
Tonny Hidayat et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.5), 2019, 317- 326

317


ABSTRACT
One form of sound is music that has become a requirement for
people in many ways. The impact of technological
development and the ability of processing units to process
data can be felt in a product we call music, comparable to
analog-produced music in the era before the 2000s and in the
digital age, there is now a clear distinction of the quality and
accuracy of the frequency instruments enjoyed by hearing.
Increasing the quality of an Audio data will make the file size
increase also applies to image or video data, so it needs a
compression for storage problems and real-time access needs.
Huffman algorithm can be used for file compression, to
reformat from Uncompressed file to Lossy file can use scheme
of Huffman Shift Coding algorithm. This research provides a
novelty in changing the format of Uncompressed (WAV) to
Lossy (Mp3) format to respond to a real-time storage and
access issues. In this paper providing changes in the Rate /
Distortion Control Process includes Scale Factor, Quantizer
and Noiseless, this process will change every symbol that is
owned by WAV audio data which is then reconstructed to
Mp3 format. From the results of compression obtained
differences with the standard Mp3 compression.

Key words : Lossy, Shift Coding, Huffman, Compression,
audio, lossless.

1. INTRODUCTION
Satisfaction in listening to an audio with good quality and
apparently is the entertainment needs for music lovers who
have been accommodated by the development of technology
in the current generation. Included in the audio field. For
music lovers or quality control a sound, it becomes a
satisfaction to enjoy the sound quality is detailed and precise.
Many options can be used Lossless or Lossy audio format.
One master format that is commonly used is WAV to
maintain all data without being lost [1]. In general terms for
digital music lovers are still more likely to use Mp3 format
(MPEG-1 Audio Layer 3). Starting from the 90s Mp3 format
began to be known and used because the scheme and audio
results can be captured quite satisfactory for music lovers but

not recommended for the needs of mastering, archive, and
developers. The comparison of file sizes of these two file types
is very different, WAV has a larger file size, whereas Mp3 is
much smaller to 80% of the source because it is Lossy so a lot
of data is omitted and cannot be recovered into the original
data. If CD audio quality data use a sample rate of 44.1 kHz,
16-bit depth, stereo (2 channels) with a duration of 100
seconds. In a simple calculation can be calculated the amount
of data samples generated byte count is then the total storage
of audio data per second is 44100 * 100 * 16/8 * 2 =
17.640.000 bytes so for the duration of 60 seconds (1 minute)
required 10,584 MB [2][3]. So it can be predictive if the music
with a length of 3 minutes, with the same sample rate
conditions as above, will produce 30 MB file size in storage in
storage, this will certainly spend a lot of space on the hard
disk storage [4].
Compression is needed to address the issue of storage issues
with specific schemes, methods, and algorithms [5]. There
are many algorithms that can be used in terms of compression
one Huffman shift coding algorithm that can be used for the
compression method Lossy. The Huffman algorithm works by
encoding in bits to represent character data. As in some
literature that the Huffman Algorithm is not so maximized if
there are many variations of symbols on a data [6]. To
condition the Huffman algorithm to convert the
Uncompressed format into Lossy format using the
compression scheme of the Huffman Shift Coding algorithm
that will group the symbol from the original data or the source
into multiple blocks. Changes made in this study are in the
Formation process, specifically the Rate / Distortion Control
Process to achieve a higher ratio with different conditions for
WAV file specifications, so that compression can be done at
various sample rates.
2. THEORETICAL ANALYSIS

A. Digital Audio
Sound or Music in the digital world now is an analog wave
that is now beginning to be abandoned but still maintained in
some mastering purposes. The waves generated from the
vibrations that propagate from the air pressure that is around,
then the sense of hearing catch it with the help of eardrum
which then we think is sound. The process of digitizing from

Reformat the File Uncompressed into Lossy Based on Audio Compression
Method using Huffman Shift Coding Scheme

Tonny Hidayat1, Mohd Hafiz Zakaria2, Ahmad Naim Che Pee3
1Universitas AMIKOM Yogyakarta, Indonesia, tonny@amikom.ac.id
2Universiti Teknikal Malaysia Melaka, Malaysia, hafiz@utem.edu.my

3 Universiti Teknikal Malaysia Melaka, Malaysia, naim@.edu.my

 ISSN 2278-3091
Volume 8, No.1.5, 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse5381.53019.pdf

https://doi.org/10.30534/ijatcse/2019/5381.52019

Tonny Hidayat et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.5), 2019, 317- 326

318

analog is to convert each wave sample into numbers which
can then be processed and generated by the computer [7][8].
The change of audio data from analog to digital is done by
measuring a wave across multiple nodes in the unit time
range, computing each wave node into a numerical form and
then writing the numbers to a data into a file (sampling)[9].
The advantage gained from digital audio rather than analog is
the perfect sound reproduction quality. Perfection in the
improvement or addition of an instrument and sampling will
result in the ability to double the audio signal simultaneously
without decreasing the sensitivity of the resulting sample rate.
One of the advantages or other benefits that can be achieved
through digital audio is the resistance to the signal that should
not be stored (noise)[10]. Analog signal is elementary to
experience noise (noise) in the event of transmission, the form
of noise that will sound very often found when playing with a
cassette recording with electrical components [5].

B. The Format WAV
As it is already known that the multimedia application needs
a mechanism in the data storage format such as image, audio
and video. RIFF is a means to store any type of data, while
audio WAV format is part of the Microsoft RIFF is used to
store digital audio data [11]. This file format is one of the
audio file formats on the PC. Along with the popularity of
Windows then many applications that support this file format.
Due to its simple structure, many developers develop different
specifications and standards to maintain a sound quality or to
convert it into other formats[12].
WAVE files use standard RIFF structures that group file
contents (sample formats, digital audio samples, etc.) into
separate "chunks," each having its own header and byte of
data. The chunk header specifies the type and size of the
chunk data byte. With this method of setting up a program
that does not recognize a special chunk type can easily pass
through this chunk section and continue the process of
processing the known chunk. Certain chunk types may
consist of sub-chunk. For example, in Figure 1 can be seen
chunk "fmt" and "data" is actually a sub-chunk of chunk
"RIFF"[13][14].

Figure 1: Scheme WAV Layout

Chunk in the RIFF file is a string that must be set for each
word. This means the total size of the chunk must be a
multiple of 2 bytes (like 2, 4, 6, 8 and so on). If a chunk
consists of an odd number of bytes, then a byte (extra padding
byte) must be added by adding a value of zero to the last byte

of data. This extra padding byte is not counted on the chunk
size. Therefore a program must always make word settings to
determine the size of the header value of a chunk to calculate
the offset of the next chunk[3].

C. Format MP3

Figure 2: Description of the Data header frame

MP3 is a format that is interesting because it could retain the
sound quality while having a size not too large. The
technology was developed by the Fraunhofer Institute
engineer in Germany, Karlheinz Brandenburg. MP3 is
composed of lots of frames, where each frame contains some
seconds of audio data which is useful, which is ready
constructed by the decoder. The initial part of each frame of
data is the "frame header", which contains 32 bits of
meta-data that is associated with the incoming data frames
Though MP3 looks so good, it turns out that this format also
has its limitations of its own [15]:

a. Bitrate is limited, maximum of 320 kbit/s (some
encoder can produce a higher bit rate, but very little
support for mp3-mp3 which have high bit rate.

b. Resolution time used mp3 can be too low for voice
signals are highly transient, so that can cause noise
[16].

c. Frequency Resolution is limited by the size of the
window that the small length, reducing the
efficiency of coding.

d. There is no scale factor band for frequencies above
15.5 or 15.8 kHz [16][17].

e. A joint stereo mode is done on a per frame basis.
f. Delay for the encoder/decoder is not defined, so there

is no encouragement for gapless playback (audio
playback without gap)[16]. However, some encoder
like LAME can add additional metadata that
provides information to an MP3 player to overcome
it.

Figure 3: Visually MP3 Frame Header

Tonny Hidayat et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.5), 2019, 317- 326

319

Table 1:. Characteristics Of The Header Files
The

position
of the

The purpose of Bit

A Frame synchronization 11
B MPEG Version 2

C MPEG Layer 2
D Protection 1

E Bitrate index 4
F Sample rate frequency 2

G Bit padding 1
H Private bit 1

I Fashion channel 2
J Advanced mode 2

K Copyright 1
L Originality 1

M Emphasis 2

D. General Huffman Code

The main thing about the understanding of the process i.e.
compression coding data symbols use the bit then merged or
deleted. There are two types of compression: lossless and
Lossy. In lossless compression, first data will be broken down
into smaller sizes and data eventually reunified. Whereas, in
Lossy compression, there are bits of information that are
eliminated after compression. This type of compression is
often done for the compression of pictures. The general
principle in the process of compression is reducing
duplication of data so as to represent the memory becomes
less than the original digital data representation. Some
comparisons between Lossy and lossless:
The advantage of lossy methods over lossless is in several
cases a Lossy method can produce smaller compressed file
compared to the lossless method, while still meeting the
requirements of the application.
Lossy methods are often used for dynamically compressing
the sound, pictures, and video. Because the data is intended to
be human readable interpretation in order for it to be in
formulation, ideally Lossy compression is transparent, which
can be verified with tests ABX. While lossless is used for
dynamically compressing data to be accepted in original
condition are geared as a text document.
 Lossy will experience generation loss on the data while in
lossless does not occur because the data results of
decompression are equal to the original data.
Huffman code is one method of data compression that was
created by David a. Huffman. Huffman code using specific
techniques to represent each of the symbols in which the
expression appears most often gets the size of the smallest bits
and expression that rarely comes up gets a bit more size [18]
[19]. The process of formation of Huffman code is:

a. Select 2 symbol with the most opportunities. Both
symbols of yesteryear combined as the parent node
and summed up his chances. This new symbol

treated as new nodes and taken into account in the
search for the next symbol that has a very small
chance.

b. Next, select the two symbols, including a new symbol,
which has the smallest chance. Do the same thing as
the previous step.

c. Repeat until the entire writings of encoding.

For example, a large number of tables will be given the
appearance of a "ABBACADABA":

Table 2: The Emergence Of Writing Table
Symbol Frequency Opportunities

A 5 3/10

B 3 1/10

C 1 2/10

D 1 1/10
At the time performed the steps above like Huffman coding,
then the result is:
A code: 0
B code: 10
C code: 110
D code: 111

3. METHODOLOGY
Compression is the conversion of data into forms that require
fewer bits, and it is usually done so that the data can be stored
or transmitted more efficiently. The reverse process, namely,
compression and decompression. Decompression is itself a
process to return the new data that has been generated by the
process of compression be preliminary data [20], [21]. Data
compression has done can be used a lower chain that
corresponds to the capacity of the data compression process
has been performed.
Compression technique consists of 3 categories, among
others: the source, the entropy, and hybrid. For source
categories, namely the type of compression audio lossy, occur
some part component of lost data resulting from the process of
compression [22]. For the group of entropy is a type of lossless
audio, which means that no data is lost during compression
process is running. As for the category of hybrid, a
combination of the kinds of lossless and lossy audio.

A. Algorithm Of Huffman Coding Shift
In the Huffman Shift Coding scheme, all the resulting
symbols from the audio data generated will be grouped into
blocks with the condition that each block gets the same
proportion. General size blocks are generally 2݇ - 1 symbols,
that ݇ is a positive integer. This is done to calculate the audio
data because If ݇ = 1 the result will be the same as Huffman
Shift Coding Standard which is likely to result in the schema
of this method remains weak against many variations of the
resulting data symbol[23].
Starting on the first block, the symbol is encoded with the
standard Huffman Coding. At the time of the first block in the

Tonny Hidayat et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.5), 2019, 317- 326

320

encoding process, performed also the coding symbol
hypothesis with a condition that is the frequency number of
appearances equal the sum of the frequencies of symbols from
other blocks, referring to the fundamental principle, i.e., the
proportion of each block must be the same. That becomes the
Differentiator between blocks to the next block is the addition
of a prefix, then the result of encoding symbols hypotheses
obtained will be used to identify any blocks as a differentiator.
The primary objective is achieved can increase processing
time less with the ratio of the average code length is optimum,
with Huffman compression algorithm Shift scheme as
follows:
1. Source Symbol is composed of possible symbols that appear
from the largest to the smallest.
2. The accumulation of all the number of symbols derived
from the source will be grouped into blocks by the number of
servings of the same symbols as much. The blocks are in order
in the first encoded using Huffman Coding Standard. When
the process of encoding symbols on the first block took place,
accompanied the process encoding the encode hypothetical
occurrence frequency is equal to the number of occurrences of
a symbol from another block. Distinguishing between the
blocks with the block next is + 1 or > = 1 prefix codes
generated calculations of symbols coding hypothesis as a
marker per block.
3. Symbol C as a representation of the hypothetical symbol of
Huffman Coding.
4. The I-symbol code of block k is 1-݇ ܥ coupled with the I-th
symbol of the first Huffman Coding block.

Changes can be seen when shaping it, Huffman tree is at the
moment in value right as shown in the following example:

Value :
A = 0,4
B = 0,3
C = 0,2
D = 0,1

B. FFMPEG

Another thing of concern in compressing and changing the
format of an audio data (lossless to Lossy) is when compress
results from the compression process can be replayed, the
necessity of adding a plugin function codec such as FFMPEG
as the computer program to record, and then convert and save
it like mind my extensions compatible format. Fabrice Bellard
who first started this formula which then manage by Michael
Niedermayer a line program or set of procedures to module
file format for digital audio and video [7].
Role in the process of formation of the FFMPEG plugins that
is instrumental in the process of compression of audio data
which results of decompressing audio data can still Play and
be heard again. As it is already known that the standards of
the flow layer 3 is owned by the Mp3 format that is Each byte,
bit and metadata will be modified with FFMPEG which

supports the layer.

C. Process Scheme

1. Fundamental
In general, there are two Lossy and Lossless compression
methods, it is also impact on algorithms that work is also
divided for two purposes. Terms and facts from lossy
compression is a compression results cannot be restored as the
original due to data being removed according perceptual
procedure is needed. While lossless compression has a
different principle, i.e., the data is in compression, after
Decompression will be the same as the original data, which
means that no data is lost after the process of compression and
data can be restored.
The main purpose of these schemes this process is changing a
little bit the procedure of Huffman Coding in Shift do audio
data compression with the achievement of the desired end is
answering the problem of storage media to reduce the size
data, and other things are in terms of facilitating access in
transferring real time or via the internet. The data will be
processed by a special compression such as output
compression MP3 (lossy) with provision 2 channel (mono and
stereo) as the limit. Audio files are generally the same as the
other types of digital data that is a representation of the
number of bits ' 0 ' and ' 1 '. This provision is always done as a
standard on all methods of compression that is processing a
recurring data compaction.
2. Standard Audio Compression Rate
Huffman encoding algorithm or is actually a compression
algorithm that can be applied to any type of good for a binary
file or a text file. The algorithm is useful with a low
compression ratio if there is a lot of redundancy data or data
on the same looping audio file that is used [24].
The WAV format file will be very large in size as long as the
duration. Of audio data that are already collected by type of
48,000 kHz sample rate with the number of the channel 2 or
stereo and bits per sample of his 24 bits for the duration for 1
second only requires a capacity of 48,000 x 2 x 24 = 2,304,000
bits per second = 288,000 bytes per second. If we take the
average duration of the audio data that has a duration of about
4 minutes, then storage media required is 288,000 x 4 x 60 =
69,120,000 byte or the equivalent of 69 megabytes. When we
have 500 megabytes of storage media, then the disk space can
be calculated once saved one audio data WAV format is =
500-69 = 431 megabytes [25]–[29]. Then if we have a storage
media that you want to transfer audio data WAV, then only
can accommodate approximately 7 files only.
3. Compression Algorithm and Implementation
provisions in performing audio compression process, there
are several methods that can be used, among others:
psychoacoustic model, auditory masking, critical band, and
joint stereo. In performing MP3 compression, the method is a
psychoacoustic model. The standard that has been
experimenting on psychoacoustic is MPEG Layer-1, followed

Tonny Hidayat et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.5), 2019, 317- 326

321

by MPEG Layer-2 [30]. In this model, the first one is to
drastically reduce the level of data required to regenerate the
sound equivalent of CD quality. MPEG Layer-3 further
reduces it (Layer-1: 384 kbps, Layer-2: 192 kbps, Layer-3:
112 kbps). Difference between MPEG Layer 1,2 and 3
regarding design:

Figure 4: MPEG Layer 1 and 2

Figure 5: MPEG Layer 3

The process of formation of the MP3:

Figure 6: The Process Of Formation Of MP3 Files

 The first block seen is the Bank-Filter block. the solution
used by Fraunhofer to combine a bank filter polyphase and a
Modified Discrete Cosine Transform (MDCT) is to use a
hybrid solution for MP3. Bank-filter polyphase is the initial
separation of audio streams into sub-band frequencies spaced
equally [31]. With this sample, core frequencies are selected
and then used for compression. One problem that arises from
this election is the core frequency overlapping with the

subband, which causes quality problems and voice clarity. To
respond to this problem, then on the 32 sub-band the
unambiguous MDCT filter bank. In order for sub-band made
up-down with more then do expansion at any distance. To
resolve the error on MDCT, inverse functions combined with
new samples in the process via the MDCT, this activity is
called domain aliasing cancellation time. In this process
simply takes time, but the calculations and reduced the time it
takes using a recursive factorization[31], [24]. The audio data
is made from samples that are then passed to the encoder joint
stereo coding, in the process of this is information overload
and don't matter is removed from the flow of bits.
To count as the boundary of the frequency of perceptual
models are either in the determination of the critical
frequency. Other functions as well as to determine the initial
masking on each sub band. the term masking is when there is
a voice that barely covered or overwritten with other sounds
so doesn't sound. Based on the model psychoacoustic, the
algorithms working on an encoded can create a rule to
eliminate or reduce the number of bits allocated for each
segment of a sound level which is under at the start of
masking for each sub-band [25]. Another factor that
determines whether that can be omitted is the bit rate of the
encoding. The lower bit rate, the more data is eliminated.
The entire data stream is divided into several parts, as well as
sub-brands then passed to a pair of loops, namely: a. the
control loop (control of noise/distortion loop) Examine each
section to determine the noise in each sub-band which is
outside sound level or masking limits allowed. If sub-band
sound is permitted, exceeded the scale factor for the band to be
adjusted. Scale factor gives an advantage gained for each sub
band. The gain is the ratio of output and input signal to
change provisions of the bit rate is increased then the loop rate
is initialized.
Huffman code is a scheme for analyzing data sets and
generates a set of bits to represent the data. Rate loop checks
on code Huffman. condition that occurs is the more frequently
used input sample is then given a bit string that is smaller, so
do lossless compression Lossy data from the psychoacoustic
encoding [21][33], and encoding different Huffman tables
used for the spectrum of different frequencies to get maximum
results for size reduction. If the number of Huffman code bit
higher bitrate is allowed, then the number of pieces of the
time will be reduced [34][35][36][37].

4. RESULT AND DISCUSSION

A. The Role of Huffman Code
The encoded data consists of 576 rows of frequencies per
channel and a small section stored as 16 bits of a signed
integer. For example, it will give a picture of the frequency
spectrum in MPEG file Layer 3:

Tonny Hidayat et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.5), 2019, 317- 326

322

Figure 7: The frequency of the layer 3 quantized

 Please note the numerical value of 576:

 It can be seen from the top end of the spectrum, and all zero
values preceded by a lot of "little value". Part of the spectrum
of left zero value, where the spectrum is completed by the start
of values 1 and-1 is part "of little value". This value can not
hear this sound, so the encoder eliminates typically it.

B. Do the Decoding on Small Value
To do the decoding on small value, assign the value to 4 (u0,
u1, u2, u3) and do encode on the group. Actually, just the
absolute value, 0 or 1, which encodes, and code for groups
followed until 4 sign bit. For any non-zero value in the group
have 1 sign bit. If the bit is 0, the value of it positive, if 1, the
value is negative.
The encoder can choose 2 different table to encode the value
of the small, htabA and htabB. htabA is a table are indexed by
byte value of 6 bits. Any byte contained the absolute value of
(u0, u1, u2, u3) on the left and the actual value of Huffman is
used on the right. Suppose there is a variable named
huffman_cache, which contains huffman_cache_size bit
left-align. Here we assume that we fill huffman_cache that
ensure there are at least 16 bits are valid from huff_cache.

code = htabA [((unsigned int) huff_cache) >>
(HUFF_CACHE_SIZE-6)];
 huff_cache = huff_cache << (code & #F);
 huff_cache_size = huff_cache_size-(code & #F);

After we load code from htabA, 4 bit far right contains the
necessary bits. They are needed to set up the huff_cache. The
value of the variable codes need to be arranged with the
appropriate sign before put into the array of raw frequency u.
To store a value into the correct position, we put a pointer to u.
u To the value that's already coded zero, Huffman code
followed by the bit marked. Bit-1-1, value of the marked and
marked with zero bits + 1. Rather than test each bit separately,
we combine a bit of huff_cache and 4 bits of code to 1 8-bit
value that we use as an index into a table named
signed_small_values that contains the value of the u0, u1, u2
and u3 and n the number of bits used

Code = (code & #F0) | (((unsigned int) huff_cache >>
(HUFF_CACHE_SIZE-4));
* u + = signed_small_values + [code] u0;
*u++ = signed_small_values[code].u1;
*u++ = signed_small_values[code].u2;
*u++ = signed_small_values[code].u3;

C. Do Decoding at a great value
 The first part of the frequency spectrum contains "great
value". Here the values can be developed into 213 = 8192 and
put it on a table of Huffman code most of which are never
used. To be more effective, the encoding scheme used for the
"great value", i.e., a value from 0 to 15, using a table of
Huffman code, and was followed in the flow of bits by
unsigned, added to the 15 for a very large value. To find out
the number of bits used in coding the unsigned, each table
there is a value named "linbit" most 13. It delivers maximum
value to a large value of 213 + 15 = 8207. 0-15 values can be
encoded with 4-bit code because Huffman has a length of at
least 1 bit, it gives the maximum compression value of 25%.
For Improvisation, the great value in encoding in the pair (u0,
u1) which makes the value of compression can be 12.5%.
If the htab is a Huffman table, this is a table of short integers
are indexed by bit HWIDTH from huff_cache. Each integer
there is a short in the left-most 8 bit, 4bit next value u0 and u1
far right. Huffman tables use the extension because, we
cannot conclude that each short int in the table have shapes as
you describe, it could be a pointer. In this case, he has a
negative value, and 12 bit far left gives the difference between
the initial index and table extension. The difference is
negative, because the extension table is the primary table after
4 bit number giving the rest of the index used to access the
table extension. How to read two great value with the htab:

int width = HWIDTH; short int * h = htab; code = h
[((unsigned int) huff_cache) >>
(HUFF_CACHE_SIZE-width)];
While (code < 0)
{huff_cache = huff_cache << = huff_cache_size
huff_cache_size; width-width; h = h-(code >> 4); width =

Tonny Hidayat et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.5), 2019, 317- 326

323

code & #0F; code = h [((unsigned int) huff_cache) >>
(HUFF_CACHE_SIZE-width)];
}

 After you get the code right, we change the code mask and
huff_cache to obtain the value u0 and u1.

huff_cache = huff_cache << (code >> 8);
huff_cache_size = huff_cache_size-(code >>
8);
code = code & #FF;

 To read the bit marked, we simply test the leftmost bits of the
huff_cache, which is the sign bit, and test it like: if
(huff_cache < 0) ... else But, in fact, more use of the branch
as it takes a rather long time. Determine the sign of the value

{int tmp = ((signed int) huff_cache) >>
(HUFF_CACHE_SIZE-1);
value = (value Å tmp) the tmp; huff_cache huff_cache << = 1;
huff_cache_size--;
}

The above code uses the property of the value represented in
the binary format of 2 's complement. Change huff_cache
from the far left to channel produce an integer value which is
all bit is set to one if the far left 1, or 0 if the far left 0. We save
the result to a tmp and use 2 times: as a mask from operations
decrease it, and Å. In the case of sign bits already set, this
value is the complement of a binary operation and an addition
of 1, which is against the definition of 2's complement
representation.

D. Quantization and Scaling
 On a short window cases and in one frame there are 576
MDCT coefficients, three consecutive group of 192
coefficient accumulated to form a single frame representing
the MDCT coefficients 576 in the form of a vector comprising
the element xrm: where each element assumes real values
ranging from -1.0 to 1.0..

xr = [xr0 · · · xrm · · · xr575]T
When executing, the component in vector quantization xr,
grouped into 22 scale factor band, depicted on the figure 8, i.e.
There is a horizontal axis on the interval for 22, and each
interval corresponds to one band scale factor, xrT{s}. then
there was the following conditions..

xr = [xrT{0}...xrT{s}...xrT{21}]T
Each band has its own quantization factor, then the variation
of scale Division of each pita factor based on the frequency of
sampling ... If XR m the property of the band s, then quantize
becomes as follows:
ixm = Q(xrm, Z{s}) = sign(xrm) · [(2q |xrm|)3/4]

where ixm MDCT coefficients are quantized integer of the
value and its mark is equal to XR m, Z {s} is a value scale factor

relating to the band s, q is a positive integer which is the
quantization factor which corresponds to the Z {s} , and [.]
means rounding to the nearest integer.

Figure 8: Scale-factor band division for MP3, 44.1 kHz, long

window
E. Working Mechanism Quantization Factor and Bit Rate

The iteration loop system there are two nested to quantize to
find optimal quantization factor q. The larger the number of
bits of the target TB (shown at targ_bits in Figure 9), the more
iterations to be performed, which will lead to greater
quantization factor.

Figure 9. The inner iteration loop of the MP3 encoder (simplified)

from LAME v3.97

In the condition of MP3 signal transcoding from a bit rate
of BR 1 to bit rate BR 2 , where BR 1 <BR 2 . The number of
target bits corresponding to one frame each is denoted as TB 1
and TB 2 . Because one frame is divided into 22 band factor
scales in quantization (see Figure 8), and each factor scale has
its own quantization factor , we represent the quantization
factor corresponding to q1 {s} and q2 {s} (0 ≤ s ≤ 21) . Because
the bit rate means the total bits per second, we
have BR 1 < BR2 => TB 1 < TB 2 , under the assumption of
a constant bit rate (CBR) mode. When transcoding
from BR 1 to BR 2 , for each factor-scale band in one frame it
is naturally expected to have q1 {s} <q2 {s} . However, if for
all q1 {s} < q2 {s} , the number of target bits for TB 2 can
sometimes not be achieved correctly. Then for
some s (0 ≤ s ≤ 21) , encoder allows q 1 {s} = q 2 {s} . So
when BR 1 < BR 2 , we have q1 {s} ≤ q2 {s} for all s. On the
other hand, if if q1 {s} = q2 {s} for all s, there is no
transcoding. Therefore we have 0 ≤ P { q1 {s} = q2 {s} } < 1 in
each MP3 frame transcribed.

F. Probability Values
The determinant for Lossy quality that contains less small
values is that of the Lossy format compression can be
done twice and the second bit rate of BR2 is greater than the
first bit rate of BR1. Because the MDCT coefficients
quantized to normal MP3 single compressed while it

Tonny Hidayat et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.5), 2019, 317- 326

324

goes doubly compressed, in this case the states respectively
as ix S ix D with. Now it will You can use IX S with IX D ,
where the double compression quantization factor
is q1 and q2 , respectively. As a limitation, analysis will be
carried out on the condition of the MDCT xr coefficient is
non-negative in the following because the analysis is the same
when xr is negative.
Double compression consists of three steps. First, the MDCT
coefficient is quantized as Qq1 (xr) = [(2q1 ·xr)3/4] with the
first quantization factor q1; second, the coefficient value
become Qq1

−1(Qq1(xr)) = [(2q1 ·xr)3/4] 3/4. 2−q1 when quantized
with q1; third, the coefficient value becomes [[(2q1 ·xr)3/4] 3/4.
23/4(q2- q1)] during the second quantization by factor q2. It can
be said that the MDCT coefficient for Lossy Mp3 phases
is compressed multiple, and can be stated as follows..
ixD = Qq2 (Q−

q1 1(Qq1 (xr))) = [(2q2 · [(2q1· xr) 3/4] 3/4 ·
2−q1) 3/4]
=[(2q1· xr) 3/4] . 2 ¾ (q2- q1)]
For a meaningful comparison, we use identical quantization
step q2 for a single compressed coefficient, ixS. Is.
ixS = Qq2 (xr) = [(2q2 . xr) 3/4]
It can be noted that PD = P {ixD = 1}, PS = P {ixS = 1} the
next one is made
PD < PS
PS = P {ixS = 1} = P {[(2q2 . xr) 3/4] = 1}
== P {0.5 ≤ (2q2 . xr) 3/4 < 1.5}
Because BR1 < BR2 applies to MP3s with Lossy quality ,
from the conclusions of the previous subsection we know that
q1 dan q2 is a positive integer, q1 ≤ q2 for all factor-scale
bands, that is, actually for each MDCT coefficient,, P { q1 =
q2 } <1 for each frame. Therefore, it is clear that 2 3/4 (q1- 21)
≥ 1. The next time it can be shown
PD = P {ixD = 1}
= P {[[(2q1 · xr)3/4] · 2 3/4 (q2 −q1)] = 1}
= P {0.5 ≤ [(2q1 · xr) 3/4] · 2 3/4 (q2 −q1) < 1.5}
= P {[(2q1 · xr) 3/4] = 1 ∩ 1 ≤ 2 3/4 (q2 −q1) < 1.5}
= P {0.5 ≤ (2q1 · xr) 3/4 < 1.5 ∩ 0 ≤ q2 − q1 < 0.80}
= P {0.5 ≤ (2q1 · xr) 3/4 < 1.5 ∩ q2 = q1 }
= P {0.5 ≤ (2q 2 · xr) 3/4 < 1.5 ∩ q2 = q1 }
= PS · P {q2 = q1 }
< PS

In the example above, we need to note that the event is 0 ≤ q2
− q1 < 0.80 is equivalent to the occurrence of q2 = q1,
because q1 and q2 both are non-negative integers. Because
0.5 ≤ (2q2 · xr) < 1.5 describes events from a single
compression case, while q2 = q1 describes the events of a
multiple compression case, these two events are
independent. Therefore, we have proven that PD < PS for the
MDCT +1 coefficient value. In the same way, we can prove
that P {ixD = −1} = P {ixS = −1} · P {q2 = q1 } for value −1.

G. Test Result
The scheme has been designed the process undertaken, and

the results of testing the audio file compressed with Huffman
Coding Algorithm Shift can be seen in table 4 and table 5,
with testing done on some file types WAV format obtained
from data collection on http://www.music.helsinki.fi"J.S.
Bach; The E major Partita, Gavotte en rondeau
(excerpt)-Sirkka Väisänen, violin "File which is in the
process of having the size and type of complexity varies as the
following table 3.
The checking is done by the application that provides the
numerical data of the resulting compression ratio results.

Table 3: File WAV specification

File Name Detail

a2002011001-e02.wav
Original recording (PCM encoded
16 bits per sample, sampling rate
44100 Hertz, stereo)

a2002011001-e02-16kHz.wav

a2002011001-e02-8kHz.wav

PCM encoded sound files with 16
kHz and 8 kHz sampling rate

a2002011001-e02-ulaw.wav U-LAW encoded (8 bits per
sample) sound file with 44.1 kHz

Table 4: Results WAV file compression process to Mp3

Parameter
a2002011
001-e02.w

av

a20020110
01-e02-16k

Hz.wav

a20020110
01-e02-8kH

z.wav

a20020110
01-e02-ula

w.wav
Original Size

(KB 9,357 3,395 1,698 9,357

Compression
Size Mp3/KB

2,465 1,711 1,072 1,289

Ratio
Compression

%
26,34 50,40 63,13 13,78

Compression
Speed Second 9 4 3 12

* In the U-law type audio file to WAV, it cannot be
processed and analyzed correctly because the original size is
4,679 KB.

Table 5: Comparison of Compression Process repeatedly
Audio File

WAV
Compression to Mp3

Once Twice Three Times

a2002011001-e02.wa
v 2,465 2,465 2,465

a2002011001-e02-16
kHz.wav 1,711 1,711 1,711

a2002011001-e02-8k
Hz.wav 1,072 1,072 1,072

a2002011001-e02-ul
aw.wav 1,289 1,289 1,289

5. CONCLUSION
Based on the research conducted on compression, it can be
seen that the process rate/distortion control process can be
done in the way format specified by 16-bit samples, but there
are differences in the ratios obtained at each sample rate and
unsuccessful on the U-Law type. The most optimal
compression ratio is found in the kind of WAV format 16bit /
44.1 kHz of 26.34%, and some fragments have been obtained

Tonny Hidayat et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.5), 2019, 317- 326

325

is 20% from standard Mp3 compression. Results Process
speed depends not only on the complexity of the recorded
audio data but also depends on the bit sample and sampling
rate. Doing repeated compression does not affect the results
because the schematic process is static, so the compression
process is done several times with the same data still getting
the same results.

ACKNOWLEDGEMENT

This paper is an ongoing research on more in-depth
lossless compression technique for music files. Thank you
Universitas AMIKOM Yogyakarta and Universiti Teknikal
Malaysia Melaka, and everyone who provided substantial
support in this study.

REFERENCES
[1] B. Singh, A. Kaur, and J. Singh, “A Review of ECG

Data Compression Techniques,” Int. J. Comput.
Appl., vol. 116, no. 11, pp. 39–44, 2015.
https://doi.org/10.5120/20384-2644

[2] I. R. E. Oyarzabai, “(12) Unlted States Patent (10)
Patent N0 .: Primary Examiner * Srirama
Channavajjala,” vol. 2, no. 12, 2013.

[3] R. R. Devi and D. Pugazhenthi, “Ideal Sampling Rate
to Reduce Distortion in Audio Steganography,”
Procedia Comput. Sci., vol. 85, no. Cms, pp.
418–424, 2016.

[4] S. Hicsonmez, E. Uzun, and H. T. Sencar, “Methods
for identifying traces of compression in audio,” 2013
1st Int. Conf. Commun. Signal Process. Their Appl.
ICCSPA 2013, no. May, 2013.
https://doi.org/10.1109/ICCSPA.2013.6487284

[5] M. Hans and R. W. Schafer, “Lossless compression of
digital audio,” IEEE Signal Process. Mag., vol. 18,
no. 4, pp. 21–32, 2001.
https://doi.org/10.1109/79.939834

[6] G. S. Sandeep, B. S. S. Kumar, and D. J. Deepak, “An
efficient lossless compression using double Huffman
minimum variance encoding technique,” Proc. 2015
Int. Conf. Appl. Theor. Comput. Commun. Technol.
iCATccT 2015, no. C, pp. 534–537, 2016.

[7] R. Yu, X. Lin, S. Rahardja, and H. Huang, “MPEG-4
Scalable to Lossless audio coding - Emerging
international standard for digital audio compression,”
2005 IEEE 7th Work. Multimed. Signal Process., pp.
2–5, 2006.
https://doi.org/10.1109/MMSP.2005.248562

[8] S. Sukode, I. J. Volume, S. Sukode, P. S. Gite, and H.
Agrawal, “International Journal of Advanced Trends
in Computer Science and Engineering Available
Online at
http://warse.org/pdfs/2015/ijatcse01412015.pdf
CONTEXT AWARE FRAMEWORK IN IOT : A
SURVEY,” vol. 4, no. 1, pp. 1–9, 2015.

[9] O. R. Devi, “International Journal of Advanced

Trends in Computer Science and Engineering
Available Online at
http://www.warse.org/ijatcse/static/pdf/file/ijatcse02
422015.pdf,” vol. 4, no. 2, pp. 15–21, 2015.

[10] K. Brandenburg, C. Faller, J. Herre, J. D. Johnston,
and W. B. Kleijn, “Perceptual coding of high-quality
digital audio,” Proc. IEEE, vol. 101, no. 9, pp.
1905–1919, 2013.
https://doi.org/10.1109/JPROC.2013.2263371

[11] M. A. Austin, B. Muralikrishnan, M. H. Supriya, and
P. R. Saseendran Pillai, “Development of a hardware
based underwater target identification system,” 2009
Int. Symp. Ocean Electron. SYMPOL 2009, pp.
79–84, 2009.

[12] S. Whibley et al., “WAV Format Preservation
Assessment,” pp. 1–11, 2016.

[13] D. Luo, W. Luo, R. Yang, and J. Huang, “Identifying
compression history of wave audio and its
applications,” ACM Trans. Multimed. Comput.
Commun. Appl., vol. 10, no. 3, pp. 30:1--30:19, 2014.
https://doi.org/10.1145/2575978

[14] M. Zou and Z. Li, “A wav-audio steganography
algorithm based on amplitude modifying,” Proc. -
2014 10th Int. Conf. Comput. Intell. Secur. CIS 2014,
pp. 489–493, 2015.

[15] J. J. Thiagarajan and A. Spanias, Analysis of the
MPEG-1 Layer III (MP3) Algorithm Using MATLAB,
vol. 3, no. 3. 2011.

[16] “MP3.” [Online]. Available:
http://www.absoluteastronomy.com/topics/MP3.
[Accessed: 30-Jun-2018].

[17] “wikipedia Mp3,” 2018. [Online]. Available:
https://en.wikipedia.org/wiki/MP3. [Accessed:
30-Jun-2018].

[18] “13. Compression and Decompression.”
[19] S. Karlsson et al., “Lossless Message Compression

Bachelor Thesis in Computer Science,” 16th IASTED
Int. Conf. Parallel Distrib. Comput. Syst. (PDCS
2004), vol. 2006, no. May, pp. 559–564, 2013.

[20] T. Hidayat, M. H. Zakaria, and N. Che Pee,
“Comparison of Lossless Compression Schemes for
WAV Audio Data 16-Bit Between Huffman and
Coding Arithmetic,” Int. J. Simul. Syst. Sci. Technol.,
vol. 19, no. 6, pp. 36.1-36.7, Feb. 2019.
https://doi.org/10.5013/IJSSST.a.19.06.36

[21] T. Hidayat, M. H. Zakaria, and A. N. C. Pee,
“Lossless coding scheme for data audio 2 channel
using huffman and shannon-fano,” J. Theor. Appl.
Inf. Technol., vol. 96, no. 11, pp. 3467–3477, 2018.

[22] A. R. Of, S. For, C. Mode, I. N. Lossless, and C. On,
“Jurnal Teknologi A REVIEW OF STANDARD
FOR ADVANCED CODING MODE IN LOSSLESS
COMPRESSION ON,” vol. 1, pp. 1–5, 2016.

[23] K. Skretting, “IMPROVED HUFFMAN CODING
USING RECURSIVE SPLITTING . Høgskolen i
Stavanger , Department of Electrical and Computer
Engineering P . O . Box 2557 Ullandhaug , N-4004

Tonny Hidayat et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.5), 2019, 317- 326

326

Stavanger , Norway,” Comput. Eng.
[24] S. Ashida, H. Kakemizu, M. Nagahara, and Y.

Yamamoto, “Sampled-data audio signal compression
with huffman coding,” Proc. SICE Annu. Conf., pp.
1047–1051, 2004.

[25] M. Johnson, J. Partan, and T. Hurst, “Low complexity
lossless compression of underwater sound
recordings,” J. Acoust. Soc. Am., vol. 133, no. 3, pp.
1387–1398, 2013.
https://doi.org/10.1121/1.4776206

[26] M. Hans and R. W. Schafer, “Lossless compression of
digital audio,” IEEE Signal Process. Mag., vol. 18,
no. 4, pp. 21–32, 2001.

[27] M. Hosseini, “A Survey of Data Compression
Algorithms and their Applications,” Appl. Adv.
Algorithms, no. April, pp. 1–14, 2012.

[28] H. M. Kasem, M. Elsabrouty, O. Muta, and H.
Furukawa, “Performance of perceptual 1-bit
compressed sensing for audio compression,” Proc. -
IEEE Symp. Comput. Commun., vol. 2016-Febru, pp.
477–482, 2016.

[29] A. File and S. Calculations, “AudioMountain.com,”
pp. 1–2, 2016.

[30] G. Brzuchalski, “Quantization and psychoacoustic
model in audio coding in advanced audio coding,”
Photonics Appl. Astron. Commun. Ind. High-Energy
Phys. Exp. 2011, vol. 8008, p. 80081J, 2011.
https://doi.org/10.1117/12.905576

[31] M. Qiao, A. H. Sung, and Q. Liu, “Revealing real
quality of double compressed MP3 audio,” MM’10 -
Proc. ACM Multimed. 2010 Int. Conf., no. October,
pp. 1011–1014, 2010.

[32] R. Yang, Y. Q. Shi, and J. Huang, “Defeating
fake-quality MP3,” MMandSec’09 - Proc. 11th ACM
Multimed. Secur. Work., pp. 117–124, 2009.

[33] T. Hidayat, M. H. Zakaria, and A. N. C. Pee, “A
critical assessment of advanced coding standards for
lossless audio compression,” Int. J. Simul. Syst. Sci.
Technol., vol. 19, no. 5, pp. 31.1-31.10, 2018.

[34] I. Conference and O. N. Electronics, “to Assess the
Quality of Audio Codecs,” no. Icecs, pp. 252–258,
2015.

[35] U. Rahardja, T. Hariguna, & Q. Aini,
“Understanding the Impact of Determinants in Game
Learning Acceptance: An Empirical Study”,
International Journal of Education and Practice, 7(3),
136–145, 2019.
http://doi.org/10.18488/journal.61.2019.73.136.145

[36] J. V. Rueda-galofre, R. E. Cantillo-carrillo, S.
Palomares-garcía, A. Castellano-suárez, and G. W.
Ibañez-prada, “An Integrated Framework for Genetic
Improvement and Artificial Breeding of Beef Cattle :
a Case Study in Livestock Industry of Colombia,” Int.
J. Adv. Trends Comput. Sci. Eng., vol. 8, no. 1, pp.
62–70, 2019.
https://doi.org/10.30534/ijatcse/2019/11812019

[37] Z. R. Al Ashhab, M. Anbar, M. M. Singh, K. Alieyan,
and W. I. A. Ghazaleh, “Detection of HTTP Flooding
DDoS Attack using Hadoop with MapReduce : A
Survey,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 8,
no. 1, pp. 71–77, 2019.

