1-Fair Dominating Sets in Some Class of Graphs

Jayasree T G ${ }^{\mathbf{1}}$, Radha Rajamani Iyer ${ }^{\mathbf{2}}$

${ }^{1}$ Adi Shankara Institute of Engineering and Technology, Kalady, Kerala, India. jayasreetg@ gmail.com ${ }^{2}$ Department of Mathematics, Amrita School of Engineering, Coimbatore, India. r_radhaiyer@cb.amrita.edu

Abstract

A set D of vertices in a graph $G(V, E)$ is a dominating set of G , if every vertex of V not in D is adjacent to at least one vertex in D . A dominating set D of $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is a k - fair dominating set of G, for $k \geq 1$, if every vertex in $V-D$ is adjacent to exactly k vertices in D . The k - fair domination number $\gamma_{\text {kfd }}(D)$ of G is the minimum cardinality of a k - fair dominating set. In this article, we determine the k -fair domination number of some class of graphs for $\mathrm{k}=1$.

Key words: Efficient Domination, Cartesian Product of Graphs, Strong Product of Graphs.

1. INTRODUCTION

Let $G(V, E)$ be a simple graph with vertex set V and edge set E. The order and size of G are denoted by n and m respectively. For graph theoretic terminology we refer to Gary Chartrand and Ping Zhang [15] and [16, 17] Haynes et al. For any vertex $v \in V$, the open neighbourhood $\mathrm{N}(\mathrm{v})$ is the set $\{v \in V: u v \in E\}$, and the closed neighbourhood $\mathrm{N}[v]$ is the set $N(v) \cup\{v\}$. For any $S \subseteq V, N(S)=\cup_{v \in S} N(v)$ and $N[S]=N(S) \cup S$.
A fair dominating set in graph $G(V, E)$ is a dominating set D such that all vertices not in D are dominated by same number of vertices from D , that is, every two vertices not in D has same number of neighbours in D. The fair domination number $\gamma_{\mathrm{fd}}(\mathrm{G})$ of G is the minimum cardinality of an fd-set.
A dominating set $D \subseteq V(G)$ is a 1-fd set in G, if for every two distinct vertices, $u, v \in(V-D) \quad, \quad|N(u) \cap D|=$ $|N(v) \cap D|=1$. That is, every two distinct vertices not in D have exactly one neighbour from D. But we know that dominating set D of $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is an efficient dominating set of G if every vertex in V-D is adjacent to exactly one vertex in D. The efficient domination number $\gamma_{e}(G)$ of G is the minimum cardinality of an efficient dominating set. Hence $\gamma_{1 f d}(G)=\gamma_{e}(G)$. Therefore, in this note we use the notation $\gamma_{e}(G)$ instead of $\gamma_{1 f d}(G)$.
The domination in graphs is one of the vital area in graph theory which has attracted many researchers because of its potentiality to solve and address many real life situations like in the communication, social network and in defense purpose to name a few. In a communication network, let D denote the set of transmitting stations so that every station not belonging
to D has a link with at least one station in D . We have to protect these set of stations from faults at any cost and hence the number of such sets should be minimum. This leads to the definition of 1 -fd sets in any graphs.

1.1 Paths P_{n} and Cycles C_{n}

We refer to Gary Chartrand and Ping Zhang [15] for the following results.
Result: 1: Let P_{n} be a path of length $(\mathrm{n}-1)$, then $\gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$, for $n \geq 2$.
Result: 2: Let C_{n} be a cycle of length n , then $\gamma\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$, for $n \geq 3$.
1.1.1.Theorem: Let P_{n} be a path of length ($n-1$), then $\gamma_{e}\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$, for $n \geq 2$.
Proof: The case is obvious for $\mathrm{n}=1,2$ and 3 , since one vertex is enough to dominate the entire graph as 1-fair domination. Hence $\gamma_{e}\left(P_{1}\right)=\gamma_{e}\left(P_{2}\right)=\gamma_{e}\left(P_{3}\right)=1$.
Case 1: If $n \equiv 0(\bmod 3)$. Or if the graph is $P_{3}, P_{6}, P_{9}, . .$, In a path one vertex can dominate as 1 -fd for maximum of two vertices, P_{n} needs $\frac{n}{3}$ vertices to dominate the graph. Hence $\gamma_{e}\left(P_{n}\right)=\frac{n}{3}$.
Case 2: If $n \equiv 1(\bmod 3)$. Or if the graph is $P_{4}, P_{7}, P_{10}, \ldots$, The path can be considered as the combination of $\frac{n-4}{3}$, number of P_{3} and two P_{2} graphs. Hence $\gamma_{e}\left(P_{n}\right)=\frac{n+2}{3}$.
Case 3: If $n \equiv 2(\bmod 3)$. Or if the graph is $P_{5}, P_{8}, P_{11}, \ldots$, . The path can be considered as the combination of $\frac{n-2}{3}$, number of P_{3} and one P_{2} graphs. Hence $\gamma_{e}\left(P_{n}\right)=\frac{n+1}{3}$. Hence the result can be generalised as: $\gamma_{e}\left(P_{n}\right)=\left[\frac{n}{3}\right]$, for $n \geq 2$.
1.1.2.Theorem: Let C_{n} be a cycle of length n , then: $\gamma_{e}\left(C_{n}\right)=$
$\left\{\begin{array}{c}\frac{n}{3}, \text { if } n \equiv 0(\bmod 3) \\ \left\lceil\frac{n}{3}\right\rceil \text {, if } n \equiv 1(\bmod 3) \\ \left\lceil\frac{n}{3}\right\rceil+1, \text { if } n \equiv 2(\bmod 3)\end{array}\right.$.

Proof: The result can be established by the following cases.
Case 1: If $n \equiv 0(\bmod 3)$. Or if the graph is $C_{3}, C_{6}, C_{9}, \ldots$, In this case, C_{n} needs $\frac{n}{3}$ vertices to dominate the graph as $1-\mathrm{fd}$. Hence $\gamma_{e}\left(C_{n}\right)=\frac{n}{3}$.
Case 2: If $n \equiv 1(\bmod 3)$. Or if the graph is $C_{4}, C_{7}, C_{10}, \ldots$, . The graph can be considered as the combination of $\frac{n-4}{3}$, number of P_{3} along with two self dominating vertices. Hence $\gamma_{e}\left(C_{n}\right)=\frac{n+2}{3}$.

Case 3: If $n \equiv 2(\bmod 3)$. Or if the graph is $C_{5}, C_{8}, C_{11}, \ldots$, Then the graph can be considered as the combination of $\frac{n-5}{3}$, number of P_{3} along with three self dominating vertices. Hence $\gamma_{e}\left(C_{n}\right)=\frac{n+4}{3}$. Or can be generalised as:
$\gamma_{e}\left(C_{n}\right)=\left\{\begin{array}{c}\frac{n}{3}, \text { if } n \equiv 0(\bmod 3) \\ \left\lceil\frac{n}{3}\right\rceil, \text { if } n \equiv 1(\bmod 3) \\ \left\lceil\frac{n}{3}\right\rceil+1, \text { if } n \equiv 2(\bmod 3)\end{array}\right.$. This completes the
proof.

2.PRODUCT GRAPHS

The Cartesian product of two graphs G and H , is a graph $G \boxtimes H,[16]$ with vertex set $V(G \boxtimes H)=V(G) \times V(H)$ and edge set $E(G \square H)=\left\{\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)\right.$: : $x 1, x 2 \in E G$ with $y 1=y 2$ or $y 1, y 2 \in E G$ with $x 1=x 2$ Hamed Hatami and Pooya Hatami [4] have studied the perfect dominating sets in the Cartesian product of cycles of prime order. A necessary and sufficient condition for the existence of an efficient dominating set in the Cartesian product of two cycles has explained by T.Tamiz Chelvam and Sivagnanam M [13]. In this paper, we try to find the 1-fd sets in the Cartesian product of P_{n} and C_{n} with K_{2}.

Already we have the following results.
Result: 1: $\gamma\left(K_{2} \boxtimes P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$, for $n \geq 2$.
Result: 2: $\gamma\left(K_{2} \boxtimes C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$, for $n \geq 3$.
2.1.Theorem: Let P_{n} be a path of length ($n-1$) and K_{2} be the complete graph of two vertices then the $1-\mathrm{fd}$ sets in the Cartesian product of these graphs can be determined by: $\gamma_{e}\left(K_{2} \boxtimes P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$, for $n \geq 2$.
Proof: The product graph $\left(K_{2} \boxtimes P_{n}\right)$ is the grid graph $\left(P_{2} \boxtimes P_{n}\right)$ and the graph consisting of two copies of P_{n} graph with corresponding vertices are joined by an edge. Now consider the following cases.
Case 1: When $\mathrm{n}=3$. Let the vertices of the product graph are v_{1}, v_{2}, v_{3} and u_{1}, u_{2}, u_{3}. Here we need only two vertices say v_{1} and u_{3} are enough to dominate the entire graph as 1-fd. Hence $\gamma_{e}\left(K_{2} \boxtimes P_{n}\right)=2$.
Case 2: When n is an odd number. That is when $\mathrm{n}=5,7,9, \ldots$, . As the given graph is product graph each increment in the value of n contributes two in the number of vertices. These four vertices can be treated as the internal vertices in the graph and these four vertices contributes additional one in the domination number. Hence $\gamma_{e}\left(K_{2} \boxtimes P_{n}\right)=\frac{n+1}{2}$.
Case 3: When n is an even number. That is when $\mathrm{n}=4,6,8$, ...,. The graph is an extension to the above case as it has two more vertices and one more vertex is needed to dominate the additional two vertices. Hence $\gamma_{e}\left(K_{2} \boxtimes P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$. This completes the proof.
2.2.Theorem: Let C_{n} be a cycle of length n, and K_{2} be the complete graph of two vertices then the 1 -fd sets of the

Cartesian product of these graphs can be determined by:
$\gamma_{e}\left(K_{2} \boxtimes C_{n}\right)=\left\{\begin{array}{l}2 \times\left\lceil\frac{n}{4}\right\rceil-1, \text { if } n \equiv 1(\bmod 4) \\ 2 \times\left\lceil\frac{n}{4}\right\rceil, \text { if } n \equiv 0,2(\bmod 4) \\ 2 \times\left\lceil\frac{n}{4}\right]+1, \text { if } n \equiv 3(\bmod 4)\end{array}\right.$.
Proof: The product graph $K_{2} \boxtimes C_{n}$ is the graph consisting of two copies of C_{n} whose corresponding vertices are joined by an edge. In such structure one vertex can dominate maximum of three vertices and hence the result can be established using the following cases.
Case 1: Let $n \equiv 0(\bmod 4)$. Then total number of vertices in the graph will be $\mathrm{N}=8,16,24, \ldots$. In such cases a dominating set of $2 \times \frac{n}{4}$ vertices dominate the entire graph as 1-fd.
Case 2 : Let $n \equiv 1(\bmod 4)$. Then total number of vertices in the graph will be $\mathrm{N}=10,18,26, \ldots$, . Here the graph can be considered as the distinct union of two graph say G_{1} and G_{2} where G_{1} is dominated as 1 -fd using $2 \times \frac{n}{4}$ vertices and G_{2} is a graph with two vertices which add on only one in the domination number. Hence $\gamma_{e}\left(K_{2} \boxtimes C_{n}\right)=2 \times\left\lceil\frac{n}{4}\right\rceil-1$.
Case 3: Let $n \equiv 2(\bmod 4)$. Then total number of vertices in the graph will be $\mathrm{N}=12,20,28, \ldots$. . The graph can be considered as the distinct union of two graph say G_{1} and G_{2} where G_{1} dominated as 1 -fd sets using $\frac{n}{4}$ vertices and G_{2} is a graph in which one vertex will stand independent. Hence we need one more vertex to dominate this graph. Hence $\gamma_{e}\left(K_{2} \boxtimes C_{n}\right)=2 \times\left[\frac{n}{4}\right]$.
Case 4 : Let $n \equiv 3(\bmod 4)$. Then total number of vertices in the graph will be $N=14,22,30, \ldots$, . The graph can be considered as the distinct union of two graph say G_{1} and G_{2} where G_{1} dominated as 1-fd sets using $\frac{n}{4}$ vertices and G_{2} is a graph which need two vertices to dominate this graph. Hence $\gamma_{e}\left(K_{2} \boxtimes C_{n}\right)=2 \times\left\lceil\frac{n}{4}\right\rceil+1$. Hence we can generalise the result as: $\gamma_{e}\left(K_{2} \boxtimes C_{n}\right)=\left\{\begin{array}{l}2 \times\left\lceil\frac{n}{4}\right\rceil-1, \text { if } n \equiv 1(\bmod 4) \\ 2 \times\left\lceil\frac{n}{4}\right\rceil, \text { if } n \equiv 0,2(\bmod 4) \\ 2 \times\left\lceil\frac{n}{4}\right\rceil+1, \text { if } n \equiv 3(\bmod 4)\end{array}\right.$.

3.SIERPINSKI GRAPHS

Graph of Sierpinski type play an important role in different areas of Mathematics as well as in several other scientific fields. The graphs $S(\mathrm{n}, 3)$, which are isomorphic to Hanoi graphs modeling the Tower of Hanoi with 3 pegs and n discs. The generalized Sierpinski graphs,[2] S (n, k) is defined as follows:
For $n \geq 1$ and $k \geq 1$, the vertex set of $\mathrm{S}(\mathrm{n}, \mathrm{k})$ consists of all n - tuples of integers $1,2,3, \ldots, \mathrm{k}$, that is, $V(S(n, k))=$ $[1, k]^{n}$. Two different vertices $u=\left(u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right)$ are adjacent if and only if there exists an $h \in[1, n]$ such that:

1. $u_{t}=v_{t}$ for $t=1,2,3, \ldots, h-1$;
2. $u_{h} \neq v_{h}$;
3. $u_{t}=v_{h}$ and $v_{t}=u_{h}$ for $t=h+1, h+$ $2, \ldots, n$.

The vertices $\langle i i i \ldots i\rangle, i \in[1, k]$, are called the extreme vertices of $\mathrm{S}(\mathrm{n}, \mathrm{k})$. For $i \in[1, k]$, let $\mathrm{S}_{\mathrm{i}}(\mathrm{n}+1, \mathrm{k})$ denote the sub graph of $S(n+1, k)$ induced by the vertices of the form $\langle i i i \ldots i\rangle$. Also, $\mathrm{S}_{\mathrm{i}}(\mathrm{n}+1, \mathrm{k})$ is isomorphic to $\mathrm{S}(\mathrm{n}, \mathrm{k})$, where S (n, k) consists of k copies of $S(n-1, k)$ for $n>1$ with $S(1, k)$ is a complete graph of k vertices.
By definition of $\mathrm{S}(\mathrm{n}, \mathrm{k})$, the cardinality $|V(S(n, k))|=k^{n}$, $|E(S(n, k))|=\frac{k\left(k^{n}-1\right)}{2}$ and $\Delta(S(n, k))=k$ for $n \geq 2$.
3.1.Theorem: Let C_{n} be a cycle of length n, then the $1-\mathrm{fd}$ sets can be determined by the following rules:
$\gamma_{e}\left(S\left(2, C_{n}\right)\right)=$
$\left\{\begin{array}{c}n \times \gamma_{e}\left(C_{n}\right), \text { if } n \equiv 0(\bmod 3) \\ n \times\left[\gamma_{e}\left(C_{n}\right)-1\right], \text { if } n \equiv 1(\bmod 3) \\ \left(n \times\left[\gamma_{e}\left(C_{n}\right)-1\right]\right)+1, \text { if } n \equiv 2(\bmod 3)\end{array}\right.$.
Proof: The graph $S\left(2, C_{n}\right)$ is a cycle with each vertex is again a cycle. Refer the following figure for $\mathrm{S}\left(2, \mathrm{C}_{6}\right)$. As $\gamma_{e}\left(C_{n}\right)$ is already found, the result follows.

Figure 1: $\mathrm{S}\left(2, \mathrm{C}_{6}\right)$
3.2. Theorem: Let K_{n} be the complete graph with ' n ' vertices, then $\gamma_{e}\left(S\left(2, K_{n}\right)\right)=n$.
Proof: The graph $S\left(2, K_{n}\right)$ is a complete graph with each vertex is a K_{n}. The graph $S\left(2, K_{5}\right)$ is given in the following figure.

Figure 2: $\mathrm{S}\left(2, \mathrm{~K}_{5}\right)$.
From the figure it is clear that there exist only one vertex which is adjacent to the other vertices of K_{n}, while all other vertices are adjacent to the vertex of one more K_{n}. So if we take the vertex which is independent of other K_{n} to the
dominating set, each vertex in the dominating set efficiently dominate each K_{n}, and hence $\gamma_{e}\left(S\left(2, K_{n}\right)\right)=n$.

4.GRAPHS WITH $\boldsymbol{\gamma}(\boldsymbol{G})=\boldsymbol{\gamma}_{1 \boldsymbol{f} \boldsymbol{d}}(\boldsymbol{G})$

It is clear from the definition that, $\gamma(\mathrm{G}) \leq \gamma_{1 \mathrm{fd}}(\mathrm{G})$. Due to the importance of the dominating set, we always prefer $\gamma_{1 f d}(G)$ to be the minimum. Now consider some graphs with minimum $\gamma_{1 f d}(G)$, that is, consider graphs with $\gamma(G)=$ $\gamma 1 f d G$. The following results are obvious.

1. For complete graph $\mathrm{K}_{\mathrm{n}}, \gamma_{e}\left(K_{n}\right)=1$.
2. For wheel graph $\mathrm{W}_{1, \mathrm{n}}, \gamma_{e}\left(W_{1, n}\right)=1$.
3. For star graph $\mathrm{S}_{1, \mathrm{n}}, \gamma_{e}\left(S_{1, n}\right)=1$.
4. For complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}, \gamma_{e}\left(K_{m, n}\right)=2$.

4.1.Strong Product Graphs

Let G and H be two graphs with the set of vertices $u=$ $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ and $v=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{m}\right\}$ respectively. The strong product of G and H is the graph $G \boxtimes H$ formed by the vertices $V=\left\{\left(u_{i}, v_{j}\right): 1 \leq i \leq n, 1 \leq j \leq m\right\}$ and two vertices $\left(u_{i}, v_{j}\right)$ and $\left(u_{s}, v_{t}\right)$ are adjacent in $G \boxtimes H$ if and only if $\quad\left(u_{i}=u_{s}\right.$ and v_{j} adjacent to $\left.v_{t}\right)$, $\left(u_{i}\right.$ adjacent to u_{s} and $\left.v_{j}=v_{t}\right) \quad$ or $\left(u_{i}\right.$ adjacent to u_{s} and v_{j} adjacent to $\left.v_{t}\right)$.
In this section we establish the efficient domination number $\gamma_{e}(G)$ or $\gamma_{1 f d}(G)$ for the strong product graphs $P_{m} \boxtimes P_{n}$. We also try to find $\gamma_{2 f d}(G)$ for some m and n.
4.1.1.Proposition: For any $n \geq 2, \quad \gamma_{e}\left(P_{1} \boxtimes P_{n}\right)=\left[\frac{n}{3}\right\rceil$. Also $\gamma_{2 f d}\left(P_{1} \boxtimes P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$.
Since $\left[P_{1} \boxtimes P_{n}\right]=P_{n}$, the result is obvious.
4.1.2.Lemma: $\gamma_{e}\left(P_{2} \boxtimes P_{n}\right)=\left\{\begin{array}{c}1 \text { if } n=2,3 \\ 2 \text { if } n=4,5,6\end{array}\right.$.

Proof: To establish the result, first prove the result for the given values for n taking $\mathrm{m}=2$.
Case: 1: Let $\mathrm{n}=2$. Then one among the four vertices of $P_{2} \boxtimes P_{2}$ efficiently dominates the entire graph and hence $\gamma_{e}\left(P_{2} \boxtimes P_{2}\right)=1$.

Figure 3: B_{1}
For future references let us name this graph as B_{1} with $\gamma_{e}\left[B_{1}\right]=1$.
Case: 2: Let $\mathrm{n}=3$. Then one of the centre vertices in the graph of $P_{2} \boxtimes P_{3}$ efficiently dominates the entire graph. Hence in this case also $\gamma_{e}\left(P_{2} \boxtimes P_{3}\right)=1$.

Figure 4: B_{2}
Let us denote this graph as B_{2} with $\gamma_{e}\left[B_{2}\right]=1$.
Case: 3: Let $\mathrm{n}=4$. In this case the graph $P_{2} \boxtimes P_{4}$ has three columns $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$.

Figure 5: $P_{2} \boxtimes P_{4}$
Here the first and last columns can be considered as two B_{1} graphs which efficiently dominates the entire graph with $\gamma_{e}\left(P_{2} \boxtimes P_{4}\right)=2$.
Case: 4: Let $\mathrm{n}=5$. In this case the graph $P_{2} \boxtimes P_{5}$ has four columns $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$.

Figure 6: $P_{2} \boxtimes P_{5}$
Here the first two columns can be treated as one B_{2} graph of $\gamma_{e}\left[B_{2}\right]=1$ and last column as one \mathbf{B}_{1} graphs of $\gamma_{e}\left[B_{1}\right]=1$. These two sub graphs can be considered as two distinct blocks which efficiently dominates the entire graph with $\gamma_{e}\left(P_{2} \boxtimes\right.$ $P 5=2$.
Case:5: Let $\mathrm{n}=6$. In this case the graph $P_{2} \boxtimes P_{6}$ can be partitioned in to two B_{2} graph of $\gamma_{e}\left[B_{2}\right]=1$.
Hence $\gamma_{e}\left(P_{2} \boxtimes P_{6}\right)=2$. This completes the proof.

Figure 7: $P_{2} \boxtimes P_{6}$
4.1.3.Lemma: $\gamma_{2 f d}\left(P_{2} \boxtimes P_{n}\right)=\left\{\begin{array}{c}2 \text { if } n=2,3 \\ 4 \text { if } n=4,5,6\end{array}\right.$.

Proof: To obtain 2-fd set, we need two vertices from B_{1} and from B_{2} with $\gamma_{2 f d}$ is 2 . To establish the result, the entire graph should be partitioned into sub graphs of B_{1} and B_{2} as above. Each sub graph contributes 2 to the domination number. Hence the proof.
4.1.4.Proposition: For any $n \geq 6, \gamma_{e}\left(P_{2} \boxtimes P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$.

Proof: Let E be the efficient dominating set of $P_{2} \boxtimes P_{n}$. To describe the efficient dominating set, consider the sub graphs B_{1} and B_{2}.

If $n \equiv 0(\bmod 3)$, the graph $P_{2} \boxtimes P_{n}$ can be partitioned efficiently by $\frac{n}{3}$. number of B_{2} graphs.
If $n \equiv 1(\bmod 3)$,, the graph $P_{2} \boxtimes P_{n}$ can be partitioned efficiently by $\frac{n-5}{3}$ number of B_{2} graphs along with two B_{1} sub graphs.
If $n \equiv 2(\bmod 3)$,, the graph $P_{2} \boxtimes P_{n}$ can be partitioned efficiently by $\frac{n-2}{3}$ number of B_{2} graphs along with one B_{1} sub graph. This completes the proof.
4.1.5.Proposition: For any $n \geq 6, \gamma_{2 f d}\left(P_{2} \boxtimes P_{n}\right)=2 \times$ $\left\lceil\frac{n}{3}\right\rceil$.
Proof: Since each sub graph contributes 2 to the 2 -fd set, the result follows.
4.1.6.Observation: For $n \geq 2, \quad \gamma_{2 f d}\left(P_{2} \boxtimes P_{n}\right)=2 \times$ $\gamma_{e}\left(P_{2} \boxtimes P_{n}\right)$.
4.1.7.Theorem: For any $m, n \geq 2, \gamma_{e}\left(P_{m} \boxtimes P_{n}\right)=\left\lceil\frac{m}{3}\right\rceil \times$ $\left\lceil\frac{n}{3}\right\rceil$.

Proof: To establish the result, first prove the result for some values for m.
Case: 1: For $\mathrm{m}=1$ and $\mathrm{m}=2$ we have the results. $\gamma_{e}\left(P_{m} \boxtimes\right.$ $P n=n 3$.

Case: 2: For $m=3$. Here we can have one more sub graph B_{3} as $P_{3} \boxtimes P_{3}$ with efficient domination number $\gamma_{e}\left[B_{3}\right]=1$.

Figure 8: B_{3}

Now if $n \equiv 0(\bmod 3)$, the graph $P_{3} \boxtimes P_{n}$ can be partitioned efficiently by $\frac{n}{3}$ number of B_{3} graphs.
If $n \equiv 1(\bmod 3)$, the graph $P_{3} \boxtimes P_{n}$ can be partitioned efficiently by $\frac{n-5}{3}$ number of B_{3} graphs along with two B_{2} sub graphs.
If $n \equiv 2(\bmod 3)$, the graph $P_{3} \boxtimes P_{n}$ can be partitioned efficiently by $\frac{n-2}{3}$ number of B_{3} graphs along with one B_{2} sub graph. Hence $\gamma_{e}\left(P_{3} \boxtimes P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$.
Case:3: Now for $m \geq 4$ and for $n \geq 2$ the graph can be partitioned as blocks of $P_{1} \boxtimes P_{n}, P_{2} \boxtimes P_{n}$ or $P_{3} \boxtimes P_{n}$. Hence for any, $n \geq 2, \gamma_{e}\left(P_{m} \boxtimes P_{n}\right)=\left\lceil\frac{m}{3}\right\rceil \times\left\lceil\frac{n}{3}\right\rceil$, which completes the proof.

4.2.Sierpinski Graphs $S\left(\mathbf{r}, \mathbf{K}_{\mathrm{n}}\right)$

We already defined and find $\gamma_{e}\left[S\left(2, K_{n}\right)\right]$ for Sierpinski Graphs please refer [Sierpinski Graphs]. The same can be extended for any r .
$\gamma_{e}\left[S\left(r, K_{n}\right)\right]=n^{(r-1)}$, for $r \geq 1$ and $n \geq 3$.

ACKNOWLEDGEMENT

We are very grateful to the members of the editorial board and reviewers whose valuable suggestions and comments contributed to improve the quality of this work to the maximum possible extent.

REFERENCES

[1] Anne Sinko and Peter J Slater "Efficient Domination in Knight Graphs", AKCE J. Graphs. Combin, 3, No. 2 (2006), pp. 193-204.
[2] Bing Xue, Liancui Zuo, "Coloring the Square of Sierpinski Graphs", Graphs and Combinatorics, June 2014. https://doi.org/10.1007/s00373-014-1444-y
[3] D. Bauer, F. Harary, J. Nieminen, C. L. Suffel, "Domination alteration sets in graphs", Discrete Mathematics, 47(1983), 153-161.
https://doi.org/10.1016/0012-365X(83)90085-7
[4] Hamed Hatami, Pooya Hatami, "Perfect dominating sets in the Cartesian products of prime cycles", The Electronic J.Comb., 2007, 14(1).
[5] Harshita Chaurasiya, Dr. Shivanath Ghosh, "Performace Evaluation of Energy-Efficient Cluster Based Algorithms in Wireless Sensor Networks", International Journal of Advanced Trends in Computer Science and Engineering, Vol.7, No.5, pp.77-81, 2018.
https://doi.org/10.30534/ijatcse/2018/03752018
[6] Jayasree T G, Radha R Iyer, "Results on the inverse domination number of some class of graphs", International Journal of Mechanical Engineering and Technology, Vol.9, Issue 1, Jan 2018, pp.995-1004.
[7] N. Meera, A. Subramanian. V. Swaminathan, "Strong Efficient Domination in Graphs", IJISET- International Journal of Innovative Sciences, Engineering and Technology, ISSN 2348-7968 Vol 1. Issue 4, June 2014.
[8] P.Jeyanthi, G. Hemalatha, B. Davvaz, "Total Domination Subdivision Number in Strong Product Graph", American Journal of Applied Mathematics and Statistics, 2014, Vol.2, No.4, 216-219.
https://doi.org/10.12691/ajams-2-4-7
[9] P. Selvaraju, M. P. Kulandaivel and C. Sivagnanam, "Neighborhood connected Perfect Domination in Graphs", Tamkang Journal of Mathematics, Vol. 43, Nov 4, 557-562, Winter 2012.
https://doi.org/10.5556/j.tkjm.43.2012.839
[10] R. R. Iyer, A. Ganesan, "The regular number of a graph", Journal of Discrete Mathematical Sciences and Cryptography, 2012. https://doi.org/10.1080/09720529.2012.10698371
[11] R.R.Iyer, V.Anandkumar, "The inverse Domination number and Independence number of some Cubic

Bipartite Graphs", AMO-Advanced Modelling and Optimization, 2014.
[12] Saied Broumi, Assia Bakali, Muhammed Talea, Florentin Samarandache, K.P.Krishnan Kishore, Ridvan Sahin, "Shortest Path Problem Under Intervalued Neutrosophic Setting", International Journal of Advanced Trends in Computer Science and Engineering, Vol.8, No.1.1, pp.216-222, 2019.
[13] T. Tamizh Chelvam, Sivagnanam Mutharasu, "Efficient domination in Cartesian Products of Cycles". Journal of Advanced Research in Pure Mathematics, Online ISSN 1943-2380, Vol.3, Issue. 3, 2011, pp. 42-49.
https://doi.org/10.5373/jarpm.594.100910
[14] Z. Mostaghim, A. Sayed Khalkhali, "Efficient dominating sets in ladder Graphs", International Journal of Engineering Research and Development, eISSN : 2278-067X, pISSN : 2278-800X, Vol 2, Issue 2 (July 2012), pp. 42-43.
[15] Gary Chartrand, Ping Zhang, "Introduction to Graph Theory", Tata McGraw-Hill Edition (2006).
[16] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, "Domination in Graphs: Advanced Topics". Marcel Dekker, New York (2000).
[17] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, "Fundamentals of Domination in Graphs". Marcel Dekker, New York (2000).

