
Robert Marco et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.5), 2019, 294- 304

294


ABSTRACT

Software effort estimation are part of the field of project
management in software that is very important for
development efforts. Software development planning is
something very complex and serious, which determines the
success of a software project. Because of the lack of good
requirements and information, it causes software project
failures. Although there are many studies that aim to solve the
problem of noisy, irrelevant and excessive data to achieve
accuracy. The purpose of this study is to combine
metaheuristic optimization techniques as a framework for
using Machine Learning models. By proposing a hybrid
estimation model based on a combination of the Satin
Bowerbird Optimizer (SBO) algorithm and Support Vector
Regression (SVR) to improve the accuracy of software
estimation efforts. This study is to determine the effort
estimation and duration estimation. The proposed framework
is based on theoretical concepts. the proposed model will be
tested using a heterogeneous dataset, namely the ISBSG
dataset. the results of the study are expected to be used as
decision making as the initial planning of software project
development.

Key words : Software effort estimation, Satin Bowerbird
Optimizer (SBO) algorithm, Support Vector Regression
(SVR), Parameter optimization, metaheuristic.

1. INTRODUCTION

According to the IEEE Computer Society, that Software
Engineering (SE) is an approach to systematically measuring
the application of software engineering [1]. In SE there are
several parts that are used in software engineering
management, from planning to measuring software [2].
Accuracy and reliability of Software Efforts Estimation (SEE)

in the early stages of project planning must be able to allocate
resources and good scheduling [3]. Success and failure in
software development efforts lies in the planning aspect
which is an important and accurate part of project completion
[3]. This condition is different from other engineering
disciplines where the results of the engineering process
provide a real form. The measurement of the volume of
abstract software engineering work is only based on the
usefulness of the engineering results.

The large number of interrelation factors that are very
influential in effort and development. Improving estimation
techniques will make it easier to control duration and budget
[4][5][6]. Poor estimation techniques can lead to budget waste
and inappropriate scheduling in software projects [7][8]. The
importance of problem solving in software project
management, so that a large number of studies propose
models in software effort estimation to overcome software
development problems [9]. Software development is
increasingly aware of the need for a better model, so the
importance of proposing new models to predict software
development efforts [10]. Or otherwise produces the right
results regardless of uncertainty [8]. It is important to advance
software development, by making a definite model so that in
the process of developing it will produce appropriate software,
in a way that minimizes waste of duration and budget.

There have been many estimation methods that have been
proposed to solve software project problems, so as to increase
the accuracy of estimates. The estimation method can be
classified in several types, including: machine learning
methods[11][12]; expert judgment; Case-Based Reasoning
(CBR) methods; regression-based methods; parametric
models; dynamics-based models; and composite methods [13];
and algorithmic method [14].

Many researchers have proposed several techniques to
improve accuracy in estimating software efforts using
machine learning. A number of studies have tried to modify

Optimizing Software Effort Estimation Models Based On
Metaheuristic Methods: A Proposed Framework

1Robert Marco, 2Nanna Suryana Herman, 3Sharifah Sakinah Syed Ahmad
1Department of Computer Science,

Universitas Amikom Yogyakarta, Indonesia.
robertmarco@amikom.ac.id

2Professor, Department of Information & Communication Technology,
Universiti Teknikal Malaysia Melaka (UTeM), Melaka, Malaysia.

nsuryana@utem.edu.my
3Associate Professor, Department of Information & Communication Technology,

Universiti Teknikal Malaysia Melaka (UTeM), Melaka, Malaysia.
sakinah@utem.edu.my

 ISSN 2278-3091
Volume 8, No.1.5, 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse5181.52019.pdf

https://doi.org/10.30534/ijatcse/2019/5181.52019

Robert Marco et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.5), 2019, 294- 304

295

new models using machine learning to improve accuracy in
software effort estimation [3][15][16][17]. Using a based
feature selection [18][19][20][21], or parameter optimization
[22][23][24]. Some prediction techniques have been
suggested but none have proved consistently successful in
predicting software development efforts [11]. Estimation
methods have long been introduced, but this approach still has
the potential to make estimates on software accurately and
stably. So software development using machine learning to
produce more reliable and accuracy development is still
needed in this field of research.

Problems that occur based on previous studies, are in the early
stages of software project development. Often considered an
obstacle, namely the problem of time and cost framework. But
significantly that the costs estimation and duratin estimation
are inversely proportional. So in this study, the first problem
that the most accurate estimation is to estimate the effort and
duration. Because the estimation model of the effort and
duration is proposed as a decision-making tool in developing
software so that it is released from errors that cause negative
implications or failures in software projects. While the second
problem, is the prediction process must be based on historical
information. So in developing the model for effort estimation
and duration estimation must use data mining. Because the
presence of noisy, irrelevant, and redundant data on the
dataset will greatly affect ML performance, because poor data
quality arises due to missing values, outliners and missing
values can cause uncertainty and inconsistency. According to
Huang et al (2006), estimation problems are complex
problems and have features such as nonlinear relationships;
Measurement of software metrics; and software processes that
are inaccurate and uncertain changes rapidly, no model has
proven to be the perfect solution [35]. The implementation of
software at an early stage can significantly improve the
success of software projects if it can make precise and
accurate effort and duration estimation. So it is necessary to
do a comprehensive approach, by doing the data preparation
stage until implementation to produce accurate and reliable
software estimates.

In software efforts estimation several types of algorithms can
be applied, including Genetic Algorithm [18]; Support Vector
Machine [25][26]; Fuzzy [27]; Support Vector Regression
[18][28]; Artificial Neural Network [29]; Adaptive
Regression [30]. Approaches for comparison of these models
are often invalid and may make things worse. Identified
several theoretical problems with a study comparing different
estimation models in several common datasets to produce the
best models [31]. No specific classifier can do the best
accuracy results for all data sets [32].

In a few years, many optimization algorithms have been used
as enhancements and adjustments to effort estimator
parameters. There are two categories of optimization methods
in general, including: 1) Mathematical methods, like:
Dynamic Programming (DP) and Quasi-Newton (QN) [33]; 2)
Metaheuristic algorithm33, like: Genetic algorithm (GA)
[18][28][34][35], Bee Colony Optimization (BCO) and Ant
Colony Optimization (ACO) [36], satin bower bird

optimization algorithm (SBO) [3], Particle Swarm
Optimization (PSO) [37][38], COCOMO [39][40][41],
Cuckoo Search (CS) [42]. There are so many optimization
algorithms that have been submitted in an effort to develop
software, because each optimization algorithm has different
adaptation and performance capabilities.
The Meta-heuristic algorithm can effectively solve problems
in non-linear optimization [43]. Implementation of this
algorithm can be calculated in various ways to solve the
optimization problem [33][43]. To increase effort predictions
by exploring parameter settings is one of the functions of
using meta-heuristics [44]. Using the meta-heuristic approach
in finding the best feature parts, by adopting a classifier to
select features optimally using the wrapper model [24]. In
addition, significantly optimization of using metaheuristics
can have the ability to find full search space and high-quality
solutions in a reasonable period of time using global search
capabilities [45]. Metaheuristic method designed to overcome
this problem [46]. Metaheuristic optimization method gives
good results than traditional and non-evolutionary methods in
terms of increasing accuracy using the feature selection
method.

In overcoming limitations and narrowing the gap between the
findings of recent research and the potential for dissemination
in the application of machine learning algorithms to estimate
the effort and duration of developing software efforts early in
the project life cycle. A comprehensive approach is used to
ensure its usefulness and the accuracy of exceptional
estimates and resilience to in-data noise, irrelevance, and
redundant. According to the results obtained in the literature
review, several studies only focused on adjusting individual
algorithms for best performance and accuracy in Machine
Learning (ML) models, such as the use or improvement of
algorithms, such as neural networks, case-based reasoning,
support vector regression, decision trees, and etc. So that the
application of statistics and machine learning algorithms are
used to effort estimation and estimated duration.
Contributions in this study, will integrate the data
preprocessing, meta learning, feature selection; and
Optimization parameter aims to convert heterogeneous data
into homogeneous data to improve accuracy for effort
estimation and duration estimation. The aim of the study was
to overcome the limitations of the gap, in developing the SEE
model in the early stages of software project planning using
the meta-heuristic approach and the application of machine
learning to effort and estimation of duration. In this study, we
will use the ISBSG dataset, which is the most popular dataset
and has the most reliable data source..

2. RELATED WORK

Feature selection is a process of removing irrelevant and
excessive features. Because in large data the use of feature
selection to overcome a large number of input features by
looking for subset feature space. The search method is chosen
to do a search and evaluators submit values for each feature
section [47]. The function of selecting features to do relevant
and most informative data extraction, so that the classification

Robert Marco et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.5), 2019, 294- 304

296

is more suitable in the feature set [36]. Most of the problems
in classification can be solved by selecting features, but still
need a new approach to determine the sub-feature options in
increasing accuracy [48]. The main purpose of features
selection in learning is to find the features so that it produces
high accuracy [26][49]. The performance of feature selection
techniques is strongly influenced by the characteristics of the
dataset, this has an impact on the problem of accuracy and
time complexity of various feature selection techniques.

In the prediction system is very influential on the data
collection used. Although there have been many models
proposed to solve this problem. However, there are still many
models that significantly and consistently have accurate
results that funds have uncertainty about prediction
techniques [50]. Attribute noise, incomplete, and inconsistent
in the software measurement dataset lowers the performance
of machine-learning [51]. Data quality will decrease when
used on heterogeneous and inconsistent datasets [52].
Irrelevant and inconsistent project effects on downhill
estimates by designing frameworks, where all projects are
clustered [53]. The existence of each dataset that is not
normally distributed will imply an effort to develop an
accurate method [54]. The choice of features is used to speed
up the performance of algorithms in mining data and improve
data quality, by reducing the dimensions of the feature space,
removing data that is excessive, irrelevant, and noisy [55][56].
A collection of relevant dataset features can improve accuracy
[56]. The selection of features will explore the effects of
attributes that are not relevant [57]. The machine learning
model is greatly influenced by the level of accuracy by using
the dataset [58]. Data preparation used to build machine
learning models is needed, by selecting, cleaning, reducing,
transforming and feature selection [51][58[59]. The use of
efficient machine learning algorithms is an important task in
features selection as reduction dimensions. However, the
proliferation of this feature selection technique raises the
difficulty of choosing the algorithm for selecting the features
that are most suitable for an application, resulting from the
selection of different features [60].

There are several ensemble methods that have been proposed,
such as bagging, boosting, random sampling techniques [61];
and stacking [62][63]. Using the ensemble method in
performing different data collection will achieve better
accuracy than individual techniques [63]. Boosting [64][65]
or bagging [22][65[66] is a representative approach that
combines preprocessing data oversampling and under
sampling with ensemble classifiers. Integrating bagging with
under-sampling is stronger than over-sampling [22]. Bagging
provides a large advantage in accuracy, with testing on real
datasets and simulations using classification, regression trees
and subset selection in linear regression [66]. Bagging is a
method that can handle class imbalances, and can improve
performance in noisy data environments [67]. The application
using the ensemble approach serves to predict the average
using strong machine learning, stabilize the model, reduce the
influence of noise in the data and have an impact on the
abnormal behavior of the algorithm. So that it can be

concluded that the ensemble method that has the best
performance is bagging and stacking.

All this time, the SEE technique has experienced a lot of
instability in producing precise approximate accuracy [50], so
that to overcome this problem an ensemble learning approach
needs to be applied [68]. Ensemble to predict software project
development efforts by combining more than one SDEE
technique used. To analyze the accuracy of the ML model by
using MMRE and MdMRE that have lower values, while the
Pred (25) is higher, this shows a more accurate estimate.
According to Wen et al (2012), it was shown that ANN and
SVR were the most accurate (median MMRE around 35% and
Pred (25) around 70%), followed by CBR, Decision Tree
(DT), and Genetic programming (median MMRE and Pred
(25) around 50%), while Bayesian Networks (BN) have the
worst accuracy (median MMRE around 100% and Pred (25)
around 30%) [11]. Whereas Idri et al (2016), the performance
of the ensemble effort estimation technique that SVR is the
most accurate (median Pred (25) 50% and MMRE 48.6%),
ANN (median Pred (25) 40% and MMRE 49.9%), while
Neuro Fuzzy (NF) is the least accurate (Median Pred (25)
31% and MMRE 79.5%) [69]. based on the literature review,
it can be concluded that ANN and SVR are ML techniques
that have the best and most accurate accuracy in predicting
software development.

While Genetic method algorithms can improve performance
in ML and feature selection [18][28]. The parameters of the
basic COCOMO model can be improved by applying simple
genetic algorithms [40]. Combining the GA and SVM
methods can improve predictions more accurately by finding
the best SVM regression parameters by the proposed model
[70]. The Satin Bowerbird Optimizer (SBO) algorithm
compared to the five most famous new algorithms (Ant Lion
Optimization (ALO), Partial Swarm Optimization (PSO), Fire
Fly optimization (FA), GA and Artificial Bees Colony (ABC))
has the best performance than other algorithms, both in test
functions and is statistically superior [3].

3. LITERATURE

3.1 Satin Bowerbird Optimizer (SBO)

The satin bower bird optimization algorithm is one type of
algorithm that simulates the life of a type of satin bower bird

[71]. Bowerbirds during autumn and winter, will leave forest
habitat and move to open forests to find food. However, in the
spring, they gather together and inhabit the area, because at
that time it is the mating season for them. During the season
they will make different materials such as flowers, fruits,
shiny objects, branches, and dramatic movements to attract
women's attention which is a variable in this regard. That male
birds use natural instincts and imitate other males to build
their nests [71].

According to satin bowerbird's life principle, here are the
steps of the SBO algorithm:

1. A Set of Random Bower Generations:

Robert Marco et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.5), 2019, 294- 304

297

At the initial stage, the SBO will create a random
population and position for the bowers. In this case the
position must be optimized, because it is a n-parameter
dimensional vector. In the optimization problem, each
bower parameter is the same as a variable. The value will
be randomly initialized taking into account the lower and
upper limit parameters [43][71].

2. Calculating the Probability of Each Population Member:
The Probability equation below, ݂݅ݐ௜ is the suitability of
the i and n solutions is the number of bower.

ϐit୧ = {

1
1 + f(x୧)

, f(x୧) ≥ 0

1 + |f(x୧|, f(x୧) < 0 																																			(1)

Then, each bower will calculate the probability
according to the equation. 2.

prob୧ =
ϐit୧

∑ ϐit୬୒୆
୬ୀଵ

																																																						(2)

(௜ݔ)݂ as a cost function value in ݅௧௛ position or ݅௧௛
bower. This function must be optimal, because
calculating the final fitness must have a value greater or
equal to zero, then calculate the suitability for a value
that is less than zero.

a. Because , ݂(ݔ௜) = 0 as a conformity value of
one

b. Fitness is always a positive value

3. Elitism:
Elitism is maintained at each stage of the optimization
process to allow the best solutions to be intended as elite
iterations. Because it has the highest fitness, it must
influence other positions.

4. Determining new changes in any position:
Each new change must be calculated according to
Equation. 3.

X୧୩
୬ୣ୵ = X୧୩

୭୪ୢ + λ୩ ൭൬
X୨୩ + Xୣ୪୧୲ୣ,୩

2
൰ − X୧୩

୭୪ୢ൱											(3)

In equation, x୧ is i୲୦ bower/solution vector and x୧୩ is k
member of this vector. x୨ as a target solution in the
current iteration. The value of j is calculated based on the
probability. xୣ୪୧୲ୣ shows the elite position, which is
stored in each algorithm cycle. The parameter λ୩
determines the attraction in the bower goal. λ୩
determines the number of steps calculated for each
variable.

λ୩ =
a

1 + p୨
																																																																				(4)

5. Mutation:

At the end, random changes are used for certain
probabilities. Random changes are applied to ݔ௜௞ with a
certain probability. The mutation process, a normal
distribution (N) is employed with average of ݔ௜௞௢௟ௗ and
variance of ߪଶ, as seen in Equation. 5.

X୧୩
୬ୣ୵~N൫X୧୩

୭୪ୢ,σଶ൯																																																						(5)

N൫X୧୩
୭୪ୢ,σଶ൯ = X୧୩

୭୪ୢ + σ ∗ N(0,1))																									(6)

In Equation. 6, the σ value is the proportion of the width
of space, calculated in Equation. 7.

σ = Z ∗ (var୫ୟ୶ − var୫୧୬)																																						(7)

In Equation. 7, ݎܽݒ௠௔௫ and ݎܽݒ௠௜௡ are each upper and
lower limit assigned to the variable. The Z parameter as
percent difference between upper and lower limits which
are variables.

3.2 Support Vector Regression (SVR)

Support Vector Regression (SVR) is a new generation of
Machine Learning algorithms, which are suitable for
predictive data modeling problems [72]. SVR is a Support
Vector Machines based approach [72].

Suppose given training data
,(ଵݕ,ଵݔ)} ,(ଶݕ,ଶݔ) … , {(௡ݕ,௡ݔ) , where ݔ௜߳ℝௗ denotes an
input vector and ݕ௜߳ℝ corresponding target value. In the
regression of ε-SV, it aims to find the function ݂(ݔ) which
has the most deviation ε from the actual target ݕ௜ for all
training data, and at the same time is as light as possible. In
other words, do not care about errors as long as they are less
than ε, but will not accept greater deviations from this [73].
This type of loss function defines the margin around the actual
output. The idea is that errors smaller than a certain threshold
ε > 0 are rejected. That is, errors in margins are considered
zero. On the other hand, errors caused by points outside the
margin are measured by variables ߦ and [73] ∗ߦ. Analogously
with the "soft margin" function used in SVM (Support Vector
Machine), by introducing slack variables ߦ and ߦ∗ to
overcome the unavoidable constraints of optimization
problems.

For pedagogical reasons, this is linear function ݂, which is
presented in the Equation. 8.

f(x) = 〈w, x〉 + b	with	wϵℝୢ, bϵℝ																																	(8)

Where 〈. . , . . 〉 denotes the dot product in ℝௗ . For case
nonlinear regression ݂(ݔ) = 〈(ݔ)∅,ݓ〉 + ܾ , where ∅ are
some nonlinear functions that map the input space to a higher
dimensional feature space ℝௗ . ε-SV, weight vector w and
threshold b are selected to optimize the problem.

Robert Marco et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.5), 2019, 294- 304

298

minimize୵,ୠ,ஞ,ஞ∗ 							
1
2
〈w, w〉 + C෍(ξ୧ + ξ୧∗)																(9)

୪

୧ୀଵ

Subject	to	 ቐ
(〈w,∅(x୧)〉 + b)− y୧ 	≤ ε + ξ୧.

y୧ − (〈w,∅(x୧)〉 + b) 	≤ ε + ξ୧∗(1)
ξ୧, ξ୧∗ 													≥ 						0

The constant C > 0 determines the trade-off between the
complexity of the model, that is the flatness of ݂(ݔ) and the
amount until deviations greater than ε are tolerated. ߦ and ߦ∗
are slack variables and measure the cost of errors at training
points. ξ measuring deviations exceeds the target value with
more than ε and ߦ∗ measuring deviations that are more than ε
below the target value.

In study using SVR with both linear and RBF (Radial Basis
Function) kernels. The Polynomial kernel as

 K൫x୧, x୨൯ = 〈1 + ൫x୧), (x୨൯〉୮ and RBF kernel as

 K൫x୧, x୨൯ = exp ቀ−γฮx୧ − x୨ฮ

ଶቁ , γ > 0.

The parameters C and ε significantly influence ε-SVR
generalization performance.

3.3 The ISBSG Dataset

The ISBSG repository, is a collection of many
multi-organization repositories that can produce very
heterogeneous databases [74]. The subset of the ISBSG
dataset is very heterogeneous, indicating that the
characteristics of the underlying dataset affect the inhibition
of different estimation techniques [75][76]; in order to obtain
minimal homogeneity data in the sample, it is necessary to
data preparation before analyzing [76]. Because if the data
collected is large and heterogeneous data, there will be a
strong possibility of instability and data cannot be generalized
[77]. Accurate estimates of development efforts do not seem
to be achieved in a collection of data sets consisting of
heterogeneous projects [78]. Heterogeneous project data will
produce poor performance on a single mathematical model
[79]. Based on Phannachitta et al (2017), it states that testing
on 8 public datasets has inconsistent results in the range of
10.71% and 73.33% [80].

During the data preprocessing process, heterogeneous
properties in the dataset will disappear, because
heterogeneous datasets will affect the results in generalization
[81]. Because the dataset preprocessing will be able to restore
missing data and normalize the dataset [20][82]; and can
change the format of datasets to be easier and more effective
when they are processed [83].

The impact of preparation data significantly influences the
performance of machine learning methods [59]. In addition,

data preparation has a very important role in developing an
effective model [59]. The use of preparation data used for data
mining and machine learning will produce intelligence or
business knowledge in the selection of features [45]. Because
large and heterogeneous datasets can cause a decrease in the
level of accuracy, so the data preparation process is needed to
obtain homogeneity from the dataset. Because the model is
built by the use of cross-industry ISBSG datasets
(Heterogeneous datasets) that contain the latest software
projects in several organizations that are geographically
dispersed, so the ISBSG dataset is worthy of being used to
develop models in approximate software. It can be
recommended to extract the subset that is suitable for each
software effort estimation practice.

3. PROPOSED FRAMEWORK

The framework proposed in this study has the main difference
between the proposed framework and other frameworks are
on the learning scheme consisting of: 1) Data preprocessing; 2)
Feature selection; 3) Parameter optimization; 4) Learning
algorithm; and 5) Meta learning. Combining metaheuristic
optimization techniques using machine learning to be used as
feature selection and optimization parameters.

3.1 Data Preprocessing

Preprocessing data is an important part of the estimation
problem because it can significantly affect the quality of
training [38]. Referring to problems, related to noise, class
imbalances, inconsistent and irrelevant datasets. An important
specification of the attributes of a software project, which
makes estimating efforts difficult and complicated. There
have been many techniques and methods proposed in solving
optimization problems to predict software efforts. But it is not
proven consistently and there is uncertainty, this is because it
is influenced by the data set used [50]. The cause of poor
performance of machine learning classifiers is the noise
attribute, incomplete, and inconsistent in the dataset [51].
Data quality will decrease when used in heterogeneous and
inconsistent datasets [52]. Stages in data preprocessing are
important processes in building Machine Learning models, as
follows: selection, cleaning, reduction, transformation and
selection of features [59].

3.2 Proposed Framework

Figure 1 represents the framework proposed in this study
using Scaling as data preprocessing; Satin Bowerbird
Optimization (SBO) and Support Vector Regression (SVR) as
feature selection; while Satin Bowerbird Optimization (SBO)
as parameters optimization; Bagging (B) as meta learning;
and selecting 4 algorithms to conduct experiments. In addition,
Satin Bowerbird Optimization and SVR are also used to
optimize parameters and improve performance estimation of
software efforts. Approach techniques in estimations used in
the improvement and comparison of this study, including:
Multi Layer Perceptron (MLP), Generalized Linear Models
(GLM), Classification and Regression Tree (CART), and
Radial Basis Function (RBF).

Robert Marco et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.5), 2019, 294- 304

299

Figure 1: Proposed framework Software effort estimation

In the table 1, Comparison of the framework with previous
research. Wahono (2015) used a feature selection, meta
learning, parameter optimization and selected 10 algorithm
(LR, LDA, NB, k-NN, K*, NN, SVM, C4.5, CART, RF) [91].
Oliviera at al (2010), used a feature selection, parameters
optimization and selected 4 algorithm (RBF, MLP, SVR,
M5P) [92]. Pospieszny et al (2017), used a smart data
preparation, feature selection and selected 3 algorithm (SVM,
MLP, GLM) [58]. Hosni at al (2017), used data
preprocessing, parameters optimization and selected 4
algorithm (k-NN, SVR, MLP, DT) [12].

Table 1: Framework comparison

Framework Data

Preparation
Feature

Selection Classifier Meta
Learning

Parameter
Optimization

[91] - GA and
PSO

10
Algorithm

Bagging GA

[92] - GA 4
Algorithm

- GA and SVM

[58] Selection,
Cleaning,
Reduction,

and
Transformati

on

Lasso,
Stepwise
regressio

n and
pearson

correlatio
n

3
Algorithm

- -

[12] Select
features,

Weight the
features, and

Remove
outliers.

- 4
Algorithm

- GSO and PSO

Proposed
Framework

Scaling SBO and
SVR

4
Algorithm

Bagging SBO

The accuracy of the models proposed using algorithms shows
that the most influential factor is the approach in dataset
selection, cleaning and preparation. So that the use of
preprocessing data is very important to produce normally
distributed data, which has an impact on the level of accuracy
produced. This study focuses more on verification of the
proof-of-concept approach with multi-organization datasets,
considered a measure approach to the accuracy of machine
learning for effort and duration estimation model.

In the proposed framework, metaheuristic optimization
methods, specifically SBO dan SVR, are used as feature
selection and optimization parameters. Based on previous
research, that this method has proven effective for solving
problems that arise in machine learning. Feature selection
techniques for selecting more valuable attributes and
removing non-attractive attributes [84]; A SVR based feature
selection [18][28].

Ensemble learning methods combine several basic classifiers
to build strong classifiers, such as bagging, boosting,
sampling, and stacking are applied to classifications with data
imbalance problems. Bagging and Boosting is an ensemble
method by adopting sampling techniques in each iteration to
classify imbalance data [85]. Boosting techniques have a
lower performance than bagging techniques when working in
noisy and imbalance data [67]. while stacking techniques have
the ability to build high-level prediction models based on
first-level predictions [86]. Scaling is to avoid attributes in a
larger numeric range dominating attributes in a smaller
numeric range [34]. To improve the efficiency and excellence
of software development, he can utilize data mining
techniques to analyze and predict large amounts of data [93].

The amount of research that has done the method of selecting
features and parameters optimization, they are only limited to
solving problems for noisy, irrelevant and redundant data to
achieve accuracy. This research will conduct feature selection
based on parameter optimization using a bagging techniques,
to distribute heterogeneous data into homogeneous, for class
imbalance problems in terms of increasing accuracy in effort
estimation and duration estimation in the software
development effort estimation field. Ensure its usefulness and
the accuracy of exceptional estimates and robustness for noise
in the data. To get good accuracy, computers / systems must
be trained properly with the help of training data sets [94][95].

In the next stage, it will be elaborated in evaluating the
accuracy of the models proposed in this study. in the process
of evaluating the output using values on MMRE and PRED
(25). In this stage, training and testing data will be normalized
using SVR by trying 4 proposed algorithms (such as MLP,
GLM, CART and RBF) to obtain optimal accuracy results.
this is different from a similar process carried out previously,
that the optimization parameters obtained using the default
system. the next step is to calculate the MMRE and PRED
values (25) to find out the value of effort estimation and
duration estimation.

Robert Marco et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.5), 2019, 294- 304

300

3.3 Model Validation

The ISBSG dataset is applied, normalization of dependent
variables, cross validation approaches and Mean Absolute
Residual Error (MAR) with Median and Mean of Absolute
Residuals (MdAR) are used as accuracy criteria [58]. Several
methods have been proposed to evaluate the accuracy of the
predictive value of accuracy in software. Besides being
measured using various metrics on the value of accuracy,
there are several accuracy assessments on popular software
effort estimation, such as: n-fold cross validation, holdout and
leave-one-out cross validation (LOOCV) [11][88].

3.4 Model Evaluation

There are three metrics used to evaluate the performance of
the software effort estimation, such as: Mean Magnitude
Relative Error (MMRE), Magnitude Relative Error (MRE),
and percentages of the PRED, which are calculated as follows
[89][90]:

MRE =
|estimated− actual|

actual 																																							(10)

MMRE =
∑ MRE୒
୧ୀଵ

N 																																																										(11)

PRED(X) =
A
N 																																																																					(12)

A is the number of projects with ܧܴܯ ≤ ܺ and ܰ N the
number of projects in the set. MRE must be less than 0.25
(0.25) to be accepted by the software effort estimation
model. whereas MMRE must have a minimum value and
PRED (25) has a maximum value [90].

4. CONCLUSION

The large number of previous studies prioritizes accurate
accuracy, regardless of the estimation process that takes a
long time. then based on that problem, the development of
software projects will produce good accuracy if it produces a
fast, efficient and practical time. So the need to implement the
machine learning algorithm to measure effort and duration of
estimation. the proposed framework will present a holistic
approach to building models in estimating efforts and duration
in the early stages of software development. the stages in this
study process include: data preprocessing, feature selection,
optimization parameters, meta learning and 4 (four) machine
learning algorithms using the ISBSG dataset. In addition,
classification problems also involve a number of features, this
is because not all available features are equally important.
Good and accurate classification must require small features.
for the type of validation used to measure the accuracy of the
estimated overall model using n-fold cross validation.
Whereas to evaluate accuracy to estimate software
engineering using; MMRE, and PRED (25).

REFERENCES

1. P.Bourque p, R.Dupuis, A.Abran, J.W.Moore, and

L.Tripp, Guide to the Software Engineering Body of
Knowledge, IEEE Software , Vol. 16, Issue. 6, 1999.
https://doi.org/10.1109/52.805471

2. N. Garcia-Diaz, C. Lopez-Martin, and A. Chavoya, “A
Comparative Study of Two Fuzzy Logic Models for
Software Development Effort Estimation,” Procedia
Technol., vol. 7, pp. 305–314, 2013.

3. S. H. Samareh Moosavi and V. Khatibi Bardsiri, “Satin
bowerbird optimizer: A new optimization algorithm
to optimize ANFIS for software development effort
estimation,” Eng. Appl. Artif. Intell., vol. 60, no. May
2016, pp. 1–15, 2017.
https://doi.org/10.1016/j.engappai.2017.01.006

4. I. Kalichanin-Balich and C. Lopez-Martin, “Applying a
feedforward neural network for predicting software
development effort of short-scale projects,” 8th ACIS
Int. Conf. Softw. Eng. Res. Manag. Appl. SERA 2010, pp.
269–275, 2010.

5. G. R. Finnie, G. E. Wittig, and J.-M. Desharnais, “A
comparison of software effort estimation techniques:
Using function points with neural networks,
case-based reasoning and regression models,” J. Syst.
Softw., vol. 39, no. 3, pp. 281–289, 1997.

6. S. J. Huang, N. H. Chiu, and Y. J. Liu, “A comparative
evaluation on the accuracies of software effort
estimates from clustered data,” Inf. Softw. Technol.,
vol. 50, no. 9–10, pp. 879–888, 2008.

7. H. Lee, “A structured methodology for software
development effort prediction using the analytic
hierarchy process,” J. Syst. Softw., vol. 21, no. 2, pp.
179–186, 1993.

8. J. Ryder, “Fuzzy modeling of software effort
prediction,” Inf. Technol. Conf. 1998. IEEE, pp. 53–56,
1998.

9. A. Heiat, “Comparison of artificial neural network
and regression models for estimating software
development effort,” Inf. Softw. Technol., vol. 44, no.
15, pp. 911–922, 2002.
https://doi.org/10.1016/S0950-5849(02)00128-3

10. S. G. Macdonell and A. R. Gray, “A Comparison of
Modeling Techniques for Software Development
Effort Prediction,” Springer-Verlag, pp. 869–872,
1997.

11. J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, “Systematic
literature review of machine learning based software
development effort estimation models,” Inf. Softw.
Technol., vol. 54, no. 1, pp. 41–59, 2012.

Robert Marco et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.5), 2019, 294- 304

301

12. M. Hosni, A. Idri, A. Abran, and A. Bou, “On the value
of parameter tuning in heterogeneous ensembles
effort estimation,” Soft Comput., 2017.

13. K. Dejaeger, W. Verbeke, D. Martens, and B. Baesens,
“Data mining techniques for software effort
estimation: A comparative study,” IEEE Trans. Softw.
Eng., vol. 38, no. 2, pp. 375–397, 2012.

14. N. Saini and B. Khalid, “Effectiveness of Feature
Selection and Machine Learning Techniques for
Software Effort Estimation,” IOSR J. Comput. Eng.,
vol. 16, no. 1, pp. 34–38, 2014.
https://doi.org/10.9790/0661-16193438

15. M. Azzeh, D. Neagu, and P. I. Cowling, “Analogy-based
software effort estimation using Fuzzy numbers,” J.
Syst. Softw., vol. 84, no. 2, pp. 270–284, 2011.

16. S. Aljahdali and A. F. Sheta, “Software effort
estimation by tuning COOCMO model parameters
using differential evolution,” ACS/IEEE Int. Conf.
Comput. Syst. Appl. - AICCSA 2010, pp. 1–6, 2010.

17. V. Khatibi Bardsiri, D. N. A. Jawawi, S. Z. M. Hashim,
and E. Khatibi, “Increasing the accuracy of software
development effort estimation using projects
clustering,” IET Softw., vol. 6, no. 6, p. 461, 2012.

18. A. L. I. Oliveira, P. L. Braga, R. M. F. Lima, and M. L.
Cornelio, “GA-based method for feature selection and
parameters optimization for machine learning
regression applied to software effort estimation,” Inf.
Softw. Technol., vol. 52, no. 11, pp. 1155–1166, 2010.
https://doi.org/10.1016/j.infsof.2010.05.009

19. Q. Liu, J. Xiao, and H. Zhu, “Feature selection for
software effort estimation with localized
neighborhood mutual information,” Cluster Comput.,
vol. 3456789, no. 1, 2018.

20. J. Huang, Y. F. Li, J. W. Keung, Y. T. Yu, and W. K.
Chan, “An empirical analysis of three-stage
data-preprocessing for analogy-based software effort
estimation on the ISBSG data,” Proc. - 2017 IEEE Int.
Conf. Softw. Qual. Reliab. Secur. QRS 2017, pp.
442–449, 2017.
https://doi.org/10.1109/QRS.2017.54

21. P. Phannachitta, J. Keung, A. Monden, and K.
Matsumoto, “A stability assessment of solution
adaptation techniques for analogy-based software
effort estimation,” Empir. Softw. Eng., vol. 22, no. 1, pp.
474–504, 2017.

22. J. Błaszczyński and J. Stefanowski, “Neighbourhood
sampling in bagging for imbalanced data,”
Neurocomputing, vol. 150, no. PB, pp. 529–542, 2014.

23. H. Velarde, C. Santiesteban, A. Garcia, and J. Casillas,
“Software Development Effort Estimation based-on
multiple classifier system and Lines of Code,” IEEE
Lat. Am. Trans., vol. 14, no. 8, pp. 3907–3913, 2016.

24. S. W. Lin, K. C. Ying, S. C. Chen, and Z. J. Lee,
“Particle swarm optimization for parameter
determination and feature selection of support vector
machines,” Expert Syst. Appl., vol. 35, no. 4, pp.
1817–1824, 2008.

25. M. Azzeh and A. B. Nassif, “A hybrid model for
estimating software project effort from Use Case
Points,” Appl. Soft Comput. J., vol. 49, pp. 981–989,
2016.

26. İ. Babaoglu, O. Findik, and E. Ülker, “A comparison of
feature selection models utilizing binary particle
swarm optimization and genetic algorithm in
determining coronary artery disease using support
vector machine,” Expert Syst. Appl., vol. 37, no. 4, pp.
3177–3183, 2010.
https://doi.org/10.1016/j.eswa.2009.09.064

27. M. Azzeh, D. Neagu, and P. Cowling, “Improving
Analogy Software Effort Estimation using Fuzzy
Feature Subset Selection Algorithm,” PROMISE ACM,
pp. 71–78, 2008.

28. P. L. Braga, A. L. I. Oliveira, and S. R. L. Meira, “A
GA-based Feature Selection and Parameters
Optimization for Support Vector Regression Applied
to Software Effort Estimation Chromosome design,”
ACM, pp. 1788–1792, 2008.

29. [29] S. Aljahdali, A. F. Sheta, and narayan C. Debnath,
“Estimating Software Effort and Function Point
Using Regression , Support Vector Machine and
Artificial Neural Networks Models,” IEEE Access,
2015.

30. S. M. Satapathy, “Empirical Assessment of Machine
Learning Models for Effort Estimation of Web-based
Applications,” ISEC ’17, ACM, pp. 74–84, 2017.

31. B. Kitchenham and E. Mendes, “Why Comparative
Effort Prediction Studies may be Invalid,” PROMISE
'09 Proceedings of the 5th International Conference on
Predictor Models in Software Engineering, 2009.
https://doi.org/10.1145/1540438.1540444

32. Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A
general software defect-proneness prediction
framework,” IEEE Trans. Softw. Eng., vol. 37, no. 3, pp.
356–370, 2011.

33. A. Kaveh and V. R. Mahdavi, “Colliding bodies
optimization: A novel meta-heuristic method,”
Comput. Struct., vol. 139, pp. 18–27, 2014.

34. C. L. Huang and C. J. Wang, “A GA-based feature
selection and parameters optimizationfor support
vector machines,” Expert Syst. Appl., vol. 31, no. 2, pp.
231–240, 2006.

35. S. J. Huang and N. H. Chiu, “Optimization of analogy
weights by genetic algorithm for software effort

Robert Marco et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.5), 2019, 294- 304

302

estimation,” Inf. Softw. Technol., vol. 48, no. 11, pp.
1034–1045, 2006.
https://doi.org/10.1016/j.infsof.2005.12.020

36. P. Shunmugapriya and S. Kanmani, “A hybrid
algorithm using ant and bee colony optimization for
feature selection and classification (AC-ABC
Hybrid),” Swarm Evol. Comput., vol. 36, pp. 27–36,
2017.

37. J. Mercieca and S. G. Fabri, “A Metaheuristic Particle
Swarm Optimization Approach to Nonlinear Model
Predictive Control,” vol. 5, no. 3, pp. 357–369, 2012.

38. V. Khatibi Bardsiri, D. N. A. Jawawi, S. Z. M. Hashim,
and E. Khatibi, “A PSO-based model to increase the
accuracy of software development effort estimation,”
Softw. Qual. J., vol. 21, no. 3, pp. 501–526, 2013.

39. P. Agrawal and S. Kumar, “Early phase software effort
estimation model,” 2016 Symp. Colossal Data Anal.
Netw., pp. 1–8, 2016.
https://doi.org/10.1109/CDAN.2016.7570914

40. R. K. Sachan et al., “Optimizing Basic COCOMO
Model Using Simplified Genetic Algorithm,” Procedia
Comput. Sci., vol. 89, pp. 492–498, 2016.

41. O. Benediktsson, D. Dalcher, K. Reed, and M.
Woodman, “COCOMO-Based Effort Estimation,”
Kluwer Acad. Publ., pp. 265–281, 2003.

42. E. E. Miandoab and F. S. Gharehchopogh, “A Novel
Hybrid Algorithm for Software Cost Estimation
Based on Cuckoo Optimization and K-Nearest
Neighbors Algorithms,” Eng. Technol. Appl. Sci. Res.,
vol. 6, no. 3, pp. 1018–1022, 2016.

43. R. Kishore and D. . Gupta, “Software Effort Estimation
using Satin Bowerbird Algorithm,” vol. 5, no. 3, pp.
216–218, 2012.

44. A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, F.
Sarro, and E. Mendes, “Using tabu search to configure
support vector regression for effort estimation,”
Empir. Softw. Eng., vol. 18, no. 3, pp. 506–546, 2013.

45. S. C. Yusta, “Different metaheuristic strategies to
solve the feature selection problem,” Pattern Recognit.
Lett., vol. 30, no. 5, pp. 525–534, 2009.

46. J. Reca, J. Martínez, C. Gil, and R. Baños, “Application
of several meta-heuristic techniques to the
optimization of real looped water distribution
networks,” Water Resour. Manag., vol. 22, no. 10, pp.
1367–1379, 2008.

47. D. Oreski, S. Oreski, and B. Klicek, “Effects of dataset
characteristics on the performance of feature
selection techniques,” Appl. Soft Comput. J., vol. 52, pp.
109–119, 2017.
https://doi.org/10.1016/j.asoc.2016.12.023

48. H. K. Bhuyan and N. K. Kamila, “Privacy preserving
sub-feature selection in distributed data mining,”
Appl. Soft Comput. J., vol. 36, pp. 552–569, 2015.

49. M. Ramaswami and R. Bhaskaran, “A Study on Feature
Selection Techniques in Educational Data Mining,” J.
Comput., vol. 1, no. 1, pp. 7–11, 2009.

50. M. J. Shepperd and G. Kadoda, “Comparing software
prediction techniques using simulation,” IEEE Trans.
Softw. Eng., vol. 27, no. 11, pp. 1014–1022, 2001.

51. C. Catal, O. Alan, and K. Balkan, “Class noise detection
based on software metrics and ROC curves,” Inf. Sci.
(Ny)., vol. 181, no. 21, pp. 4867–4877, 2011.

52. V. Khatibi Bardsiri and E. Khatibi, “Insightful
analogy-based software development effort
estimation through selective classification and
localization,” Innov. Syst. Softw. Eng., vol. 11, no. 1, pp.
25–38, 2015.
https://doi.org/10.1007/s11334-014-0242-2

53. V. Resmi, S. Vijayalakshmi, and R. S. Chandrabose, “An
effective software project effort estimation system
using optimal firefly algorithm,” Cluster Comput.,
2017.

54. E. Kocaguneli and T. Menzies, “Software effort models
should be assessed via leave-one-out validation,” J.
Syst. Softw., vol. 86, no. 7, pp. 1879–1890, 2013.
https://doi.org/10.1016/j.jss.2013.02.053

55. J. Novaković, P. Strbac, and D. Bulatović, “Toward
optimal feature selection using ranking methods and
classification algorithms,” Yugosl. J. Oper. Res., vol.
21, no. 1, pp. 119–135, 2011.

56. M. Hosni, A. Idri, and A. Abran, “Investigating
Heterogeneous Ensembles with Filter Feature
Selection for Software Effort Estimation,” ACM, no. 2,
2017.

57. N. Acir, Ö. Özdamar, and C. Güzeliş, “Automatic
classification of auditory brainstem responses using
SVM-based feature selection algorithm for threshold
detection,” Eng. Appl. Artif. Intell., vol. 19, no. 2, pp.
209–218, 2006.

58. P. Pospieszny, B. Czarnacka-Chrobot, and A.
Kobyliński, “An effective approach for software
project effort and duration estimation with machine
learning algorithms,” J. Syst. Softw., 2017.

59. J. Huang, Y. F. Li, and M. Xie, “An empirical analysis
of data preprocessing for machine learning-based
software cost estimation,” Inf. Softw. Technol., vol. 67,
pp. 108–127, 2015.
https://doi.org/10.1016/j.infsof.2015.07.004

60. N. Bidi and Z. Elberrichi, “Feature selection for text
classification using genetic algorithms,” Proc. 2016
8th Int. Conf. Model. Identif. Control. ICMIC 2016, pp.
806–810, 2017.

Robert Marco et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.5), 2019, 294- 304

303

61. E. Kocaguneli, T. Menzies, and J. W. Keung, “On the
value of ensemble effort estimation,” IEEE Trans.
Softw. Eng., vol. 38, no. 6, pp. 1403–1416, 2012.

62. D. H. Wolpert, “Stacked Generalization,” vol. 5, pp.
241–259, 1992.

63. T. Wang, W. Li, H. Shi, and Z. Liu, “Software Defect
Prediction Based on Classifiers Ensemble,” J. Inf.
Comput. Sci., vol. 16, no. December, pp. 4241–4254,
2011.

64. R. E. Schapire, “The Strength of Weak Learnability
(Extended Abstract),” Mach. Learn., vol. 227, no.
October, pp. 28–33, 1989.

65. Y. Liu, E. Shriberg, A. Stolcke, and M. Harper, “Using
machine learning to cope with imbalanced classes in
natural speech: evidence from sentence boundary and
disfluency detection.,” Interspeech, no. 1, pp. 2–5, 2004.

66. L. Breiman, “Bagging predictors,” Mach. Learn., vol.
24, no. 2, pp. 123–140, 1996.

67. T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano,
“Comparing boosting and bagging techniques with
noisy and imbalanced data,” IEEE Trans. Syst. Man,
Cybern. Part ASystems Humans, vol. 41, no. 3, pp.
552–568, 2011.

68. M. Azzeh, A. B. Nassif, S. Banitaan, and F. Almasalha,
“Pareto efficient multi-objective optimization for
local tuning of analogy-based estimation,” Neural
Comput. Appl., vol. 27, no. 8, pp. 2241–2265, 2015.
https://doi.org/10.1007/s00521-015-2004-y

69. A. Idri, M. Hosni, and A. Abran, “Systematic literature
review of ensemble effort estimation,” J. Syst. Softw.,
vol. 118, pp. 151–175, 2016.

70. J.-C. Lin, C.-T. Chang, and S.-Y. Huang, “Research on
Software Effort Estimation Combined with Genetic
Algorithm and Support Vector Regression,” 2011 Int.
Symp. Comput. Sci. Soc., pp. 349–352, 2011.

71. M. A. Mostafa, A. F. Abdou, A. F. A. El-gawad, and A.
F. Abdou, “SBO-based selective harmonic elimination
for nine levels asymmetrical cascaded H-bridge
multilevel inverter,” Aust. J. Electr. Electron. Eng., vol.
00, no. 00, pp. 1–13, 2018.

72. Corazza, A. et al. (2013) ‘Using tabu search to
configure support vector regression for effort
estimation’, Empirical Software Engineering, 18(3), pp.
506–546. doi: 10.1007/s10664-011-9187-3.

73. Smola Cotroneo, D. et al. (2016) ‘Prediction of the
Testing Effort for the Safety Certification of
Open-Source Software: A Case Study on a Real-Time
Operating System’, Proceedings - 2016 12th European
Dependable Computing Conference, EDCC 2016, pp.
141–152. doi: 10.1109/EDCC.2016.22.

74. D. Déry and A. Abran, “Investigation of the Effort
Data Consistency in the ISBSG Repository

Investigation of the Effort Data Consistency in the
ISBSG Repository,” researchGate, no. January 2005,
2014.

75. C.-J. Hsu and C.-Y. Huang, “Comparison of weighted
grey relational analysis for software effort
estimation,” Softw. Qual. J., vol. 19, no. 1, pp. 165–200,
2011.

76. M. Fernández-diego, “Discretization Methods for NBC
in Effort Estimation : An Empirical Comparison
based on ISBSG Projects,” pp. 103–106, 2012.

77. C. Lokan and E. Mendes, “Investigating the use of
chronological split for software effort estimation,”
IET Softw., vol. 3, no. 5, p. 422, 2009.

78. V. Khatibi, D. Norhayati, A. Jawawi, A. Khatibi, and E.
Khatibi, “Engineering Applications of Arti fi cial
Intelligence LMES : A localized multi-estimator
model to estimate software development effort,” Eng.
Appl. Artif. Intell., pp. 1–17, 2013.

79. R. Malhotra, “Software Effort Prediction using
Statistical and Machine Learning Methods,” vol. 2,
no. 1, pp. 145–152, 2011.

80. P. Phannachitta, J. Keung, K. E. Bennin, A. Monden, and
K. Matsumoto, “Filter-INC: Handling
effort-inconsistency in software effort estimation
datasets,” Proc. - Asia-Pacific Softw. Eng. Conf.
APSEC, pp. 185–192, 2017.

81. S. Mensah, J. Keung, M. F. Bosu, and K. E. Bennin,
“Duplex output software effort estimation model with
self-guided interpretation,” Inf. Softw. Technol., vol.
94, pp. 1–13, 2018.

82. Y. S. Seo and D. H. Bae, On the value of outlier
elimination on software effort estimation research,
vol. 18, no. 4. 2013.

83. T. Iliou, M. Nerantzaki, and G. Anastassopoulos, “A
Novel Machine Learning Data Preprocessing Method
for Enhancing Classification Algorithms
Performance,” pp. 1–5, 2015.

84. N. Cerpa, M. Bardeen, C. A. Astudillo, and J. Verner,
“Evaluating different families of prediction methods
for estimating software project outcomes,” J. Syst.
Softw., vol. 112, pp. 48–64, 2016.

85. Y. Arafat, S. Hoque, and D. Farid, “Cluster-based
Under-sampling with Random Forest for Multi-Class
Imbalanced Classification,” Int. Conf. Software,
Knowledge, Inf. Manag. Appl., pp. 1–6, 2017.

86. B. Sluban and N. Lavrač, “Relating ensemble diversity
and performance: A study in class noise detection,”
Neurocomputing, vol. 160, pp. 120–131, 2015.

87. D. Zhu, “A hybrid approach for efficient ensembles,”
Decis. Support Syst., vol. 48, no. 3, pp. 480–487, 2010.

Robert Marco et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.5), 2019, 294- 304

304

88. A. Idri and A. Abran, “Analogy-based software
development effort estimation : A systematic mapping
and review,” Inf. Softw. Technol., 2014.

89. I. (Norwegian S. of M. Myrtveit, E. (Buskerud U. C.
Stensrud, and M. (Bournemouth U. Shepperd,
“Reliability and validity in comparative studies of
software prediction models,” IEEE Trans. Softw. Eng.,
vol. 31, no. 5, pp. 380–391, 2005.

90. V. Khatibi Bardsiri and E. Khatibi, “Model to estimate
the software development effort based on in-depth
analysis of project attributes,” IET Softw., vol. 9, no. 4,
pp. 109–118, 2015.

91. Wahono R. S, Software defect prediction framework
based on hybrid metaheuristic optimization methods.
Thesis, Universiti Teknikal Malaysia Melaka, 2015.

92. Oliveira, A. L. I. et al. (2010) ‘GA-based method for
feature selection and parameters optimization for
machine learning regression applied to software
effort estimation’, Information and Software
Technology. Elsevier B.V., 52(11), pp. 1155–1166. doi:
10.1016/j.infsof.2010.05.009.

93. Rohini B. Jadhav, Shashank D. Joshi, Umesh G. Thorat,
and Aditi S. Joshi, A Software Defect Learning and
Analysis Utilizing Regression Method for Quality
Software Development, International Journal of
Advanced Trends in Computer Science and Engineering,
Vol. 8, No.4, July – August 2019.
https://doi.org/10.30534/ijatcse/2019/38842019

94. Bhanuprakash Dudi, and V.Rajesh, Medicinal Plant
Recognition based on CNN and Machine Learning,
International Journal of Advanced Trends in Computer
Science and Engineering, Vol. 8, No.4, July – August
2019.
https://doi.org/10.30534/ijatcse/2019/03842019

95. T. Hariguna, & Akmal,“Assessing students’ continuance
intention in using multimedia online learning”,
TELKOMNIKA (Telecommunication Computing
Electronics and Control), 17(1), 187–193, 2019.
http://doi.org/10.12928/TELKOMNIKA.v17i1.10328

