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 
ABSTRACT 
 
Software effort estimation are part of the field of project 
management in software that is very important for 
development efforts. Software development planning is 
something very complex and serious, which determines the 
success of a software project. Because of the lack of good 
requirements and information, it causes software project 
failures. Although there are many studies that aim to solve the 
problem of noisy, irrelevant and excessive data to achieve 
accuracy. The purpose of this study is to combine 
metaheuristic optimization techniques as a framework for 
using Machine Learning models. By proposing a hybrid 
estimation model based on a combination of the Satin 
Bowerbird Optimizer (SBO) algorithm and Support Vector 
Regression (SVR) to improve the accuracy of software 
estimation efforts. This study is to determine the effort 
estimation and duration estimation. The proposed framework 
is based on theoretical concepts. the proposed model will be 
tested using a heterogeneous dataset, namely the ISBSG 
dataset. the results of the study are expected to be used as 
decision making as the initial planning of software project 
development.  
 
Key words : Software effort estimation, Satin Bowerbird 
Optimizer (SBO) algorithm, Support Vector Regression 
(SVR), Parameter optimization, metaheuristic.  
 
1. INTRODUCTION 
 
According to the IEEE Computer Society, that Software 
Engineering (SE) is an approach to systematically measuring 
the application of software engineering [1]. In SE there are 
several parts that are used in software engineering 
management, from planning to measuring software [2]. 
Accuracy and reliability of Software Efforts Estimation (SEE) 

 
 

in the early stages of project planning must be able to allocate 
resources and good scheduling [3]. Success and failure in 
software development efforts lies in the planning aspect 
which is an important and accurate part of project completion 
[3]. This condition is different from other engineering 
disciplines where the results of the engineering process 
provide a real form. The measurement of the volume of 
abstract software engineering work is only based on the 
usefulness of the engineering results. 
 
The large number of interrelation factors that are very 
influential in effort and development. Improving estimation 
techniques will make it easier to control duration and budget 
[4][5][6]. Poor estimation techniques can lead to budget waste 
and inappropriate scheduling in software projects [7][8]. The 
importance of problem solving in software project 
management, so that a large number of studies propose 
models in software effort estimation to overcome software 
development problems [9]. Software development is 
increasingly aware of the need for a better model, so the 
importance of proposing new models to predict software 
development efforts [10]. Or otherwise produces the right 
results regardless of uncertainty [8]. It is important to advance 
software development, by making a definite model so that in 
the process of developing it will produce appropriate software, 
in a way that minimizes waste of duration and budget. 
 
There have been many estimation methods that have been 
proposed to solve software project problems, so as to increase 
the accuracy of estimates. The estimation method can be 
classified in several types, including: machine learning 
methods[11][12]; expert judgment; Case-Based Reasoning 
(CBR) methods; regression-based methods; parametric 
models; dynamics-based models; and composite methods [13]; 
and algorithmic method [14]. 
 
Many researchers have proposed several techniques to 
improve accuracy in estimating software efforts using 
machine learning. A number of studies have tried to modify 

 
 

Optimizing Software Effort Estimation Models Based On  
Metaheuristic Methods: A Proposed Framework  

1Robert Marco, 2Nanna Suryana Herman, 3Sharifah Sakinah Syed Ahmad 
1Department of Computer Science,  

Universitas Amikom Yogyakarta, Indonesia.  
robertmarco@amikom.ac.id 

2Professor, Department of Information & Communication Technology,  
Universiti Teknikal Malaysia Melaka (UTeM), Melaka, Malaysia. 

nsuryana@utem.edu.my 
3Associate Professor, Department of Information & Communication Technology,  

Universiti Teknikal Malaysia Melaka (UTeM), Melaka, Malaysia. 
sakinah@utem.edu.my 

 
 

                                                                                                      ISSN  2278-3091 
Volume 8, No.1.5, 2019 

International Journal of Advanced Trends in Computer Science and Engineering 
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse5181.52019.pdf 

https://doi.org/10.30534/ijatcse/2019/5181.52019 
 

 

 



Robert Marco et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.5), 2019, 294- 304 

295 
 

 

new models using machine learning to improve accuracy in 
software effort estimation [3][15][16][17]. Using a based 
feature selection [18][19][20][21], or parameter optimization 
[22][23][24]. Some prediction techniques have been 
suggested but none have proved consistently successful in 
predicting software development efforts [11]. Estimation 
methods have long been introduced, but this approach still has 
the potential to make estimates on software accurately and 
stably. So software development using machine learning to 
produce more reliable and accuracy development is still 
needed in this field of research. 
 
Problems that occur based on previous studies, are in the early 
stages of software project development. Often considered an 
obstacle, namely the problem of time and cost framework. But 
significantly that the costs estimation and duratin estimation 
are inversely proportional. So in this study, the first problem 
that the most accurate estimation is to estimate the effort and 
duration. Because the estimation model of the effort and 
duration is proposed as a decision-making tool in developing 
software so that it is released from errors that cause negative 
implications or failures in software projects. While the second 
problem, is the prediction process must be based on historical 
information. So in developing the model for effort estimation 
and duration estimation must use data mining. Because the 
presence of noisy, irrelevant, and redundant data on the 
dataset will greatly affect ML performance, because poor data 
quality arises due to missing values, outliners and missing 
values can cause uncertainty and inconsistency. According to 
Huang et al (2006), estimation problems are complex 
problems and have features such as nonlinear relationships; 
Measurement of software metrics; and software processes that 
are inaccurate and uncertain changes rapidly, no model has 
proven to be the perfect solution [35]. The implementation of 
software at an early stage can significantly improve the 
success of software projects if it can make precise and 
accurate effort and duration estimation. So it is necessary to 
do a comprehensive approach, by doing the data preparation 
stage until implementation to produce accurate and reliable 
software estimates.  
 
In software efforts estimation several types of algorithms can 
be applied, including Genetic Algorithm [18]; Support Vector 
Machine [25][26]; Fuzzy [27]; Support Vector Regression 
[18][28]; Artificial Neural Network [29]; Adaptive 
Regression [30]. Approaches for comparison of these models 
are often invalid and may make things worse. Identified 
several theoretical problems with a study comparing different 
estimation models in several common datasets to produce the 
best models [31]. No specific classifier can do the best 
accuracy results for all data sets [32]. 
 
In a few years, many optimization algorithms have been used 
as enhancements and adjustments to effort estimator 
parameters. There are two categories of optimization methods 
in general, including: 1) Mathematical methods, like: 
Dynamic Programming (DP) and Quasi-Newton (QN) [33]; 2) 
Metaheuristic algorithm33, like: Genetic algorithm (GA) 
[18][28][34][35], Bee Colony Optimization (BCO) and Ant 
Colony Optimization (ACO) [36], satin bower bird 

optimization algorithm (SBO) [3], Particle Swarm 
Optimization (PSO) [37][38], COCOMO [39][40][41], 
Cuckoo Search (CS) [42]. There are so many optimization 
algorithms that have been submitted in an effort to develop 
software, because each optimization algorithm has different 
adaptation and performance capabilities.  
The Meta-heuristic algorithm can effectively solve problems 
in non-linear optimization [43]. Implementation of this 
algorithm can be calculated in various ways to solve the 
optimization problem [33][43]. To increase effort predictions 
by exploring parameter settings is one of the functions of 
using meta-heuristics [44]. Using the meta-heuristic approach 
in finding the best feature parts, by adopting a classifier to 
select features optimally using the wrapper model [24]. In 
addition, significantly optimization of using metaheuristics 
can have the ability to find full search space and high-quality 
solutions in a reasonable period of time using global search 
capabilities [45]. Metaheuristic method designed to overcome 
this problem [46]. Metaheuristic optimization method gives 
good results than traditional and non-evolutionary methods in 
terms of increasing accuracy using the feature selection 
method. 
 
In overcoming limitations and narrowing the gap between the 
findings of recent research and the potential for dissemination 
in the application of machine learning algorithms to estimate 
the effort and duration of developing software efforts early in 
the project life cycle. A comprehensive approach is used to 
ensure its usefulness and the accuracy of exceptional 
estimates and resilience to in-data noise, irrelevance, and 
redundant. According to the results obtained in the literature 
review, several studies only focused on adjusting individual 
algorithms for best performance and accuracy in Machine 
Learning (ML) models, such as the use or improvement of 
algorithms, such as neural networks, case-based reasoning, 
support vector regression, decision trees, and etc. So that the 
application of statistics and machine learning algorithms are 
used to effort estimation and estimated duration. 
Contributions in this study, will integrate the data 
preprocessing, meta learning, feature selection; and 
Optimization parameter aims to convert heterogeneous data 
into homogeneous data to improve accuracy for effort 
estimation and duration estimation. The aim of the study was 
to overcome the limitations of the gap, in developing the SEE 
model in the early stages of software project planning using 
the meta-heuristic approach and the application of machine 
learning to effort and estimation of duration. In this study, we 
will use the ISBSG dataset, which is the most popular dataset 
and has the most reliable data source.. 
 
2. RELATED WORK  
 
Feature selection is a process of removing irrelevant and 
excessive features. Because in large data the use of feature 
selection to overcome a large number of input features by 
looking for subset feature space. The search method is chosen 
to do a search and evaluators submit values for each feature 
section [47]. The function of selecting features to do relevant 
and most informative data extraction, so that the classification 
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is more suitable in the feature set [36]. Most of the problems 
in classification can be solved by selecting features, but still 
need a new approach to determine the sub-feature options in 
increasing accuracy [48]. The main purpose of features 
selection in learning is to find the features so that it produces 
high accuracy [26][49]. The performance of feature selection 
techniques is strongly influenced by the characteristics of the 
dataset, this has an impact on the problem of accuracy and 
time complexity of various feature selection techniques. 
 
In the prediction system is very influential on the data 
collection used. Although there have been many models 
proposed to solve this problem. However, there are still many 
models that significantly and consistently have accurate 
results that funds have uncertainty about prediction 
techniques [50]. Attribute noise, incomplete, and inconsistent 
in the software measurement dataset lowers the performance 
of machine-learning [51]. Data quality will decrease when 
used on heterogeneous and inconsistent datasets [52]. 
Irrelevant and inconsistent project effects on downhill 
estimates by designing frameworks, where all projects are 
clustered [53]. The existence of each dataset that is not 
normally distributed will imply an effort to develop an 
accurate method [54]. The choice of features is used to speed 
up the performance of algorithms in mining data and improve 
data quality, by reducing the dimensions of the feature space, 
removing data that is excessive, irrelevant, and noisy [55][56]. 
A collection of relevant dataset features can improve accuracy 
[56]. The selection of features will explore the effects of 
attributes that are not relevant [57]. The machine learning 
model is greatly influenced by the level of accuracy by using 
the dataset [58]. Data preparation used to build machine 
learning models is needed, by selecting, cleaning, reducing, 
transforming and feature selection [51][58[59]. The use of 
efficient machine learning algorithms is an important task in 
features selection as reduction dimensions. However, the 
proliferation of this feature selection technique raises the 
difficulty of choosing the algorithm for selecting the features 
that are most suitable for an application, resulting from the 
selection of different features [60]. 
 
There are several ensemble methods that have been proposed, 
such as bagging, boosting, random sampling techniques [61]; 
and stacking [62][63]. Using the ensemble method in 
performing different data collection will achieve better 
accuracy than individual techniques [63]. Boosting [64][65] 
or bagging [22][65[66] is a representative approach that 
combines preprocessing data oversampling and under 
sampling with ensemble classifiers. Integrating bagging with 
under-sampling is stronger than over-sampling [22]. Bagging 
provides a large advantage in accuracy, with testing on real 
datasets and simulations using classification, regression trees 
and subset selection in linear regression [66]. Bagging is a 
method that can handle class imbalances, and can improve 
performance in noisy data environments [67]. The application 
using the ensemble approach serves to predict the average 
using strong machine learning, stabilize the model, reduce the 
influence of noise in the data and have an impact on the 
abnormal behavior of the algorithm. So that it can be 

concluded that the ensemble method that has the best 
performance is bagging and stacking. 
 
All this time, the SEE technique has experienced a lot of 
instability in producing precise approximate accuracy [50], so 
that to overcome this problem an ensemble learning approach 
needs to be applied [68]. Ensemble to predict software project 
development efforts by combining more than one SDEE 
technique used. To analyze the accuracy of the ML model by 
using MMRE and MdMRE that have lower values, while the 
Pred (25) is higher, this shows a more accurate estimate. 
According to Wen et al (2012), it was shown that ANN and 
SVR were the most accurate (median MMRE around 35% and 
Pred (25) around 70%), followed by CBR, Decision Tree 
(DT), and Genetic programming (median MMRE and Pred 
(25) around 50%), while Bayesian Networks (BN) have the 
worst accuracy (median MMRE around 100% and Pred (25) 
around 30%) [11]. Whereas Idri et al (2016), the performance 
of the ensemble effort estimation technique that SVR is the 
most accurate (median Pred (25) 50% and MMRE  48.6%), 
ANN (median Pred (25) 40% and MMRE 49.9%), while 
Neuro Fuzzy (NF) is the least accurate (Median Pred (25) 
31% and MMRE 79.5%) [69]. based on the literature review, 
it can be concluded that ANN and SVR are ML techniques 
that have the best and most accurate accuracy in predicting 
software development. 
 
While Genetic method algorithms can improve performance 
in ML and feature selection [18][28]. The parameters of the 
basic COCOMO model can be improved by applying simple 
genetic algorithms [40]. Combining the GA and SVM 
methods can improve predictions more accurately by finding 
the best SVM regression parameters by the proposed model 
[70]. The Satin Bowerbird Optimizer (SBO) algorithm 
compared to the five most famous new algorithms (Ant Lion 
Optimization (ALO), Partial Swarm Optimization (PSO), Fire 
Fly optimization (FA), GA and Artificial Bees Colony (ABC)) 
has the best performance than other algorithms, both in test 
functions and is statistically superior [3]. 
 
3. LITERATURE  
 
3.1 Satin Bowerbird Optimizer (SBO) 
 
The satin bower bird optimization algorithm is one type of 
algorithm that simulates the life of a type of satin bower bird 

[71]. Bowerbirds during autumn and winter, will leave forest 
habitat and move to open forests to find food. However, in the 
spring, they gather together and inhabit the area, because at 
that time it is the mating season for them. During the season 
they will make different materials such as flowers, fruits, 
shiny objects, branches, and dramatic movements to attract 
women's attention which is a variable in this regard. That male 
birds use natural instincts and imitate other males to build 
their nests [71]. 
 
According to satin bowerbird's life principle, here are the 
steps of the SBO algorithm: 

 
1. A Set of Random Bower Generations:  
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At the initial stage, the SBO will create a random 
population and position for the bowers. In this case the 
position must be optimized, because it is a n-parameter 
dimensional vector. In the optimization problem, each 
bower parameter is the same as a variable. The value will 
be randomly initialized taking into account the lower and 
upper limit parameters [43][71]. 
 

2. Calculating the Probability of Each Population Member:  
The Probability equation below, ݂݅ݐ௜ is the suitability of 
the i and n solutions is the number of bower. 
 

ϐit୧ = {

1
1 + f(x୧)

, f(x୧) ≥ 0

1 + |f(x୧|, f(x୧) < 0 																																			(1)

 

 
 
Then, each bower will calculate the probability 
according to the equation. 2. 
 

prob୧ =
ϐit୧

∑ ϐit୬୒୆
୬ୀଵ

																																																						(2)
 

 
 
(௜ݔ)݂  as a cost function value in ݅௧௛  position or ݅௧௛ 
bower. This function must be optimal, because 
calculating the final fitness must have a value greater or 
equal to zero, then calculate the suitability for a value 
that is less than zero. 
 

a. Because , ݂(ݔ௜) = 0 as a conformity value of 
one 

b. Fitness is always a positive value 
 

3. Elitism:  
Elitism is maintained at each stage of the optimization 
process to allow the best solutions to be intended as elite 
iterations. Because it has the highest fitness, it must 
influence other positions. 
 

4. Determining new changes in any position: 
Each new change must be calculated according to 
Equation. 3. 
 

X୧୩
୬ୣ୵ = X୧୩

୭୪ୢ + λ୩ ൭൬
X୨୩ + Xୣ୪୧୲ୣ,୩

2
൰ − X୧୩

୭୪ୢ൱											(3)
 

 
 
In equation, x୧ is i୲୦  bower/solution vector and x୧୩ is k 
member of this vector. x୨  as a target solution in the 
current iteration. The value of j is calculated based on the 
probability. xୣ୪୧୲ୣ  shows the elite position, which is 
stored in each algorithm cycle. The parameter λ୩ 
determines the attraction in the bower goal. λ୩ 
determines the number of steps calculated for each 
variable.  
 

λ୩ =
a

1 + p୨
																																																																				(4) 

 
5. Mutation: 

At the end, random changes are used for certain 
probabilities. Random changes are applied to ݔ௜௞ with a 
certain probability. The mutation process, a normal 
distribution (N) is employed with average of ݔ௜௞௢௟ௗ  and 
variance of ߪଶ, as seen in Equation. 5. 
 

X୧୩
୬ୣ୵~N൫X୧୩

୭୪ୢ,σଶ൯																																																						(5) 
 

N൫X୧୩
୭୪ୢ,σଶ൯ = X୧୩

୭୪ୢ + σ ∗ N(0,1))																									(6) 
 
In Equation. 6, the σ value is the proportion of the width 
of space, calculated in Equation. 7. 
 
σ = Z ∗ (var୫ୟ୶ − var୫୧୬)																																						(7) 

 
In Equation. 7, ݎܽݒ௠௔௫ and ݎܽݒ௠௜௡  are each upper and 
lower limit assigned to the variable. The Z parameter as 
percent difference between upper and lower limits which 
are variables. 

 
3.2 Support Vector Regression (SVR) 
 
Support Vector Regression (SVR) is a new generation of 
Machine Learning algorithms, which are suitable for 
predictive data modeling problems [72]. SVR is a Support 
Vector Machines based approach [72]. 

Suppose given training data 
,(ଵݕ,ଵݔ)} ,(ଶݕ,ଶݔ) … , {(௡ݕ,௡ݔ) , where ݔ௜߳ℝௗ  denotes an 
input vector and ݕ௜߳ℝ  corresponding target value. In the 
regression of ε-SV, it aims to find the function ݂(ݔ) which 
has the most deviation ε from the actual target ݕ௜  for all 
training data, and at the same time is as light as possible. In 
other words, do not care about errors as long as they are less 
than ε, but will not accept greater deviations from this [73]. 
This type of loss function defines the margin around the actual 
output. The idea is that errors smaller than a certain threshold 
ε > 0 are rejected. That is, errors in margins are considered 
zero. On the other hand, errors caused by points outside the 
margin are measured by variables ߦ and [73] ∗ߦ. Analogously 
with the "soft margin" function used in SVM (Support Vector 
Machine), by introducing slack variables ߦ  and ߦ∗  to 
overcome the unavoidable constraints of optimization 
problems.  
 
For pedagogical reasons, this is linear function ݂, which is 
presented in the Equation. 8. 

 
f(x) = 〈w, x〉 + b	with	wϵℝୢ, bϵℝ																																	(8) 

 
Where 〈. . , . . 〉  denotes the dot product in ℝௗ .  For case 
nonlinear regression ݂(ݔ) = 〈(ݔ)∅,ݓ〉 + ܾ , where ∅  are 
some nonlinear functions that map the input space to a higher 
dimensional feature space ℝௗ . ε-SV, weight vector w and 
threshold b are selected to optimize the problem. 
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minimize୵,ୠ,ஞ,ஞ∗ 							
1
2
〈w, w〉 + C෍(ξ୧ + ξ୧∗)																(9)

୪

୧ୀଵ

 

 

Subject	to	 ቐ
(〈w,∅(x୧)〉 + b)− y୧ 	≤ ε + ξ୧.

y୧ − (〈w,∅(x୧)〉 + b) 	≤ ε + ξ୧∗(1)
ξ୧, ξ୧∗ 													≥ 						0

 

 
The constant C > 0 determines the trade-off between the 
complexity of the model, that is the flatness of ݂(ݔ) and the 
amount until deviations greater than ε are tolerated. ߦ and ߦ∗ 
are slack variables and measure the cost of errors at training 
points. ξ measuring deviations exceeds the target value with 
more than ε and ߦ∗  measuring deviations that are more than ε 
below the target value. 
 
In study using SVR with both linear and RBF (Radial Basis 
Function) kernels. The Polynomial kernel as 
 
 K൫x୧, x୨൯ = 〈1 + ൫x୧), (x୨൯〉୮ and RBF kernel as 
 
 K൫x୧, x୨൯ = exp ቀ−γฮx୧ − x୨ฮ

ଶቁ , γ > 0.  

 
The parameters C and ε significantly influence ε-SVR 
generalization performance. 

 
3.3 The ISBSG Dataset 
 
The ISBSG repository, is a collection of many 
multi-organization repositories that can produce very 
heterogeneous databases [74]. The subset of the ISBSG 
dataset is very heterogeneous, indicating that the 
characteristics of the underlying dataset affect the inhibition 
of different estimation techniques [75][76]; in order to obtain 
minimal homogeneity data in the sample, it is necessary to 
data preparation before analyzing [76]. Because if the data 
collected is large and heterogeneous data, there will be a 
strong possibility of instability and data cannot be generalized 
[77]. Accurate estimates of development efforts do not seem 
to be achieved in a collection of data sets consisting of 
heterogeneous projects [78]. Heterogeneous project data will 
produce poor performance on a single mathematical model 
[79]. Based on Phannachitta et al (2017), it states that testing 
on 8 public datasets has inconsistent results in the range of 
10.71% and 73.33% [80]. 
 
During the data preprocessing process, heterogeneous 
properties in the dataset will disappear, because 
heterogeneous datasets will affect the results in generalization 
[81]. Because the dataset preprocessing will be able to restore 
missing data and normalize the dataset [20][82]; and can 
change the format of datasets to be easier and more effective 
when they are processed [83].  
 
The impact of preparation data significantly influences the 
performance of machine learning methods [59]. In addition, 

data preparation has a very important role in developing an 
effective model [59]. The use of preparation data used for data 
mining and machine learning will produce intelligence or 
business knowledge in the selection of features [45]. Because 
large and heterogeneous datasets can cause a decrease in the 
level of accuracy, so the data preparation process is needed to 
obtain homogeneity from the dataset. Because the model is 
built by the use of cross-industry ISBSG datasets 
(Heterogeneous datasets) that contain the latest software 
projects in several organizations that are geographically 
dispersed, so the ISBSG dataset is worthy of being used to 
develop models in approximate software. It can be 
recommended to extract the subset that is suitable for each 
software effort estimation practice. 
 
3. PROPOSED FRAMEWORK 
 
The framework proposed in this study has the main difference 
between the proposed framework and other frameworks are 
on the learning scheme consisting of: 1) Data preprocessing; 2) 
Feature selection; 3) Parameter optimization; 4) Learning 
algorithm; and 5) Meta learning. Combining metaheuristic 
optimization techniques using machine learning to be used as 
feature selection and optimization parameters. 
 
3.1 Data Preprocessing 
 
Preprocessing data is an important part of the estimation 
problem because it can significantly affect the quality of 
training [38]. Referring to problems, related to noise, class 
imbalances, inconsistent and irrelevant datasets. An important 
specification of the attributes of a software project, which 
makes estimating efforts difficult and complicated. There 
have been many techniques and methods proposed in solving 
optimization problems to predict software efforts. But it is not 
proven consistently and there is uncertainty, this is because it 
is influenced by the data set used [50]. The cause of poor 
performance of machine learning classifiers is the noise 
attribute, incomplete, and inconsistent in the dataset [51]. 
Data quality will decrease when used in heterogeneous and 
inconsistent datasets [52]. Stages in data preprocessing are 
important processes in building Machine Learning models, as 
follows: selection, cleaning, reduction, transformation and 
selection of features [59].  
 
3.2 Proposed Framework 
 
Figure 1 represents the framework proposed in this study 
using Scaling as data preprocessing; Satin Bowerbird 
Optimization (SBO) and Support Vector Regression (SVR) as 
feature selection; while Satin Bowerbird Optimization (SBO) 
as parameters optimization; Bagging (B) as meta learning; 
and selecting 4 algorithms to conduct experiments. In addition, 
Satin Bowerbird Optimization and SVR are also used to 
optimize parameters and improve performance estimation of 
software efforts. Approach techniques in estimations used in 
the improvement and comparison of this study, including: 
Multi Layer Perceptron (MLP), Generalized Linear Models 
(GLM), Classification and Regression Tree (CART), and 
Radial Basis Function (RBF). 
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Figure 1: Proposed framework Software effort estimation 

 
In the table 1, Comparison of the framework with previous 
research. Wahono (2015) used a feature selection, meta 
learning, parameter optimization and selected 10 algorithm 
(LR, LDA, NB, k-NN, K*, NN, SVM, C4.5, CART, RF) [91]. 
Oliviera at al (2010), used a feature selection, parameters 
optimization and selected 4 algorithm (RBF, MLP, SVR, 
M5P) [92]. Pospieszny et al (2017), used a smart data 
preparation, feature selection and selected 3 algorithm (SVM, 
MLP, GLM) [58]. Hosni at al (2017), used data 
preprocessing, parameters optimization and selected 4 
algorithm (k-NN, SVR, MLP, DT) [12]. 

 
Table 1: Framework comparison 

 
Framework Data 

Preparation 
Feature 

Selection Classifier Meta 
Learning 

Parameter 
Optimization 

[91] - GA and 
PSO 

10 
Algorithm  

Bagging GA 

[92] - GA 4 
Algorithm 

 

- GA and SVM 

[58] Selection, 
Cleaning, 
Reduction, 

and 
Transformati

on 

Lasso, 
Stepwise 
regressio

n and 
pearson 

correlatio
n 

3 
Algorithm 

 

- - 

[12] Select 
features, 

Weight the 
features, and 

Remove 
outliers. 

- 4 
Algorithm 

 

- GSO and PSO 

Proposed 
Framework 

Scaling SBO and 
SVR 

4 
Algorithm 

 

Bagging SBO 

The accuracy of the models proposed using algorithms shows 
that the most influential factor is the approach in dataset 
selection, cleaning and preparation. So that the use of 
preprocessing data is very important to produce normally 
distributed data, which has an impact on the level of accuracy 
produced. This study focuses more on verification of the 
proof-of-concept approach with multi-organization datasets, 
considered a measure approach to the accuracy of machine 
learning for effort and duration estimation model. 
 
In the proposed framework, metaheuristic optimization 
methods, specifically SBO dan SVR, are used as feature 
selection and optimization parameters. Based on previous 
research, that this method has proven effective for solving 
problems that arise in machine learning. Feature selection 
techniques for selecting more valuable attributes and 
removing non-attractive attributes [84]; A SVR based feature 
selection [18][28].  
 
Ensemble learning methods combine several basic classifiers 
to build strong classifiers, such as bagging, boosting, 
sampling, and stacking are applied to classifications with data 
imbalance problems. Bagging and Boosting is an ensemble 
method by adopting sampling techniques in each iteration to 
classify imbalance data [85]. Boosting techniques have a 
lower performance than bagging techniques when working in 
noisy and imbalance data [67]. while stacking techniques have 
the ability to build high-level prediction models based on 
first-level predictions [86]. Scaling is to avoid attributes in a 
larger numeric range dominating attributes in a smaller 
numeric range [34]. To improve the efficiency and excellence 
of software development, he can utilize data mining 
techniques to analyze and predict large amounts of data [93]. 
 
The amount of research that has done the method of selecting 
features and parameters optimization, they are only limited to 
solving problems for noisy, irrelevant and redundant data to 
achieve accuracy. This research will conduct feature selection 
based on parameter optimization using a bagging techniques, 
to distribute heterogeneous data into homogeneous, for class 
imbalance problems in terms of increasing accuracy in effort 
estimation and duration estimation in the software 
development effort estimation field. Ensure its usefulness and 
the accuracy of exceptional estimates and robustness for noise 
in the data. To get good accuracy, computers / systems must 
be trained properly with the help of training data sets [94][95].  
 
In the next stage, it will be elaborated in evaluating the 
accuracy of the models proposed in this study. in the process 
of evaluating the output using values on MMRE and PRED 
(25). In this stage, training and testing data will be normalized 
using SVR by trying 4 proposed algorithms (such as MLP, 
GLM, CART and RBF) to obtain optimal accuracy results. 
this is different from a similar process carried out previously, 
that the optimization parameters obtained using the default 
system. the next step is to calculate the MMRE and PRED 
values (25) to find out the value of effort estimation and 
duration estimation. 
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3.3 Model Validation  
 
The ISBSG dataset is applied, normalization of dependent 
variables, cross validation approaches and Mean Absolute 
Residual Error (MAR) with Median and Mean of  Absolute 
Residuals (MdAR) are used as accuracy criteria [58]. Several 
methods have been proposed to evaluate the accuracy of the 
predictive value of accuracy in software. Besides being 
measured using various metrics on the value of accuracy, 
there are several accuracy assessments on popular software 
effort estimation, such as: n-fold cross validation, holdout and 
leave-one-out cross validation (LOOCV) [11][88]. 
 
3.4 Model Evaluation 
 
There are three metrics used to evaluate the performance of 
the software effort estimation, such as: Mean Magnitude 
Relative Error (MMRE), Magnitude Relative Error (MRE), 
and percentages of the PRED, which are calculated as follows 
[89][90]: 

 

MRE =
|estimated− actual|

actual 																																							(10) 
 

MMRE =
∑ MRE୒
୧ୀଵ

N 																																																										(11) 
 

PRED(X) =
A
N 																																																																					(12) 

 
A is the number of projects with ܧܴܯ ≤ ܺ  and ܰ  N the 
number of projects in the set. MRE must be less than 0.25 
(0.25) to be accepted by the software effort estimation 
model. whereas MMRE must have a minimum value and 
PRED (25) has a maximum value [90].  
 
4. CONCLUSION 
 
The large number of previous studies prioritizes accurate 
accuracy, regardless of the estimation process that takes a 
long time. then based on that problem, the development of 
software projects will produce good accuracy if it produces a 
fast, efficient and practical time. So the need to implement the 
machine learning algorithm to measure effort and duration of 
estimation. the proposed framework will present a holistic 
approach to building models in estimating efforts and duration 
in the early stages of software development. the stages in this 
study process include: data preprocessing, feature selection, 
optimization parameters, meta learning and 4 (four) machine 
learning algorithms using the ISBSG dataset. In addition, 
classification problems also involve a number of features, this 
is because not all available features are equally important. 
Good and accurate classification must require small features. 
for the type of validation used to measure the accuracy of the 
estimated overall model using n-fold cross validation. 
Whereas to evaluate accuracy to estimate software 
engineering using; MMRE, and PRED (25). 
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