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ABSTRACT 

 
Traffic congestions in urban cities unwantedly form platoons of 
vehicles running at low speeds.  For vehicles operated by 
human drivers, reaction to speeding up or down requires some 
time, thus, increasing travel time.  In this study, we present an 
adaptive cruise control for a group of autonomous vehicles that 
follow each other.  We propose a taillight tracking system by 
utilizing low-cost dashboard cameras for detecting the position 
of the lead vehicle and then allow autonomous vehicles to 
correctly accelerate or decelerate depending on the nature of 
traffic.  This is achieved by detecting the leading vehicle’s 
taillight via linear AND-ing of the the RGB and HSV color 
model representations.  We evaluate the proposed system by 
employing real captured traffic images and tested by utilizing 
mobile robots for the platoon of vehicles testing. 
 
Key words: Platoon of vehicles, Adaptive cruise control, 
Taillight detection, Traffic congestion 
 
 
1. INTRODUCTION 
 
With the rise in the number of vehicles plying the 
urban landscape [1], traffic congestion emerges due to the 
presence of slow-moving vehicles. These slow-moving 
vehicles in turn frm a vehicular platoon, wherein the movement 
of each member is dependent on the leader or the first vehicle 
[2]. Addressing the smooth flow in an intelligent transportation 
network cannot be solved by simply adding more lanes and 
roads. While considering the heterogeneity of commercially 
available vehicles and human driver behaviors, one possible 
solution is to introduce an adaptive cruise control (ACC) 
between vehicles to synchronize their movements. ACC not 
only provides convenience in driving and travelling but also 
avoids collision and provide safety [3]. This initiative removes 
or reduces human interventions by introducing an automated 
vehicle on the road [4].  

 
Previous studies have focused on using RAdio Detection And 
Ranging (RADAR) and LIght Detection 
And Ranging (LIDAR) technologies as a means for 
depth perception that can be employed for ACC.  In [5], an 
index-coding data dissemination based on LIDAR data was 
implemented to efficiently broadcast on-demand road segment  

 
 
\map data to aid platoons of autonomous vehicles on a road 
segment in navigating their surroundings. BMW has employed 
video processing in their driver assistance systems only for 
detecting lane changing [6]. On the other hand, Isuzu MU-X 
has implemented a cruise control without the aid of any sensor, 
but still under the guidance of the human driver, specifically 
when the distance from a leading vehicle is decreasing [7].   

 
However, majority of the related works in connected vehicles 
studied the effect of communication delays and wireless 
connectivity in promoting ACC. Though most research have 
focused on theoretical and simulation studies, ACC was 
implemented and empirically tested in a fleet involving six 
vehicles and evaluated both the communication and sensor 
areas [8].  The work in [9] tackled the various challenges and 
solutions in connected vehicles by focusing on the wireless 
connectivity of each member vehicle of a platoon. In [10], the 
car-following scenario was modeled by incorporating the 
stochastic delay presented when an information was sent by 
leading car. The information flow topology given 
communication constraints was considered in [11] [12]. Their 
work designed the cooperative ACC under the failure of 
communication by relying on the dynamic information 
available to the platoon of connected vehicles. Individual 
vehicles were then designed to maintain the string-stability 
performance of the platoon.   

 
At most, vehicles plying the urban roads have only dashboard 
cameras installed onto their system which are easily operated 
and accessed. In this work, we exploit these features to 
implement an adaptive cruise control for a platoon of 
connected vehicles. Particularly, we focus on scenarios where 
vehicles are cruising at low speeds which are experienced 
during congestion or nearing a traffic light.  In this case, 
overtaking and lane-changing are discouraged.  More 
importantly, a platoon of autonomous vehicles is formed, 
where trailing cars are following the car directly in front of it.  
To achieve this, trailing cars can detect the leading car’s 
taillights and base its navigation speed on the detected 
taillights’ sizes.  The major contributions of this work are 
summarized below.   
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1. A taillight tracking system based on a linear AND 
operation between the RGB and HSV image 
representations is developed to detect leading car’s 
taillights while at the same time filtering noises. 

2. A robotic testbed has been employed to evaluate the 
adaptive cruise control based on the taillight tracking 
algorithm and the car-following model presented in 
[13]. 

 
Figure 1: A system of a platoon of connected vehicle. Each member initially has their own speed (si) and distance (di) with respect to the leading 
vehicle. The lead car (green) is the only vehicle concerned with its proximity from the traffic light. 

 

This paper is organized as follows: Section 2 
presents the problem formulation and the proposed cruise 
control via taillight detection. Section 3 tackles the 
experimental results of the proposed adaptive cruise control.  
Finally, Section 4 concludes the study and gives ideas for 
future study. 

 
2. PROBLEM FORMULATION, TAILLIGHT 

DETECTION, AND CRUISE CONTROL 
 

In this section, we present the operation of implementing an 
adaptive cruise control via taillight tracking. 

 
2.1 Scenario of a Platoon of Autonomous Vehicles 
 
Consider a platoon of autonomous vehicles depicted in Figure 
1 on a single lane of an urban road or highway.  Multiple lane 
setups are obtained by superposing multiple single-lane 
scenarios of Figure 1. The following are the assumptions for 
developing our proposed adaptive cruise control employing 
taillight tracking of a lead vehicle and follows the car-
following model [13].  Each member vehicle of the platoon: 

1. is not allowed to change lane and only has dashboard 
cameras and proximity sensors as means to monitor its 
surrounding. Vehicle-to-vehicle communication is 
also not supported by any member vehicle. 

2. can be unique or like the other member vehicle in a 
platoon. (This addresses the heterogeneity and 
diversity of car manufacturers.) 

3. determines (or maintains) its proximity from the 
leading car only and not of the trailing car. 

4. has a speed that is less than or equal to the speed of its 
lead car, i.e., sn  sm , …,   s1  s0. 

5. has a distance di from its leading car that is greater 
than or equal to a maintaining distance dτ. 

 
In Figure 1, the leading autonomous car (green) senses its 
proximity from a traffic light, represented by d0, and decides to 
run at a speed s0.  Given a safe maintaining distance dτ, trailing 
orange car monitors the taillights of its leading car, i.e., the 
green car, to adjust its current speed s1 while keeping its 

distance d1 above or equal dτ. The other two trailing cars (red 
and violet) also perform the same operation. Eventually, each 
trailing member of the platoon will maintain an equal 
maintaining distance di, running at equal speed si, i.e., si=1,…, n ≤ 
s0. 
2.2 Taillight Tracking Algorithm  
 
The leading taillights are determined following the block 
diagram in Figure 2. Images captured by the onboard dashboard 
cameras are processed in both the RGB and HSV color model 
representations. Threshold values for each color space are set to 
initially remove non-red objects, i.e., since red represents the 
taillights denoting that there is a decrease in the leading car’s 
speed. The binarized RGB and HSV images are then median-
filtered to remove “salt and pepper” noises.  Finally, the 
binarized RGB and HSV images are ANDed to determine the 
location of the red brake light of the leading car. And-ing these 
images will reveal the location of red objects found in both 
color space model. Equivalently, the AND-ing process assures 
that by using two color space models, a red object is really 
found. The leading car’s taillights are finally tracked by 
locating the white blobs of reasonable size. 

 
Figure 2: Block diagram for detecting the taillights of a leading car. 
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2.3 Adaptive Cruise Control via PID control 
 
To implement the adaptive cruise control among the 
autonomous vehicles in the platoon, a Proportional-Integral-
Derivative (PID) controller is employed.  PID controllers are 
very much utilized in linear and nonlinear systems, such as 
unmanned aerial vehicles [14], process control [15], etc., due to 
its modularity and robustness to system disturbance and 
dynamics.  The speed and torque control of the vehicle is 
portrayed in the block diagram shown in Figure 3.   

 

 
Figure 3: Speed and Torque PID control for a DC motor. 

 
To determine the current vehicular speed, an encoder is 
installed at the rear wheel.  This current speed is compared to 
the desired speed obtained from the taillight detection 
algorithm.  The analytical derivation of the PID controller 
values are obtained from [16].  We note that not all mobile 
robots (mobots) used in the experiments required all PID 
parameters, i.e., some only use PI controllers. 

 
3. RESULTS AND DISCUSSION 
 
In this section, we present the experimental results of the 
adaptive cruise control via taillight tracking.  An ordinary and 
low-cost dashboard camera is used to capture real traffic 
footage.  A Raspberry Pi processes the images and provides the 
appropriate speed (in terms of duty cycle/pulse width) so that a 
platoon of autonomous vehicles can maintain the leading car’s 
cruising speed while maintaining the threshold distance 
between two successive vehicles. 
 
3.1 Video Frame Processing for Taillight Detection 
 
A sample frame of the video is taken as shown in Figure 4. In 
order to track the taillights, the image undergoes color space 
isolation, binarization, blob detection, and bounding. From the 
original sample, it is evident that the taillights have a red glow. 
 

 
Figure 4: Actual sample of a lead vehicle’s taillight  

 
There are also unwanted red lights from other sources such as 
other cars that are not the subject, as well as the red stop light, 

all of which must be removed or minimized. For color space 
isolation, the RGB of an instance of a sample image, as well as 
HSV, is modified. For RGB, red is the signal of interest, and it 
is subtracted from the RGB intensity signal to yield the image 
in Figure 5.  
 

 
Figure 5: R minus RGB Intensity 

 
For HSV, hue is the signal of interest as shown in Figure 6. For 
binarization, various threshold values were tested for each case 
of RGB and HSV, and the threshold value that eliminates the 
most noise and retains the reddest signals in the image as per 
visual inspection is chosen. For RGB, most of the red signals 
were detected but the binarized image was very noisy. Other 
red signals like the stoplight and other taillights are evidently 
seen as shown in Figure 7. For HSV, most of the red signals 
were detected but the binarized image was very noisy as well. 
Though it is inspected that the orange and yellow signals were 
completely blocked out as shown in Figure 8. 

 

 
Figure 6 H signal from HSV 

 

 
Figure 7: Binarized Result from RGB Signal 

 

 
Figure 8: Binarized Result from HSV Signal 

 
The solution we propose is to take only red-light parts of both 
the RGB and HSV. This is achieved by passing through an 
AND gate the binarized outputs of RGB and from HSV in 
Figure 7 and Figure 8, respectively.  The result is shown in 
Figure 9 and it is noticeable that the bigger blobs are identified 
as the lead vehicle’s taillights.   
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Figure 9: Output Result for AND of RGB and HSV 
Based from the size of the detected taillights (as blobs), the 
distance is determined and related to the necessary Pulse Width 
Modulation (PWM) duty cycle that the PID controller needs to 
output.  The relationship between the PWM duty cycle and the 
pixel distance of the taillights and the actual distance from the 
taillights is found to be nonlinear, i.e., hyperbolic and is shown 
in Figure 10.  In order to avoid complex and nonlinear 
calculations, this hyperbolic relationship is translated into a 
linear equation by utilizing the inverse of the PWM duty cycle, 
as shown in Figure 11. 
 

 
Figure 10: Tail Light Distance Mapping 

 

 
Figure 11: Linear relationship representation of the necessary pulse 

width to provide the desired distance 
 

3.2 Mobile Robot Testbed for Evaluating Adaptive 
Cruise Control 

 
The scenario in Figure 1 is evaluated by utilizing four mobile 
robots shown in Figure 12.  The lead and trailing vehicles’ speed 
profiles (green line), derived from [17], and their distances 
from the traffic light are illustrated in Figure 13, top and bottom 
locations, respectively.  dτ is set to one meter, which is enough 
for the driver to see the rear tires of its leading car during 
congestion and full stop. 

 
In the experiment, initially at time t = 0, trailing cars have 
detected their respective leading car, therefore, each started to 
decelerate.  The PID controller produces the appropriate duty 
cycle input to correct the autonomous vehicle’s cruising speed.  
Once the trailing vehicle is in the vicinity of its leading car, the 
trailing car approximates the speed of the car in front of it.  
This happens until all members have approximately the same 
speed value and in turn form a platoon.  The decline in speed 
reveals that the leading car sensed that the traffic light is 
turning red.  This is seen at the time interval of 200 – 400 
seconds. 

 
One thing to note is that once the traffic light turns green, each 
vehicle accelerates to the leading car’s speed at a much faster 
time when compared to scenario when all vehicles are 
approaching the traffic light.  This output is expected since at 
low speeds, each vehicle is quick to attain the desired speed set 
by the leading car.   

 
Looking at the distance profile, while the vehicles are 
approaching the traffic light, the last trailing light is the 
farthest.  The reverse is true when the traffic light turns green, 
i.e., the last trailing car will be the nearest to the traffic light.  
But, during this time, all cars are maintaining the same speed 
and separation between leading and trailing vehicles. 
 

 

 

Figure 12: Mobile robot as an autonomous vehicle and member of a 
platoon. 
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Figure 13: Implementation of an Adaptive Cruise Control based on 
PID controllers. Speed profile (top) and distance profile (bottom) of 

all four cars. 

To check for the system’s latency, three trials were conducted 
to capture 380, 383, and 382 frames, or equivalently, 0.791s, 
0.798s, and 0.795s, respectively.  Overall, it takes the taillight 
detection scheme less than approximately 0.8 seconds to 
recognize and track the taillights.  This fast detection scheme 
allows the trailing cars to follow their leading cars almost 
instantly. 
 
4. CONCLUSION AND FUTURE WORK 
 
In this work, an adaptive cruise control for a platoon of 
autonomous vehicles based on taillight detection tracking has 
been proposed, tested and evaluated.  The taillight detection 
scheme has employed the linear AND operation between the 
RGB and HSV color model representations of the captured 
images from an ordinary dashboard camera.  This process 
ensures that the detected blobs are coming from the leading 
vehicle’s taillights.  From the detected blobs, the empirical 
linear relationship between the taillights and the distance 
separating the leading and trailing cars is determined and 
allowed the tuning of the PID parameters.  The proposed 
system is finally tested by employing small mobile robots and 
results show the complete tracking of leading cars’ taillights 
and the formation of the platoon of autonomous vehicles 
running at the same speed while maintaining the safe distance 
between them. 

 
One disadvantage of such taillight tracking being implemented 
on a platoon of autonomous vehicles is that the trailing cars at 
the end of the platoon will suffer from too much delay before it 
can move, especially when there is a long line.  To remedy this, 
we consider in future work the incorporation of vehicle-to-
vehicle communication so that delay is mitigated.  Another 
possible solution is to use monitoring road cameras to 
determine on-road vehicle occlusions [18] and roadside units 
for data dissemination [19].  Another useful extension of the 
said taillight tracking system is the incorporation of plate 

number detection while following the lead car [20].  Finally, 
the swerving of the lead car can also be detected and correctly 
identify if the driver is unconscious or not [21]. 
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