseased tomatoes. While healthy corn and 
healthy tomatoes experience better performance on mobile 
device. 
 
Table 7: Classification comparison report on NasNet Mobile 

No Class 
Mobile PC 

Support 
Precision Recall F1 Score Precision Recall F1 Score 

1 Apple___Apple_scab 1 1 1 1 1 1 6 
2 Apple___Cedar_apple_rust 1 1 1 1 1 1 3 
3 Apple___Frogeye_Spot 1 1 1 1 1 1 6 
4 Apple___healthy 1 1 1 1 1 1 16 
5 Blueberry___healthy 1 1 1 1 1 1 15 
6 Cherry_including_sour___healthy 1 1 1 1 1 1 9 
7 Cherry_including_sour___Powdery_mildew 1 0.91 0.95 1 1 1 11 
8 Coffee___healthy 1 1 1 1 1 1 2 
9 Coffee___Leaf_rust 1 0.91 0.95 1 0.91 0.95 11 

10 Corn_maize___Cercospora_leaf_spot_Gray_leaf_sp
ot 0.71 1 0.83 0.71 1 0.83 5 

11 Corn_maize___Common_rust 0.92 1 0.96 0.92 1 0.96 12 
12 Corn_maize___healthy 1 1 1 1 1 1 12 
13 Corn_maize___Northern_Leaf_Blight 1 0.8 0.89 1 0.8 0.89 10 
14 Grape___Black_rot 1 1 1 1 1 1 12 
15 Grape___Esca_Black_Measles 1 1 1 1 1 1 14 
16 Grape___healthy 1 1 1 1 1 1 4 
17 Grape___Leaf_blight_Isariopsis_Leaf_Spot 1 1 1 1 1 1 11 
18 Orange___Haunglongbing_Citrus_greening 1 1 1 1 1 1 55 
19 Peach___Bacterial_spot 1 1 1 1 1 1 23 
20 Peach___healthy 1 1 1 1 1 1 4 
21 Pepper_bell___Bacterial_spot 1 1 1 1 1 1 10 
22 Pepper_bell___healthy 0.94 1 0.97 1 1 1 15 
23 Potato___Early_blight 1 1 1 1 1 1 10 
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24 Potato___healthy 1 1 1 1 1 1 2 
25 Potato___Late_blight 1 0.8 0.89 1 0.8 0.89 10 
26 Raspberry___healthy 1 1 1 1 1 1 4 
27 Rice___Bacterial_leaf_blight 1 1 1 1 1 1 2 
28 Rice___Brown_spot 0.8 1 0.89 0.8 1 0.89 4 
29 Rice___healthy 1 1 1 1 1 1 11 
30 Rice___Leaf_blast 1 0.67 0.8 1 0.67 0.8 3 
31 Soybean___healthy 1 1 1 1 1 1 51 
32 Squash___Powdery_mildew 1 1 1 1 1 1 18 
33 Strawberry___healthy 1 1 1 1 1 1 5 
34 Strawberry___Leaf_scorch 1 1 1 1 1 1 11 
35 Tomato___Bacterial_spot 1 1 1 1 1 1 21 
36 Tomato___Early_blight 0.77 1 0.87 0.77 1 0.87 10 
37 Tomato___healthy 0.89 1 0.94 0.94 1 0.97 16 
38 Tomato___Late_blight 0.94 0.89 0.92 0.94 0.89 0.92 19 
39 Tomato___Leaf_Mold 1 1 1 1 1 1 10 
40 Tomato___Septoria_leaf_spot 1 1 1 1 1 1 18 
41 Tomato___Spider_mites_Two-spotted_spider_mite 1 1 1 1 1 1 17 
42 Tomato___Target_Spot 1 0.86 0.92 1 0.93 0.96 14 
43 Tomato___Tomato_mosaic_virus 1 0.75 0.86 1 0.75 0.86 4 
44 Tomato___Tomato_Yellow_Leaf_Curl_Virus 0.98 1 0.99 0.98 1 0.99 54 

 
Table 7 shows that the results on NasNet Mobile 

experienced a slight decrease in accuracy in the Cherry class, 
including sour Powdery mildew, Pepper Bell Healthy, 
Tomato Healthy and Tomato Target Spot. 
 
Table 8: Classification comparison report on Inception V3 

No Class 
Mobile PC 

Support 
Precision Recall F1 Score Precision Recall F1 Score 

1 Apple___Apple_scab 1 1 1 1 1 1 6 
2 Apple___Cedar_apple_rust 1 1 1 1 1 1 3 
3 Apple___Frogeye_Spot 1 1 1 1 1 1 6 
4 Apple___healthy 1 1 1 1 1 1 16 
5 Blueberry___healthy 1 1 1 1 1 1 15 
6 Cherry_including_sour___healthy 1 1 1 1 1 1 9 
7 Cherry_including_sour___Powdery_mildew 1 1 1 1 1 1 11 
8 Coffee___healthy 1 1 1 1 1 1 2 
9 Coffee___Leaf_rust 1 1 1 1 1 1 11 

10 Corn_maize___Cercospora_leaf_spot_Gray_leaf_sp
ot 0.63 1 0.77 0.62 1 0.77 5 

11 Corn_maize___Common_rust 1 1 1 1 1 1 12 
12 Corn_maize___healthy 1 1 1 1 1 1 12 
13 Corn_maize___Northern_Leaf_Blight 1 0.7 0.82 1 0.7 0.82 10 
14 Grape___Black_rot 1 1 1 1 1 1 12 
15 Grape___Esca_Black_Measles 1 1 1 1 1 1 14 
16 Grape___healthy 1 1 1 1 1 1 4 
17 Grape___Leaf_blight_Isariopsis_Leaf_Spot 1 1 1 1 1 1 11 
18 Orange___Haunglongbing_Citrus_greening 1 1 1 1 1 1 55 
19 Peach___Bacterial_spot 1 1 1 1 1 1 23 
20 Peach___healthy 1 1 1 1 1 1 4 
21 Pepper_bell___Bacterial_spot 1 1 1 1 1 1 10 
22 Pepper_bell___healthy 1 0.93 0.97 1 0.93 0.97 15 
23 Potato___Early_blight 1 1 1 1 1 1 10 
24 Potato___healthy 1 1 1 1 1 1 2 
25 Potato___Late_blight 1 1 1 1 1 1 10 
26 Raspberry___healthy 0.8 1 0.89 0.8 1 0.89 4 
27 Rice___Bacterial_leaf_blight 1 1 1 1 1 1 2 
28 Rice___Brown_spot 0.8 1 0.89 0.8 1 0.89 4 
29 Rice___healthy 1 1 1 1 1 1 11 
30 Rice___Leaf_blast 1 0.67 0.8 1 0.67 0.8 3 
31 Soybean___healthy 1 1 1 1 1 1 51 
32 Squash___Powdery_mildew 1 0.94 0.97 1 1 1 18 
33 Strawberry___healthy 1 1 1 1 1 1 5 
34 Strawberry___Leaf_scorch 1 1 1 1 1 1 11 
35 Tomato___Bacterial_spot 1 1 1 1 1 1 21 
36 Tomato___Early_blight 1 0.9 0.95 1 0.9 0.95 10 
37 Tomato___healthy 1 1 1 1 1 1 16 
38 Tomato___Late_blight 0.9 1 0.95 0.9 1 0.95 19 
39 Tomato___Leaf_Mold 1 0.9 0.95 1 0.9 0.95 10 
40 Tomato___Septoria_leaf_spot 1 1 1 1 1 1 18 
41 Tomato___Spider_mites_Two-spotted_spider_mite 0.94 1 0.97 0.94 1 0.97 17 
42 Tomato___Target_Spot 1 1 1 1 1 1 14 
43 Tomato___Tomato_mosaic_virus 1 0.75 0.86 1 0.75 0.86 4 
44 Tomato___Tomato_Yellow_Leaf_Curl_Virus 0.98 1 0.99 1 1 1 54 

 
Table 8 shows that Inception V3 has decreased accuracy in 

Squash Powdery mildew and Tomato Yellow Leaf Curl Virus. 
However, the average performance of InceptionV3 on mobile 
and PC devices has the same performance in each class. 
 
Table 9: Classification comparison report on DenseNet 121 

No Class 
Mobile PC 

Support 
Precision Recall F1 Score Precision Recall F1 Score 

1 Apple___Apple_scab 1 1 1 1 1 1 6 
2 Apple___Cedar_apple_rust 1 1 1 1 1 1 3 
3 Apple___Frogeye_Spot 1 1 1 1 1 1 6 
4 Apple___healthy 0.84 1 0.91 0.89 1 0.94 16 
5 Blueberry___healthy 1 1 1 1 1 1 15 
6 Cherry_including_sour___healthy 0.9 1 0.95 0.9 1 0.95 9 
7 Cherry_including_sour___Powdery_mildew 1 0.91 0.95 1 1 1 11 
8 Coffee___healthy 1 1 1 1 1 1 2 
9 Coffee___Leaf_rust 1 0.36 0.53 1 0.36 0.53 11 

10 Corn_maize___Cercospora_leaf_spot_Gray_leaf_sp
ot 0.67 0.8 0.73 0.67 0.8 0.73 5 

11 Corn_maize___Common_rust 1 1 1 1 1 1 12 

12 Corn_maize___healthy 1 1 1 1 1 1 12 
13 Corn_maize___Northern_Leaf_Blight 1 0.8 0.89 1 0.8 0.89 10 
14 Grape___Black_rot 1 1 1 1 1 1 12 
15 Grape___Esca_Black_Measles 1 1 1 1 1 1 14 
16 Grape___healthy 1 1 1 1 1 1 4 
17 Grape___Leaf_blight_Isariopsis_Leaf_Spot 1 1 1 1 1 1 11 
18 Orange___Haunglongbing_Citrus_greening 1 1 1 1 1 1 55 
19 Peach___Bacterial_spot 1 1 1 1 1 1 23 
20 Peach___healthy 1 1 1 1 1 1 4 
21 Pepper_bell___Bacterial_spot 0.91 1 0.95 0.91 1 0.95 10 
22 Pepper_bell___healthy 1 0.93 0.97 1 0.93 0.97 15 
23 Potato___Early_blight 1 0.7 0.82 1 0.7 0.82 10 
24 Potato___healthy 1 1 1 1 1 1 2 
25 Potato___Late_blight 0.91 1 0.95 0.91 1 0.95 10 
26 Raspberry___healthy 1 1 1 1 1 1 4 
27 Rice___Bacterial_leaf_blight 0.67 1 0.8 0.67 1 0.8 2 
28 Rice___Brown_spot 0.8 1 0.89 0.8 1 0.89 4 
29 Rice___healthy 1 1 1 1 1 1 11 
30 Rice___Leaf_blast 0.40 0.67 0.50 0.4 0.67 0.5 3 
31 Soybean___healthy 1 0.98 0.99 1 0.98 0.99 51 
32 Squash___Powdery_mildew 1 1 1 1 1 1 18 
33 Strawberry___healthy 1 1 1 1 1 1 5 
34 Strawberry___Leaf_scorch 1 1 1 1 1 1 11 
35 Tomato___Bacterial_spot 1 0.95 0.98 1 0.95 0.98 21 
36 Tomato___Early_blight 0.69 0.9 0.78 0.69 0.9 0.78 10 
37 Tomato___healthy 1 1 1 1 1 1 16 
38 Tomato___Late_blight 0.9 0.95 0.92 0.9 0.95 0.92 19 
39 Tomato___Leaf_Mold 1 1 1 1 1 1 10 
40 Tomato___Septoria_leaf_spot 1 1 1 1 1 1 18 
41 Tomato___Spider_mites_Two-spotted_spider_mite 0.89 1 0.94 0.94 1 0.97 17 
42 Tomato___Target_Spot 0.93 1 0.97 0.93 1 0.97 14 
43 Tomato___Tomato_mosaic_virus 1 1 1 1 1 1 4 
44 Tomato___Tomato_Yellow_Leaf_Curl_Virus 1 1 1 1 0.98 0.99 54 

 
Table 9 shows that the results on DenseNet 121 have 

decreased accuracy in the Apple Healthy, Cherry Including 
Sour Powdery Mildew and Tomato Spider Mites Two Spotted 
Spider Mite.  
 
 Mobile Device Resource Consumption 

The experiments result of the using of battery resource 
from the testing process on mobile are summarized in Table 
10. Whereas the use of memory resource is summarized in 
Table 12. 

Table 10: Battery Usage performance each class 
Class MobileNet V2 NasNet Mobile Inception V3 DenseNet 121 

Apple___Apple_scab 2505 3478 3375 4004 
Apple___Cedar_apple_rust 1636 2462 1731 2234 
Apple___Frogeye_Spot 3734 3514 3296 4680 
Apple___healthy 9386 10631 12292 10942 
Blueberry___healthy 7707 8718 11892 9175 
Cherry_including_sour___healthy 5245 5109 7055 5917 
Cherry_including_sour___Powdery_mildew 7337 6340 8828 7580 
Coffee___healthy 926 1780 1325 1051 
Coffee___Leaf_rust 6248 5982 8996 7119 
Corn_maize___Cercospora_leaf_spot_Gray_ 
leaf_spot 2600 3787 4085 2775 

Corn_maize___Common_rust 5930 7978 9977 7592 
Corn_maize___healthy 6243 8633 10014 8076 
Corn_maize___Northern_Leaf_Blight 5590 5964 8116 6037 
Grape___Black_rot 5757 7164 9810 8024 
Grape___Esca_Black_Measles 7411 9043 10939 7414 
Grape___healthy 2711 2921 3304 2403 
Grape___Leaf_blight_Isariopsis_Leaf_Spot 8212 7105 9148 6579 
Orange___Haunglongbing_Citrus_greening 31824 26532 42316 31375 
Peach___Bacterial_spot 13666 14014 19854 17297 
Peach___healthy 2717 3035 3140 3205 
Pepper_bell___Bacterial_spot 6040 6473 7926 6964 
Pepper_bell___healthy 7993 10496 11695 9314 
Potato___Early_blight 5593 5461 8857 5663 
Potato___healthy 852 1204 1610 1258 
Potato___Late_blight 6113 7525 7749 6989 
Raspberry___healthy 3393 2653 2975 2155 
Rice___Bacterial_leaf_blight 1555 1139 1463 1330 
Rice___Brown_spot 3029 2599 3295 2722 
Rice___healthy 5990 7142 9129 7281 
Rice___Leaf_blast 2690 1592 2203 2056 
Soybean___healthy 34565 26606 38231 30359 
Squash___Powdery_mildew 10837 10765 14082 9649 
Strawberry___healthy 2417 3698 4182 2947 
Strawberry___Leaf_scorch 5489 7755 9056 8451 
Tomato___Bacterial_spot 11801 15678 17491 12799 
Tomato___Early_blight 5095 6908 8346 6986 
Tomato___healthy 9526 11033 13680 10793 
Tomato___Late_blight 14504 14566 15169 12533 
Tomato___Leaf_Mold 7148 6292 8467 6589 
Tomato___Septoria_leaf_spot 10024 11577 15867 12254 
Tomato___Spider_mites_Two-spotted_spider_mit
e 9333 12553 14985 10055 

Tomato___Target_Spot 9843 8517 12570 8627 
Tomato___Tomato_mosaic_virus 2479 3542 3565 2578 
Tomato___Tomato_Yellow_Leaf_Curl_Virus 32584 34992 49111 37061 

Total 346278 364956 471197 370892 

 
From the overall results, from the four models tested the 

total battery usage on MobileNet V2 is very low while the total 
battery usage on Inception V3 is very high. To strengthen the 
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analysis in calculating battery usage, an ANOVA analysis 
method will be used, with α = 0.05 by obtaining the F and 
P-values of battery usage, which are summarized in Table 11. 
 

Table 11: ANOVA Oneway Analysis of Battery Usage 
Source of 
Variation SS df MS F P-value F crit 

Between Groups 16354720.88 3 5451573.627 163.0281328 7.11066E-96 2.608745145 

Within Groups 77445802.15 2316 33439.46552    

Total 93800523.03 2319         

 
Analysis of Table 11 shows the P-value 7.11066E-96 is 

lower than 0.05, so it can be concluded statistically there are 
significant differences between the four models tested. 

 
Table 12: Memory Usage performance each class 

Class MobileNet V2 NasNet Mobile Inception V3 DenseNet 121 
Apple___Apple_scab 1204 1208 2094 1200 
Apple___Cedar_apple_rust 628 588 1066 627 
Apple___Frogeye_Spot 1240 1192 2189 1254 
Apple___healthy 3160 3172 5739 3351 
Blueberry___healthy 3096 3112 5466 3297 
Cherry_including_sour___healthy 1852 1904 3239 1908 
Cherry_including_sour___Powdery_mildew 2184 2308 3918 2383 
Coffee___healthy 396 416 701 400 
Coffee___Leaf_rust 2192 2284 3905 2351 
Corn_maize___Cercospora_leaf_spot_Gray_ 
leaf_spot 1020 1024 1748 1081 

Corn_maize___Common_rust 2576 2496 4308 2648 
Corn_maize___healthy 2480 2460 4276 2609 
Corn_maize___Northern_Leaf_Blight 2036 2144 3537 2139 
Grape___Black_rot 2404 2384 4276 2587 
Grape___Esca_Black_Measles 2860 2796 4977 3008 
Grape___healthy 828 792 1418 859 
Grape___Leaf_blight_Isariopsis_Leaf_Spot 2188 2288 3921 2360 
Orange___Haunglongbing_Citrus_greening 11008 10896 19432 11534 
Peach___Bacterial_spot 4844 4724 8168 4947 
Peach___healthy 816 796 1421 848 
Pepper_bell___Bacterial_spot 2032 2052 3572 2221 
Pepper_bell___healthy 3052 3160 5342 3313 
Potato___Early_blight 2052 2060 3556 2000 
Potato___healthy 396 412 701 400 
Potato___Late_blight 2112 2096 3591 2000 
Raspberry___healthy 808 844 1437 800 
Rice___Bacterial_leaf_blight 396 412 701 400 
Rice___Brown_spot 824 848 1437 848 
Rice___healthy 2196 2292 3959 2387 
Rice___Leaf_blast 592 600 1056 670 
Soybean___healthy 10248 10232 18038 10675 
Squash___Powdery_mildew 3660 3760 6430 3867 
Strawberry___healthy 1012 1004 1770 1080 
Strawberry___Leaf_scorch 2220 2172 3943 2344 
Tomato___Bacterial_spot 4316 4268 7429 4243 
Tomato___Early_blight 2124 2000 3572 2048 
Tomato___healthy 3324 3256 5726 3403 
Tomato___Late_blight 3800 3956 6738 4008 
Tomato___Leaf_Mold 1972 2072 3540 2144 
Tomato___Septoria_leaf_spot 3656 3748 6452 3659 
Tomato___Spider_mites_Two-spotted_spider_mit
e 3364 3460 6046 3539 

Tomato___Target_Spot 2820 2840 5028 2971 
Tomato___Tomato_mosaic_virus 804 816 1434 832 
Tomato___Tomato_Yellow_Leaf_Curl_Virus 11372 10940 19372 11392 

Total 118164 118284 206669 122635 

 
Overall, the total memory usage on MobileNet V2 is very 

low followed by NasNet Mobile then DenseNet 121 and 
finally Inception V3 with the highest total memory usage. 
ANOVA oneway analysis will be used to strengthen the 
analysis in calculating memory usage, with α = 0.05 by 
getting the values of F and P-value of memory usage, which is 
summarized in Table 13. 

 
Table 13: ANOVA Oneway Analysis of Memory Usage 
Source of 
Variation SS df MS F P-value F crit 

Between Groups 9804177.521 3 3268059.174 40741.21097 0 2.608745 

Within Groups 185778.1069 2316 80.21507206    

Total 9989955.628 2319         

 

Analysis of Table 13 shows the P-value is equal to 0, so that 
it can be concluded statistically that there is no significant 
effect between the four models tested. 
 
5. CONCLUSION 
 

The study evaluates the transfer learning method using 
pretrained model that allows the retraining process to be 
carried out using workstations with moderate specifications 
and more reasonable time due to lighter computing costs. 

Analysis of the results of the retraining concluded that 
although the Inception V3 model runs only up to 15 epochs, 
the size of output file produced is three times larger than the 
other three models, and in the testing phase Inception V3 is 
superior to other models with an accuracy value reaching 
98.68%. 

The results of comparative experiments between PCs and 
mobile devices showed that certain classes experienced a 
slight decrease in the value of overall accuracy. The level of 
accuracy in InceptionV3 is considered quite reliable 
compared to other models, but with the use of resources on 
mobile devices that are very high, so Inception V3 is 
considered inappropriate to detect classification of plant 
diseases on mobile devices. 

Meanwhile on NasNet Mobile, the use of resources on 
mobile devices is not very high and with a high level of 
accuracy. This accuracy does not have significant difference 
when run and tested on either PC or mobile device.  

Based on the methodology and the results of the 
experiment, it was concluded that the NasNet Mobile model is 
the most suitable model to be used on mobile device as plant 
disease detection classifications. That is because the model 
has high accuracy and detection speed, with low resource 
requirements 
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