
 Sembada Denrineksa Bimorogo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2824 – 2833

2824

ABSTRACT

Optimization of mobile devices to be used as early
identification tools of plant diseases using an application
based on Convolutional Neural Network (CNN), with a high
degree of accuracy and low power consumption is the focus of
this study. The study was conducted using a dataset consisting
of 38 different classes of PlantVillage dataset, which were
then expanded using 2 classes of coffee plants and 4 classes of
rice plants. The models that are going to be tested and
compared consists of MobileNet V2, NasNet Mobile,
DenseNet 121 layer, and InceptionV3. In the experiments, it
was found that there was a decrease in accuracy when the
application was run on a mobile device when compared to
when it was run on a PC. Experiments also show that
InceptionV3 is the most stable model and reaches the highest
level of accuracy, which is 98.45% on mobile devices.
However, InceptionV3 consumes a lot of resources when used
on mobile devices. Meanwhile, MobileNet V2, NasNet
Mobile, dan DenseNet 121, do not consume a lot of resources
when tested on mobile devices. In terms of accuracy, NasNet
Mobile reached 97.31%, then MobileNet V2 reached 96.55%,
and DenseNet 121 reached 96.21%. Based on the research
criteria, it can be concluded that the CNN model that is most
suitable to be used on mobile devices is NasNet Mobile.
Because it has a high degree of accuracy with low resource
consumption.

Key words: Plant Disease Identification, PlantVillage
Dataset, Deep Learning, Convolutional Neural Networks,
Mobile Application.

1. INTRODUCTION

Plants are a classification of living beings that have a very
important role, especially for humans. However, dangerous
diseases often found on plants that could cause a decrease of
quality and quantity from the produced product. Detecting
and preventing the disease immediately is very important to
be able to solve the problem before it becomes a more severe
and widespread stage. A quick and accurate diagnosis of
disease severity will help to reduce the loss of yield [1].

There are various parts of plants that attacked by diseases,
such as leaves, stems, fruits and others. It would be difficult if
the disease qualification was done using the naked eye.
Therefore, an understanding of specific and accurate picture
patterns is now in demands. And here the role of image
processing plays an important role[2].

Though the process of classification and identification of
plant diseases can be done using image processing at a small
cost, the use of technology as a tool to detect plant diseases has
not been used to the fullest. This leads to financial losses and
profit reduction to farmers[3].

A mechanism is needed to be able to detect disease on leaf
images, which are expected to provide accurate disease
information from a plant. The information that referred to is
the relevance between the diseases on picture of plant with the
actual plant's disease. One mechanism that able to detect
diseases in plants quickly and accurately is by using a
machine learning algorithm.

The main area of research in machine learning is that a
computer program should be learning automatically to
recognize complex patterns and makes it's own intelligent
decisions based on data [4]. The machine learning method
used in this study is image classification. One algorithm that
is currently popular to solve image classification problems is
Convolutional Neural Network (CNN) [5, 6] which is
included in the deep learning algorithm.

There have been a lot of studies that use deep learning to
identify diseases in plants, as has been done by Zhang et al.
[7] by increasing two deep convolutional neural networks
models, each of which achieved an accuracy of 98.9% and
98.8%. In addition, Ferentinos [8] has achieved identification
accuracy of 98.53% and 98.49% from the two models of
convolutional neural networks (VGG and AlexNetOWTBn)
using a database of 87,848 photographs which taken under
laboratory conditions and real conditions in cultivation. Then
Too et al. [9] used several deep convolutional neural network
architectural models including VGG 16, Inception V4,
ResNet with 50, 101 and 152 layers and DenseNet with 121
layers for image-based plant disease classification. Brahi,I et
al. [10] classify plant diseases and achieve the highest

A Comparative Study of Pretrained Convolutional Neural Network

Model to Identify Plant Diseases on Android Mobile Device

Sembada Denrineksa Bimorogo1, Gede Putra Kusuma2
1Computer Science Department, BINUS Graduate Program - Master of Computer Science,

Bina Nusantara University, Jakarta, Indonesia, 11480, sembada.bimorogo@binus.ac.id
2Computer Science Department, BINUS Graduate Program - Master of Computer Science,

Bina Nusantara University, Jakarta, Indonesia, 11480, inegara@binus.edu

ISSN 2278-3091
Volume 9, No.3, May - June 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse53932020.pdf

https://doi.org/10.30534/ijatcse/2020/53932020

 Sembada Denrineksa Bimorogo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2824 – 2833

2825

accuracy of 99.76%, using the Inception V3 model of several
different CNN architectures using the public PlantVillage
dataset. Then the results of experiments that have been
carried out by Jadhav et al. [11], GoogleNet and VGG16
reached an accuracy rate of 96.4%, followed by AlexNet with
an accuracy rate of 95%, then DenseNet at 93.6%, and finally
ResNet101 at 92.1%.

Based on previous research, there has not been a research
that focus on the application of deep learning techniques to be
used on mobile devices, especially the research of plant
disease classification.

To optimize the use of mobile devices, this study will
evaluate CNN models that have a high degree of accuracy and
are created specifically to run on mobile devices. The
conclusion is to get the most effective model which have a
high degree of accuracy, low latency, and relatively small
resource consumption.

Based on the problem, the authors used several
architectural models such as MobileNet V2, NasNetMobile,
Inception V3 and DenseNet with 121 layers to be compared.
Then the model will be compared again after being applied to
mobile device application with the aim of evaluating and
finding a suitable model for mobile devices.

2. RELATED WORKS

In their study [7], they used two models of improved deep
convolutional neural networks (GoogLeNet and Cifar10) that
achieved high identification accuracy of 98.9% and 98.8%
respectively. Experiments in this journal show that it is
possible to improve recognition accuracy by increasing the
diversity of merge operations, a reasonable addition of the
Relu function and dropout operations, and including some
adjustments of the model parameters.

In research that has been done by Ferentinos [8], two CNN
models (VGG and AlexNetOWTBn) achieved identification
accuracy of 98.53% and 98.49% respectively. Model training
was carried out using a dataset of 87,848 photographs which
taken under laboratory conditions and conditions evident in
the field of cultivation. Data in this journal consists of 25
plant species in 58 different classes using combinations
[plants, diseases], including several healthy plants. The
architecture of the VGG model, a convolutional neural
network, achieved a success rate of 99.53% (top error -1 by
0.47%) in the classification of 17.548 plant leaf images which
had not been previously trained on the model.

In their research [9], they used several deep convolutional
neural network architectural models that were evaluated
including VGG 16, Inception V4, ResNet with 50,101 and
152 layers and DenseNet with 121 layers for image-based
plant disease classification. DenseNets obtained a test
accuracy score of 99.75%. However, despite its good
architectural performance, further research needs to be done
to improve computing time.
 Brahimi et al. [10] in their research focused on the
superiority of the deep learning technique of visualization
method in providing transparent information, so that an

explanation and details of the classification mechanism could
be obtained. In their research, performance of various
variations and types of CNN learning architecture were
compared based on the time required in the learning process.
The results of the comparison will be useful for future
researchers to choose the best CNN architecture in building a
practical system for the detection of plant diseases. The
evaluation process was done using the PlantVillage dataset.
In process of training and evaluating CNN's state-of-art
performance, the open Caffe framework, the deep learning
framework developed by Berkley Vision and Learning Center
would be used. In this study, the highest accuracy was
achieved using the inception_v3 model with a value of
99.76% and a time of 5.64 hours, while the least time was
achieved using shallow type learning in the Squeeznet model
of 0.85 hours with an accuracy of 96.26%.
 In the research conducted by Jadhav et al. [11], several
CNN models were implemented using 1,200 data of sick and
healthy soybean leaves. Classification is carried out on the
proposed model by modifying various hyperparameters, such
as minibatch size, max epoch, and learning rate bias. The
results of experiments showed that GoogleNet and VGG16
reached an accuracy level of 96.4%, followed by AlexNet with
an accuracy rate of 95%, then DenseNet at 93.6%, and finally
ResNet101 at 92.1%

3. RESEARCH METHODOLOGY

The methodology in this study mainly involve two stages,
which is retraining stage and testing stage. The retraining
stage is carried out by retraining the pretrained CNN model.
The testing page is carried out by testing the model on both
PCs and mobile device. Illustration depict in Figure 1 shows
the sequence of work processes in the study.

Figure 1: Proposed Method

 Sembada Denrineksa Bimorogo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2824 – 2833

2826

The retraining stage begin with data preparation, then
collecting image data and finally applying an in-depth
learning to learning transfer method. The next stage, which is
testing stage, consist of testing process of the output file from
retraining stage.

3.1 Retrain Stage

The design of system in retraining stage were illustrated in
a flowchart which can be seen in Figure 2.

Figure 2: Retrain stage process

The CNN training process is carried out using the

TensorFlow framework, the learning model in Python 3.6,
TensorFlow-lite, Android Studio, and PyCharm community
edition. The experiments were carried out on a PC which has
the specifications that illustrated in Table 1.

Table 1: Specifications and Configuration on PC
No Hardware and

software
Characteristics

1 Memory 16 GB
2 Processor (CPU) Intel Core i3-7100 CPU @ 3.90 GHz

(4 CPUs)
3 Graphics (GPU) NVIDIA GeForce GTX 1050 Ti 12 GB
4 Operating system Linux Debian GNU/Linux 9.11 (stretch)

3.1.1 Dataset Preparation

There are several sources of datasets used in this study.
These include [12], then the coffee plant dataset that used in
the study [13] and finally the rice plant leaf dataset [14] which
was also combined with the rice leaf dataset by Aldrin Kein G.
Francisco [15]. In addition to these sources, researchers also
added several pictures of rice leaf leaves obtained by taking
portraits of several rice leaf samples as well as downloading
from several agricultural sites that list rice leaf diseases. Total
images that collected were 57551 images consisting of 18
plant species in 44 different classes with 30 combinations of
diseased plants and 14 healthy plants. The dataset will be
divided into 3 parts, consisting of 60% of training data, 20%
of validation data, and 20% of test data, thereby producing
34531 training data, 11500 validation data, and 11520 test
data summarized in Table 2. The system used to carry out the

testing process on mobile devices will select images one by
one to be tested. Because testing would be done one by one,
then in this study 5% of the entire testing dataset, i.e. as many
as 580 images will be separated by class for testing on PCs
and mobile devices.

Table 2: PlantVillage dataset, which in addition two coffee

leaf classes and four rice leaf classes were included.
No Class Training Validation Testing

1 Apple-Apple-scab 378 126 126
2 Apple-Cedar-apple-rust 165 55 55
3 Apple-Frogeye-Spot 373 124 124
4 Apple-healthy 987 329 329
5 Blueberry-healthy 901 300 301
6 Cherry-including-sour- healthy 512 171 171
7 Cherry-including-sour -Powdery-mildew 631 210 211
8 Coffee-healthy 115 38 39
9 Coffee-Leaf-rust 682 227 228

10 Corn-maize-Cercospora-leaf- spot-Gray-leaf-spot 308 102 103
11 Corn-maize-Common-rust 715 238 239
12 Corn-maize-healthy 697 232 233
13 Corn-maize-Northern-Leaf- Blight 591 197 197
14 Grape-Black-rot 708 236 236
15 Grape-Esca-Black-Measles 830 276 277
16 Grape-healthy 254 84 85
17 Grape-Leaf-blight-Isariopsis-Leaf-Spot 646 215 215
18 Orange-Haunglongbing- Citrus-greening 3304 1101 1102
19 Peach-Bacterial-spot 1378 459 460
20 Peach-healthy 216 72 72
21 Pepper-bell-Bacterial-spot 598 199 200
22 Pepper-bell-healthy 887 295 296
23 Potato-Early-blight 600 200 200
24 Potato-healthy 91 30 31
25 Potato-Late-blight 600 200 200
26 Raspberry-healthy 223 74 74
27 Rice-Bacterial-leaf-blight 74 24 25
28 Rice-Brown-spot 240 80 80
29 Rice-healthy 631 210 210
30 Rice-Leaf-blast 206 68 69
31 Soybean-healthy 3054 1018 1018
32 Squash-Powdery-mildew 1101 367 367
33 Strawberry-healthy 274 91 91
34 Strawberry-Leaf-scorch 665 222 222
35 Tomato-Bacterial-spot 1276 425 426
36 Tomato-Early-blight 600 200 200
37 Tomato-healthy 955 318 318
38 Tomato-Late-blight 1145 382 382
39 Tomato-Leaf-Mold 571 190 191
40 Tomato-Septoria-leaf-spot 1063 354 354
41 Tomato-Spider-mites-Two- spotted-spider-mite 1006 335 335
42 Tomato-Target-Spot 842 281 281
43 Tomato-Tomato-mosaic-virus 224 74 75
44 Tomato-Tomato-Yellow-Leaf-Curl-Virus 3214 1071 1072

Total 34531 11500 11520

3.1.2 CNN Architecture

Generally, CNN model has similar architecture which can
be illustrated in Figure 3. The architecture starts with input in
images form and then followed by convolutional operations in
convolutional layer, pooling operations in pooling layer and
fully connected layer

Figure 3: Convolution Neural Network (CNN) architecture

The pre-trained model will be stored in the cloud, this is

done so that the model can be reused and downloaded from
the framework provider.

 Sembada Denrineksa Bimorogo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2824 – 2833

2827

 MobileNet V2
MobileNet V2 is a neural network developed from its

predecessor MobileNet V1. MobileNet V2 has a significant
increase from MobileNet V1, and encourages the progress of
the state-of-the-art visual recognition on mobile devices. In
MobileNet V2 there are two types of blocks, one block is a
residual block with stride 1, and the other block is a block
with stride 2 and used for downsizing. There are three
different layers for the two block types.

Overall, the model produced by MobileNet V2 has a faster
runtime for the same accuracy on all spectrum when
compared to MobileNetV1 [16]. In addition, MobileNetV2
was able to show better accuracy with the use of fewer
parameters when compared to MobileNetV1.

 NasNet Mobile

NASNet is a machine learning model that proposes to look
for architecture of blocks in small datasets, which then said
blocks will be transferred to large datasets [17]. In its
application to ImageNet image classification, NASNet was
able to obtain prediction accuracy of 82.7% in the validation
dataset [18]. In that study, the NASNet model obtained results
that achieved state-of-the-art, but the results were obtained
with a smaller model size and a lighter level of complexity.

The architectural blocks or cells that are sought on NASNet
can then be arranged in such a way as to produce a variation
from the NASNet architecture, where smaller variations are
called NASNetMobile or NASNet-A (4 @ 1056).
NASNetMobile has a number of parameters that resemble
MobileNet, but is able to provide better accuracy
performance. NASNet architecture itself consists of 2
different cells, namely normal cells and reduction cells.
Furthermore, the exact layer arrangement for the two layers is
searched by using recurent neural network.

 InceptionV3

Inception V3 is the third edition of Google's Inception
Convolutional Neural Network that was developed to resolve
ImageNet large Visual Recognition Challenge. Inception
itself is a machine learning model that was first introduced in
the GoogLeNet architecture by [19]. The purpose of the
inception model is to act as a multi-level feature extractor by
counting convolution filters in the same module. The results
of the filters are then stacked into the channel dimensions
before inserted into the next layer.

 DenseNet

DenseNet is a machine learning model architecture which
has a condition where every layer will be connected to all
layers directly. Layers on DenseNet will get input which is the
output of all layers that were passed before. In addition, layers
on DenseNet will produce output that will be used on all
layers which will then be traversed. This allows the networkk
formed to be more streamlined. The process on DenseNet is
different from the traditional Convolutional layer, where a
layer takes input from the previous layer and provides output
for the next layer [20]. From the several variants, one of the
smallest DenseNet types to be used on ImageNet is

DenseNet121. DenseNet121 is a variation of the DenseNet
model that has a small number of parameters which is similar
to MobileNet.

3.2 Testing Stage

The process of the testing stage on PC and mobile device
illustrated in Figure 4

Figure 4: Testing stage process

In the testing stage, a comparison between model testing on

a PC device and model testing on a mobile device will be
carried out. To conduct testing on a mobile device, it is
necessary to carry out a conversion process so that the file can
be optimized to run on the mobile device. Several file that
produced from the training process, such as "output.pb" was
converted to " output.lite". The conversion process was
carried out using "TensorFlow Lite Optimizing Converter"
program (tflite_convert) which was already included in the
installation of TensorFlow.

Serialization format used in TensorFlow Lite (TFLite) is
different from the serialization format used in TensorFlow,
where FlatBuffers were used in TFLite, meanwhile Buffer
protocol were used in Tensorflow. The advantage of using
FlatBuffers is that the data can be mapped into memory and
the used directly from disk without having to be loaded and
parsed before. This results in a much faster startup time, as
well as enabled the operating system to avoid running out of
memory by giving them the choice which required pages will
be loaded and unloaded from the model file. After the
conversion is done, the file then copied into the assets folder
on the mobile device .

For evaluation process on mobile devices, android based
mobile applications were built using application samples
from Tensorflow and then modifying it, as illustrated in
Figure 5.

 Sembada Denrineksa Bimorogo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2824 – 2833

2828

Figure 5: Test application on mobile device

The deployment process on mobile devices will be carried

out on devices with the specifications described in Table 3.

Table 3: Mobile device specifications
No Hardware and

software
Characteristics

1 Memory 4 GB
2 Processor (CPU) Octa-core, 4 x ARM

Cortex-A73 2 GHz + 4 x ARM
Cortex-A53 2 GHz

3 Operating system
Linux

Android 9 Pie;ColorOS 6

4 Rear Camera 16 MP, f/1.8, phase detection
autofocus, LED flash

4. EXPERIMENT
4.1 Experimental Design

The experiment was separated into two main stages, which
is retraining stage and testing stage. In retraining stage,
researchers would calculate the evaluation and comparison of
time, accuracy and loss used by the pretrained architecture.
The output produced by this stage is in the form of a output
file (.pb), which then converted into a tflite (.lite) file to be
used in the evaluation phase on mobile devices.

The next step is to evaluate testing data using PC and
performance testing using mobile device. The two devices
used will then be measured based on the resources needed,
such as the size of memory used and the use of energy
resources (batteries). The results of these measurements will
then be used in determining the minimum requirements for
hardware specifications on mobile devices, as well as the most
effective model to be used on mobile devices.

In this experiment, environment setting used is PC or
workstation which equipped with a tool used to do deep
learning processes, python 3.6, OpenCV, TensorFlow, Keras
and NumPy module. While on a mobile device, an
Android-based application will be built using Android Studio.
Output generated from the application is an explanation of the

time required to process an image in millisecond (ms),
predictions of certainty presentation, predicted labels, use of
batteries in microampere (µA) and battery usage in kilobytes
(KB).

Same separate images were used to conduct comparative
testing between the performance on PC and mobile device.
This was conducted with the aim to measure the value of
accuracy, latency and resource consumption of mobile
devices.

The testing process on PC was started by executing the
output.pb file using a script that has been built specifically to
carry out the testing process. Meanwhile, the testing process
on mobile devices is done by using a plant disease
classification application by manually checking the images
one by one. The results of the testing process will then be sent
to an online matrix calculator [21]. Before the training
process on a mobile device is carried out, power charging will
be carried out on the device until the battery is full and then
the device would be restarted. That was done in an effort so
the device would have the best initial conditions and to ensure
there are no unnecessary applications that run at the same
time.

4.2 Experimental Result
4.2.1 Retraining on PC

The first experiment was done by running a script program
in Jupyter notebook format that is distinguished on each
model. With some special conditions, where it will run with a
maximum of 30 epochs, using the early stopping method by
applying min_delta of 0.001 and patience per 5 epochs, using
the same hyperparameter, using learning rate of 0.01, as well
as a dataset that has been separated between train set and
validation set. The performance of each model trained is
illustrated graphically in Figure 6 for performance of
accuracy and Figure 7 for performance of cross entropy.

Figure 6: Accuracy performance on each model

Figure 6 shows that the retention process of MobileNet V2

stops at epoch 24 with an accuracy value of 0.9890 or 98.90%
and a validation accuracy value of 0.9706 or 97.06%. While
the retaining process of NasNet Mobile stops at epoch 17 with

 Sembada Denrineksa Bimorogo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2824 – 2833

2829

an accuracy value of 0. 9920 or 99.20% with the validation
accuracy value is 97.98 or 97.98%.

Then the retaining process in the Inception V3 model stops
at the epoch 15 with an accuracy value of 0.9857 or 98.57%
and the validation accuracy value of 0.9860 or 98.6%. The
end of the DenseNet 121 retaining process stops at epoch 16
with an accuracy value of 0.9784 or 97.84%, with a validation
accuracy of 0.9558 or 95.58%.

While in Figure 7, the NasNet Mobile Loss value is the
lowest with a loss accuracy in the epoch 17 is 0.0277, with a
validation loss value of 0.0011 compared to NasNet Mobile
and MobileNet V2.

Figure 7: Categorical-cross entropy loss on each model

The second experiment tested empirically using native

python scripts to produce accuracy values, a measure of the
size of the output file in the form of a protobuf file and also the
time required for a cycle of retraining or runtime retraining.
The experimental results are summarized in Table 4.

The final evaluation on the PC retraining experiment
shows that although the Inception V3 model runs only up to
15 epochs, the test results on Inception V3 get the highest
accuracy level of 98.68% followed by NasNet Mobile with
98.23%, then MobileNet V2 with 97.31% and finally
DenseNet 121 that reaches the level accuracy of 96.94%.
While validation losses were recorded on NasNet Mobile,
MobileNet V2, Inception V3 and DenseNet 121 respectively
from lowest to highest. In the .pb file output size, MobileNet
V2 generated 21.2 MB, while NasNet Mobile generated 39.9
MB, then Inception V3 generated 171 MB and finally

DenseNet 121 generated 59.5MB. Training time on the
DenseNet 121 model took longer than other models by taking
as many as 15177 second per epoch.

4.2.2 Comparison test PC and mobile device
 Accuracy and Latency on PC and mobile device

An experimental comparison of performance between a PC
and a mobile device was carried out using 580 images shown
in Table 5 with overall accuracy and average latency.

Table 5: Comparison report of accuracy and latency on PC

and mobile device

Model Accuracy (%) Average Latency
(ms)

PC Mobile PC Mobile
MobileNet V2 97.07% 96.55% 47 104
NasNet Mobile 98.28% 97.31% 64 243
InceptionV3 98.62% 98.45% 105 773
DenseNet 121 96.55% 96.21% 121 474

The numbers in Table 5 show that the accuracy on mobile
devices hit some loss, while Inception had a high latency rate.
However, Inception V3 experienced the lowest loss with
0.17%, followed by DenseNet 121 with 0.34%, then
MobileNet V2 with 0.52%, and finally Nasnet Mobile with
0.97%.

 Confusion Matrix on PC

Figure 8 through figure 11 are illustrating performance of
classification output for each model and class that has been
tested on PC. The performance illustrated using confusion
matrix where Y axis represents the correct label and X axis
represents the prediction label.

Figure 8: Confusion matrix for MobileNet V2 on PC

Figure 8 shows good performance in most classes, while in
the Tomato Target Spot class, it shows a significant decrease
in performance.

Table 4: Retraining result accuracy, loss, output, and time

Model Epoch
Accuracy

(%) Loss Output File
(MB)

Time
/Epoch

(Second) Train Valid Test Train Valid .pb .lite
MobileNet V2 24 98.91% 97.06% 97.31% 0.0378 0.0011 21.2 10.2 4971
NasNet Mobile 17 99.2% 97.98% 98.23% 0.0277 0.0011 39.9 18.17 9361
Inception V3 15 98.57% 98.61% 98.68% 0.0486 0.0012 171 89.25 10179
DenseNet 121 16 97.84% 95.58% 96.94% 0.0766 0.0232 59.5 28.96 15177

 Sembada Denrineksa Bimorogo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2824 – 2833

2830

Figure 9: Confusion matrix for NasNet Mobile on PC

Figure 9 shows the Squash Powdery Mildew class and

Tomato Target Spot class getting better performance on
NasNet Mobile.

Figure 10: Confusion matrix for Inception V3 on PC

Figure 10 shows that the Tomato Target Spot and Potato

Late Blight classes get better performance in Inception V3
than two previous models. However, the Corn Maize
Northern Leaf Blight class, Pepper Bell Healthy class and
Tomato Leaf Mold class show a slight decrease in
performance.

Figure 11: Confusion matrix for DenseNet 121 on PC

Figure 11 shows the underperformance of the other 3
models, such in the Coffee Leaf Rust class, the Potato Early
blight spot class and the Tomato Yellow Leaf Curl Virus
class.

 Classification Performance Comparison

Table 6 through table 9 are showing the result of
experiments which carried out by testing and comparing of
output files that generated from retrain process.

Table 6: Classification comparison report on Mobilenet V2

No Class
Mobile PC

Support
Precision Recall F1 Score Precision Recall F1 Score

1 Apple___Apple_scab 1 1 1 1 1 1 6
2 Apple___Cedar_apple_rust 1 1 1 1 1 1 3
3 Apple___Frogeye_Spot 1 1 1 1 1 1 6
4 Apple___healthy 1 1 1 1 1 1 16
5 Blueberry___healthy 1 1 1 1 1 1 15
6 Cherry_including_sour___healthy 1 1 1 1 1 1 9
7 Cherry_including_sour___Powdery_mildew 1 0.91 0.95 1 0.91 0.95 11
8 Coffee___healthy 0.50 1 0.67 0.50 1 0.67 2
9 Coffee___Leaf_rust 1 0.82 0.9 1 0.82 0.9 11

10 Corn_maize___Cercospora_leaf_spot_Gray_leaf_sp
ot 0.71 1 0.83 0.83 1 0.91 5

11 Corn_maize___Common_rust 1 1 1 1 1 1 12
12 Corn_maize___healthy 1 1 1 0.92 1 0.96 12
13 Corn_maize___Northern_Leaf_Blight 0.89 0.8 0.84 1 0.9 0.95 10
14 Grape___Black_rot 1 1 1 1 1 1 12
15 Grape___Esca_Black_Measles 1 1 1 1 1 1 14
16 Grape___healthy 1 1 1 1 1 1 4
17 Grape___Leaf_blight_Isariopsis_Leaf_Spot 1 1 1 1 1 1 11
18 Orange___Haunglongbing_Citrus_greening 1 1 1 1 1 1 55
19 Peach___Bacterial_spot 1 1 1 1 1 1 23
20 Peach___healthy 1 1 1 1 1 1 4
21 Pepper_bell___Bacterial_spot 1 1 1 1 1 1 10
22 Pepper_bell___healthy 0.94 1 0.97 0.94 1 0.97 15
23 Potato___Early_blight 0.91 1 0.95 0.91 1 0.95 10
24 Potato___healthy 1 1 1 1 1 1 2
25 Potato___Late_blight 1 0.9 0.95 1 1 1 10
26 Raspberry___healthy 1 1 1 1 1 1 4
27 Rice___Bacterial_leaf_blight 1 1 1 1 1 1 2
28 Rice___Brown_spot 0.8 1 0.89 0.8 1 0.89 4
29 Rice___healthy 1 1 1 1 1 1 11
30 Rice___Leaf_blast 1 0.67 0.8 1 0.67 0.8 3
31 Soybean___healthy 1 1 1 1 1 1 51
32 Squash___Powdery_mildew 1 0.83 0.91 1 0.83 0.91 18
33 Strawberry___healthy 1 1 1 1 1 1 5
34 Strawberry___Leaf_scorch 1 1 1 1 1 1 11
35 Tomato___Bacterial_spot 1 1 1 1 1 1 21
36 Tomato___Early_blight 1 0.9 0.95 1 0.9 0.95 10
37 Tomato___healthy 0.7 1 0.82 0.67 1 0.8 16
38 Tomato___Late_blight 0.9 0.95 0.92 0.95 1 0.97 19
39 Tomato___Leaf_Mold 0.91 1 0.95 1 1 1 10
40 Tomato___Septoria_leaf_spot 1 0.94 0.97 1 0.94 0.97 18
41 Tomato___Spider_mites_Two-spotted_spider_mite 0.94 1 0.97 0.94 1 0.97 17
42 Tomato___Target_Spot 1 0.50 0.67 1 0.50 0.67 14
43 Tomato___Tomato_mosaic_virus 1 1 1 1 1 1 4
44 Tomato___Tomato_Yellow_Leaf_Curl_Virus 0.98 1 0.99 1 1 1 54

From Table 6 it is know that some classes have decreased

accuracy on mobile device, such as potatoes, some diseased
corn and some diseased tomatoes. While healthy corn and
healthy tomatoes experience better performance on mobile
device.

Table 7: Classification comparison report on NasNet Mobile

No Class
Mobile PC

Support
Precision Recall F1 Score Precision Recall F1 Score

1 Apple___Apple_scab 1 1 1 1 1 1 6
2 Apple___Cedar_apple_rust 1 1 1 1 1 1 3
3 Apple___Frogeye_Spot 1 1 1 1 1 1 6
4 Apple___healthy 1 1 1 1 1 1 16
5 Blueberry___healthy 1 1 1 1 1 1 15
6 Cherry_including_sour___healthy 1 1 1 1 1 1 9
7 Cherry_including_sour___Powdery_mildew 1 0.91 0.95 1 1 1 11
8 Coffee___healthy 1 1 1 1 1 1 2
9 Coffee___Leaf_rust 1 0.91 0.95 1 0.91 0.95 11

10 Corn_maize___Cercospora_leaf_spot_Gray_leaf_sp
ot 0.71 1 0.83 0.71 1 0.83 5

11 Corn_maize___Common_rust 0.92 1 0.96 0.92 1 0.96 12
12 Corn_maize___healthy 1 1 1 1 1 1 12
13 Corn_maize___Northern_Leaf_Blight 1 0.8 0.89 1 0.8 0.89 10
14 Grape___Black_rot 1 1 1 1 1 1 12
15 Grape___Esca_Black_Measles 1 1 1 1 1 1 14
16 Grape___healthy 1 1 1 1 1 1 4
17 Grape___Leaf_blight_Isariopsis_Leaf_Spot 1 1 1 1 1 1 11
18 Orange___Haunglongbing_Citrus_greening 1 1 1 1 1 1 55
19 Peach___Bacterial_spot 1 1 1 1 1 1 23
20 Peach___healthy 1 1 1 1 1 1 4
21 Pepper_bell___Bacterial_spot 1 1 1 1 1 1 10
22 Pepper_bell___healthy 0.94 1 0.97 1 1 1 15
23 Potato___Early_blight 1 1 1 1 1 1 10

 Sembada Denrineksa Bimorogo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2824 – 2833

2831

24 Potato___healthy 1 1 1 1 1 1 2
25 Potato___Late_blight 1 0.8 0.89 1 0.8 0.89 10
26 Raspberry___healthy 1 1 1 1 1 1 4
27 Rice___Bacterial_leaf_blight 1 1 1 1 1 1 2
28 Rice___Brown_spot 0.8 1 0.89 0.8 1 0.89 4
29 Rice___healthy 1 1 1 1 1 1 11
30 Rice___Leaf_blast 1 0.67 0.8 1 0.67 0.8 3
31 Soybean___healthy 1 1 1 1 1 1 51
32 Squash___Powdery_mildew 1 1 1 1 1 1 18
33 Strawberry___healthy 1 1 1 1 1 1 5
34 Strawberry___Leaf_scorch 1 1 1 1 1 1 11
35 Tomato___Bacterial_spot 1 1 1 1 1 1 21
36 Tomato___Early_blight 0.77 1 0.87 0.77 1 0.87 10
37 Tomato___healthy 0.89 1 0.94 0.94 1 0.97 16
38 Tomato___Late_blight 0.94 0.89 0.92 0.94 0.89 0.92 19
39 Tomato___Leaf_Mold 1 1 1 1 1 1 10
40 Tomato___Septoria_leaf_spot 1 1 1 1 1 1 18
41 Tomato___Spider_mites_Two-spotted_spider_mite 1 1 1 1 1 1 17
42 Tomato___Target_Spot 1 0.86 0.92 1 0.93 0.96 14
43 Tomato___Tomato_mosaic_virus 1 0.75 0.86 1 0.75 0.86 4
44 Tomato___Tomato_Yellow_Leaf_Curl_Virus 0.98 1 0.99 0.98 1 0.99 54

Table 7 shows that the results on NasNet Mobile

experienced a slight decrease in accuracy in the Cherry class,
including sour Powdery mildew, Pepper Bell Healthy,
Tomato Healthy and Tomato Target Spot.

Table 8: Classification comparison report on Inception V3

No Class
Mobile PC

Support
Precision Recall F1 Score Precision Recall F1 Score

1 Apple___Apple_scab 1 1 1 1 1 1 6
2 Apple___Cedar_apple_rust 1 1 1 1 1 1 3
3 Apple___Frogeye_Spot 1 1 1 1 1 1 6
4 Apple___healthy 1 1 1 1 1 1 16
5 Blueberry___healthy 1 1 1 1 1 1 15
6 Cherry_including_sour___healthy 1 1 1 1 1 1 9
7 Cherry_including_sour___Powdery_mildew 1 1 1 1 1 1 11
8 Coffee___healthy 1 1 1 1 1 1 2
9 Coffee___Leaf_rust 1 1 1 1 1 1 11

10 Corn_maize___Cercospora_leaf_spot_Gray_leaf_sp
ot 0.63 1 0.77 0.62 1 0.77 5

11 Corn_maize___Common_rust 1 1 1 1 1 1 12
12 Corn_maize___healthy 1 1 1 1 1 1 12
13 Corn_maize___Northern_Leaf_Blight 1 0.7 0.82 1 0.7 0.82 10
14 Grape___Black_rot 1 1 1 1 1 1 12
15 Grape___Esca_Black_Measles 1 1 1 1 1 1 14
16 Grape___healthy 1 1 1 1 1 1 4
17 Grape___Leaf_blight_Isariopsis_Leaf_Spot 1 1 1 1 1 1 11
18 Orange___Haunglongbing_Citrus_greening 1 1 1 1 1 1 55
19 Peach___Bacterial_spot 1 1 1 1 1 1 23
20 Peach___healthy 1 1 1 1 1 1 4
21 Pepper_bell___Bacterial_spot 1 1 1 1 1 1 10
22 Pepper_bell___healthy 1 0.93 0.97 1 0.93 0.97 15
23 Potato___Early_blight 1 1 1 1 1 1 10
24 Potato___healthy 1 1 1 1 1 1 2
25 Potato___Late_blight 1 1 1 1 1 1 10
26 Raspberry___healthy 0.8 1 0.89 0.8 1 0.89 4
27 Rice___Bacterial_leaf_blight 1 1 1 1 1 1 2
28 Rice___Brown_spot 0.8 1 0.89 0.8 1 0.89 4
29 Rice___healthy 1 1 1 1 1 1 11
30 Rice___Leaf_blast 1 0.67 0.8 1 0.67 0.8 3
31 Soybean___healthy 1 1 1 1 1 1 51
32 Squash___Powdery_mildew 1 0.94 0.97 1 1 1 18
33 Strawberry___healthy 1 1 1 1 1 1 5
34 Strawberry___Leaf_scorch 1 1 1 1 1 1 11
35 Tomato___Bacterial_spot 1 1 1 1 1 1 21
36 Tomato___Early_blight 1 0.9 0.95 1 0.9 0.95 10
37 Tomato___healthy 1 1 1 1 1 1 16
38 Tomato___Late_blight 0.9 1 0.95 0.9 1 0.95 19
39 Tomato___Leaf_Mold 1 0.9 0.95 1 0.9 0.95 10
40 Tomato___Septoria_leaf_spot 1 1 1 1 1 1 18
41 Tomato___Spider_mites_Two-spotted_spider_mite 0.94 1 0.97 0.94 1 0.97 17
42 Tomato___Target_Spot 1 1 1 1 1 1 14
43 Tomato___Tomato_mosaic_virus 1 0.75 0.86 1 0.75 0.86 4
44 Tomato___Tomato_Yellow_Leaf_Curl_Virus 0.98 1 0.99 1 1 1 54

Table 8 shows that Inception V3 has decreased accuracy in

Squash Powdery mildew and Tomato Yellow Leaf Curl Virus.
However, the average performance of InceptionV3 on mobile
and PC devices has the same performance in each class.

Table 9: Classification comparison report on DenseNet 121

No Class
Mobile PC

Support
Precision Recall F1 Score Precision Recall F1 Score

1 Apple___Apple_scab 1 1 1 1 1 1 6
2 Apple___Cedar_apple_rust 1 1 1 1 1 1 3
3 Apple___Frogeye_Spot 1 1 1 1 1 1 6
4 Apple___healthy 0.84 1 0.91 0.89 1 0.94 16
5 Blueberry___healthy 1 1 1 1 1 1 15
6 Cherry_including_sour___healthy 0.9 1 0.95 0.9 1 0.95 9
7 Cherry_including_sour___Powdery_mildew 1 0.91 0.95 1 1 1 11
8 Coffee___healthy 1 1 1 1 1 1 2
9 Coffee___Leaf_rust 1 0.36 0.53 1 0.36 0.53 11

10 Corn_maize___Cercospora_leaf_spot_Gray_leaf_sp
ot 0.67 0.8 0.73 0.67 0.8 0.73 5

11 Corn_maize___Common_rust 1 1 1 1 1 1 12

12 Corn_maize___healthy 1 1 1 1 1 1 12
13 Corn_maize___Northern_Leaf_Blight 1 0.8 0.89 1 0.8 0.89 10
14 Grape___Black_rot 1 1 1 1 1 1 12
15 Grape___Esca_Black_Measles 1 1 1 1 1 1 14
16 Grape___healthy 1 1 1 1 1 1 4
17 Grape___Leaf_blight_Isariopsis_Leaf_Spot 1 1 1 1 1 1 11
18 Orange___Haunglongbing_Citrus_greening 1 1 1 1 1 1 55
19 Peach___Bacterial_spot 1 1 1 1 1 1 23
20 Peach___healthy 1 1 1 1 1 1 4
21 Pepper_bell___Bacterial_spot 0.91 1 0.95 0.91 1 0.95 10
22 Pepper_bell___healthy 1 0.93 0.97 1 0.93 0.97 15
23 Potato___Early_blight 1 0.7 0.82 1 0.7 0.82 10
24 Potato___healthy 1 1 1 1 1 1 2
25 Potato___Late_blight 0.91 1 0.95 0.91 1 0.95 10
26 Raspberry___healthy 1 1 1 1 1 1 4
27 Rice___Bacterial_leaf_blight 0.67 1 0.8 0.67 1 0.8 2
28 Rice___Brown_spot 0.8 1 0.89 0.8 1 0.89 4
29 Rice___healthy 1 1 1 1 1 1 11
30 Rice___Leaf_blast 0.40 0.67 0.50 0.4 0.67 0.5 3
31 Soybean___healthy 1 0.98 0.99 1 0.98 0.99 51
32 Squash___Powdery_mildew 1 1 1 1 1 1 18
33 Strawberry___healthy 1 1 1 1 1 1 5
34 Strawberry___Leaf_scorch 1 1 1 1 1 1 11
35 Tomato___Bacterial_spot 1 0.95 0.98 1 0.95 0.98 21
36 Tomato___Early_blight 0.69 0.9 0.78 0.69 0.9 0.78 10
37 Tomato___healthy 1 1 1 1 1 1 16
38 Tomato___Late_blight 0.9 0.95 0.92 0.9 0.95 0.92 19
39 Tomato___Leaf_Mold 1 1 1 1 1 1 10
40 Tomato___Septoria_leaf_spot 1 1 1 1 1 1 18
41 Tomato___Spider_mites_Two-spotted_spider_mite 0.89 1 0.94 0.94 1 0.97 17
42 Tomato___Target_Spot 0.93 1 0.97 0.93 1 0.97 14
43 Tomato___Tomato_mosaic_virus 1 1 1 1 1 1 4
44 Tomato___Tomato_Yellow_Leaf_Curl_Virus 1 1 1 1 0.98 0.99 54

Table 9 shows that the results on DenseNet 121 have

decreased accuracy in the Apple Healthy, Cherry Including
Sour Powdery Mildew and Tomato Spider Mites Two Spotted
Spider Mite.

 Mobile Device Resource Consumption

The experiments result of the using of battery resource
from the testing process on mobile are summarized in Table
10. Whereas the use of memory resource is summarized in
Table 12.

Table 10: Battery Usage performance each class
Class MobileNet V2 NasNet Mobile Inception V3 DenseNet 121

Apple___Apple_scab 2505 3478 3375 4004
Apple___Cedar_apple_rust 1636 2462 1731 2234
Apple___Frogeye_Spot 3734 3514 3296 4680
Apple___healthy 9386 10631 12292 10942
Blueberry___healthy 7707 8718 11892 9175
Cherry_including_sour___healthy 5245 5109 7055 5917
Cherry_including_sour___Powdery_mildew 7337 6340 8828 7580
Coffee___healthy 926 1780 1325 1051
Coffee___Leaf_rust 6248 5982 8996 7119
Corn_maize___Cercospora_leaf_spot_Gray_
leaf_spot 2600 3787 4085 2775

Corn_maize___Common_rust 5930 7978 9977 7592
Corn_maize___healthy 6243 8633 10014 8076
Corn_maize___Northern_Leaf_Blight 5590 5964 8116 6037
Grape___Black_rot 5757 7164 9810 8024
Grape___Esca_Black_Measles 7411 9043 10939 7414
Grape___healthy 2711 2921 3304 2403
Grape___Leaf_blight_Isariopsis_Leaf_Spot 8212 7105 9148 6579
Orange___Haunglongbing_Citrus_greening 31824 26532 42316 31375
Peach___Bacterial_spot 13666 14014 19854 17297
Peach___healthy 2717 3035 3140 3205
Pepper_bell___Bacterial_spot 6040 6473 7926 6964
Pepper_bell___healthy 7993 10496 11695 9314
Potato___Early_blight 5593 5461 8857 5663
Potato___healthy 852 1204 1610 1258
Potato___Late_blight 6113 7525 7749 6989
Raspberry___healthy 3393 2653 2975 2155
Rice___Bacterial_leaf_blight 1555 1139 1463 1330
Rice___Brown_spot 3029 2599 3295 2722
Rice___healthy 5990 7142 9129 7281
Rice___Leaf_blast 2690 1592 2203 2056
Soybean___healthy 34565 26606 38231 30359
Squash___Powdery_mildew 10837 10765 14082 9649
Strawberry___healthy 2417 3698 4182 2947
Strawberry___Leaf_scorch 5489 7755 9056 8451
Tomato___Bacterial_spot 11801 15678 17491 12799
Tomato___Early_blight 5095 6908 8346 6986
Tomato___healthy 9526 11033 13680 10793
Tomato___Late_blight 14504 14566 15169 12533
Tomato___Leaf_Mold 7148 6292 8467 6589
Tomato___Septoria_leaf_spot 10024 11577 15867 12254
Tomato___Spider_mites_Two-spotted_spider_mit
e 9333 12553 14985 10055

Tomato___Target_Spot 9843 8517 12570 8627
Tomato___Tomato_mosaic_virus 2479 3542 3565 2578
Tomato___Tomato_Yellow_Leaf_Curl_Virus 32584 34992 49111 37061

Total 346278 364956 471197 370892

From the overall results, from the four models tested the

total battery usage on MobileNet V2 is very low while the total
battery usage on Inception V3 is very high. To strengthen the

 Sembada Denrineksa Bimorogo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2824 – 2833

2832

analysis in calculating battery usage, an ANOVA analysis
method will be used, with α = 0.05 by obtaining the F and
P-values of battery usage, which are summarized in Table 11.

Table 11: ANOVA Oneway Analysis of Battery Usage
Source of
Variation SS df MS F P-value F crit

Between Groups 16354720.88 3 5451573.627 163.0281328 7.11066E-96 2.608745145

Within Groups 77445802.15 2316 33439.46552

Total 93800523.03 2319

Analysis of Table 11 shows the P-value 7.11066E-96 is

lower than 0.05, so it can be concluded statistically there are
significant differences between the four models tested.

Table 12: Memory Usage performance each class

Class MobileNet V2 NasNet Mobile Inception V3 DenseNet 121
Apple___Apple_scab 1204 1208 2094 1200
Apple___Cedar_apple_rust 628 588 1066 627
Apple___Frogeye_Spot 1240 1192 2189 1254
Apple___healthy 3160 3172 5739 3351
Blueberry___healthy 3096 3112 5466 3297
Cherry_including_sour___healthy 1852 1904 3239 1908
Cherry_including_sour___Powdery_mildew 2184 2308 3918 2383
Coffee___healthy 396 416 701 400
Coffee___Leaf_rust 2192 2284 3905 2351
Corn_maize___Cercospora_leaf_spot_Gray_
leaf_spot 1020 1024 1748 1081

Corn_maize___Common_rust 2576 2496 4308 2648
Corn_maize___healthy 2480 2460 4276 2609
Corn_maize___Northern_Leaf_Blight 2036 2144 3537 2139
Grape___Black_rot 2404 2384 4276 2587
Grape___Esca_Black_Measles 2860 2796 4977 3008
Grape___healthy 828 792 1418 859
Grape___Leaf_blight_Isariopsis_Leaf_Spot 2188 2288 3921 2360
Orange___Haunglongbing_Citrus_greening 11008 10896 19432 11534
Peach___Bacterial_spot 4844 4724 8168 4947
Peach___healthy 816 796 1421 848
Pepper_bell___Bacterial_spot 2032 2052 3572 2221
Pepper_bell___healthy 3052 3160 5342 3313
Potato___Early_blight 2052 2060 3556 2000
Potato___healthy 396 412 701 400
Potato___Late_blight 2112 2096 3591 2000
Raspberry___healthy 808 844 1437 800
Rice___Bacterial_leaf_blight 396 412 701 400
Rice___Brown_spot 824 848 1437 848
Rice___healthy 2196 2292 3959 2387
Rice___Leaf_blast 592 600 1056 670
Soybean___healthy 10248 10232 18038 10675
Squash___Powdery_mildew 3660 3760 6430 3867
Strawberry___healthy 1012 1004 1770 1080
Strawberry___Leaf_scorch 2220 2172 3943 2344
Tomato___Bacterial_spot 4316 4268 7429 4243
Tomato___Early_blight 2124 2000 3572 2048
Tomato___healthy 3324 3256 5726 3403
Tomato___Late_blight 3800 3956 6738 4008
Tomato___Leaf_Mold 1972 2072 3540 2144
Tomato___Septoria_leaf_spot 3656 3748 6452 3659
Tomato___Spider_mites_Two-spotted_spider_mit
e 3364 3460 6046 3539

Tomato___Target_Spot 2820 2840 5028 2971
Tomato___Tomato_mosaic_virus 804 816 1434 832
Tomato___Tomato_Yellow_Leaf_Curl_Virus 11372 10940 19372 11392

Total 118164 118284 206669 122635

Overall, the total memory usage on MobileNet V2 is very

low followed by NasNet Mobile then DenseNet 121 and
finally Inception V3 with the highest total memory usage.
ANOVA oneway analysis will be used to strengthen the
analysis in calculating memory usage, with α = 0.05 by
getting the values of F and P-value of memory usage, which is
summarized in Table 13.

Table 13: ANOVA Oneway Analysis of Memory Usage
Source of
Variation SS df MS F P-value F crit

Between Groups 9804177.521 3 3268059.174 40741.21097 0 2.608745

Within Groups 185778.1069 2316 80.21507206

Total 9989955.628 2319

Analysis of Table 13 shows the P-value is equal to 0, so that
it can be concluded statistically that there is no significant
effect between the four models tested.

5. CONCLUSION

The study evaluates the transfer learning method using
pretrained model that allows the retraining process to be
carried out using workstations with moderate specifications
and more reasonable time due to lighter computing costs.

Analysis of the results of the retraining concluded that
although the Inception V3 model runs only up to 15 epochs,
the size of output file produced is three times larger than the
other three models, and in the testing phase Inception V3 is
superior to other models with an accuracy value reaching
98.68%.

The results of comparative experiments between PCs and
mobile devices showed that certain classes experienced a
slight decrease in the value of overall accuracy. The level of
accuracy in InceptionV3 is considered quite reliable
compared to other models, but with the use of resources on
mobile devices that are very high, so Inception V3 is
considered inappropriate to detect classification of plant
diseases on mobile devices.

Meanwhile on NasNet Mobile, the use of resources on
mobile devices is not very high and with a high level of
accuracy. This accuracy does not have significant difference
when run and tested on either PC or mobile device.

Based on the methodology and the results of the
experiment, it was concluded that the NasNet Mobile model is
the most suitable model to be used on mobile device as plant
disease detection classifications. That is because the model
has high accuracy and detection speed, with low resource
requirements

REFERENCES
1. C. H. Bock, G. H. Poole, P. E. Parker and T. R.

Gottwald, Plant disease severity estimated visually,
by digital photography and image analysis, and by
hyperspectral imaging, CRC. Crit. Rev. Plant Sci.
29, (2010).
https://doi.org/10.1080/07352681003617285

2. H. D. Gadade and D. K. Kirange, Machine Learning
Approach towards Tomato Leaf Disease
Classification, Int. J. Adv. Trends Comput. Sci. Eng.
9, (2020).
https://doi.org/10.30534/ijatcse/2020/67912020

3. R. Saha and S. Neware, Orange Fruit Disease
Classification using, Int. J. Adv. Trends Comput. Sci.
Eng. 9, (2020).
https://doi.org/10.30534/ijatcse/2020/211922020

4. J. Han, M. Kamber and J. Pei, Data Mining Concepts
and Techniques, 3rd ed, Elsevier Inc., Waltham,
(2012).

5. A. Krizhevsky, I. Sutskever and G. E. Hinton,
ImageNet classification with deep convolutional
neural networks, Adv. Neural Inf. Process. Syst. 2,

 Sembada Denrineksa Bimorogo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2824 – 2833

2833

(2012) 1097.
6. J. Patterson and A. Gibson, Deep Learning A

Practitioner’s Approach, 1st ed, oreilly, boston,
(2016).

7. X. Zhang, Y. Qiao, F. Meng, C. Fan and M. Zhang,
Identification of Maize Leaf Diseases Using
Improved Deep Convolutional Neural Networks,
IEEE Access 6, (2018).
https://doi.org/10.1109/ACCESS.2018.2844405

8. K. P. Ferentinos, Deep learning models for plant
disease detection and diagnosis, Comput. Electron.
Agric. 145, Elsevier, (2018).

9. E. C. Too, L. Yujian, S. Njuki and L. Yingchun, A
comparative study of fine-tuning deep learning
models for plant disease identification, Comput.
Electron. Agric., Elsevier, (2018).

10. M. Brahimi, M. Arsenovic, S. Laraba and S.
Sladojevic, Deep Learning for Plant Diseases :
Detection and Saliency Map Visualisation Deep
Learning For Plant Diseases : Detection and
Saliency map Visualization, (2018).
https://doi.org/10.1007/978-3-319-90403-0_6

11. S. B. Jadhav, V. R. Udupi, S. B. Patil and D. Cnn,
Convolutional neural networks for leaf
image-based plant disease classification,
International Journal of Artificial Intelligence.8,
(2019).

12. D. Hughes and Marcel Salathe, An open access
repository of images on plant health to enable the
development of mobile disease diagnostics, (2015).

13. B. Syamsuri and G. P. Kusuma, Plant Disease
Classification Using Lite Pretrained Deep
Convolutional Neural Network on Android Mobile
Device, International Journal of Innovative
Technology and Exploring Engineering. 9 (2019).
https://doi.org/10.35940/ijitee.B6647.129219

14. H. Do, Rice Diseases Image Dataset: An image
dataset for rice and its diseases, (2019). [Online].
Available:
https://www.kaggle.com/minhhuy2810/rice-diseases-
image-dataset. [Accessed: 27-Jan-2020].

15. A. K. G. Francisco, Rice Diseases DataSet, (2019).
[Online].Available:
https://github.com/aldrin233/RiceDiseases-DataSet.
[Accessed: 27-Jan-2020].

16. M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov
and L. C. Chen, MobileNetV2: Inverted Residuals
and Linear Bottlenecks, Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit., (2018).

17. B. Zoph, V. Vasudevan, J. Shlens and Q. V. Le,
Learning Transferable Architectures for Scalable
Image Recognition, Proc. IEEE Conf. Comput. Vis.
pattern Recognit., (2018) 8697.

18. B. Zoph, V. Vasudevan, J. Shlens and Q. V Le,
AutoML for large scale image classification and
object detection, (2017). [Online].Available:
https://ai.googleblog.com/2017/11/automl-for-large-s
cale-image.html. [Accessed: 12-Dec-2019].

19. C. Szegedy, V. Vanhoucke and J. Shlens, Rethinking
the Inception Architecture for Computer Vision,
(2014).

20. G. Huang, Z. Liu, L. Maaten van der and K. .
Weinberger, Densely Connected Convolutional
Networks, (2016).

21. M. Vanetti, Confusion Matrix Online Calculator,
Confusion Matrix Online Calculator, (2007) .
[Online]. Available:
http://www.marcovanetti.com/pages/cfmatrix/?noc=4
4. [Accessed: 13-March-2020].

