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ABSTRACT 
 
Economic dispatch (ED) is an optimisation strategy to ensure 
power systems operate in an economic manner. This paper 
proposes a multi-objective optimisation method to minimise 
the total generation cost and total system loss simultaneously 
and find the best adjustment for this economic dispatch 
problem. This study focused on solving the multi-objective 
economic dispatch problem using a Heuristic Optimisation 
(HO) method, namely Multi-Objective Evolutionary 
Programming (MOEP). The Weighted Sum Method (WSM) 
is integrated with EP to find a trade-off solution between two 
objectives: total generation cost minimisation and total system 
loss minimisation. The practicable proposed method was 
tested on the IEEE 30-Bus Reliability Test System (RTS) for 
three different scenarios. MATLAB programming language 
was used to run the designated algorithm of MOEP. The 
performance of MOEP to solve the multi-objective ED 
problem was then compared with another method; the 
Multi-Objective Artificial Immune System (MOAIS). The 
experimental results show that MOEP dominates in all cases 
that have been tested, proving that MOEP is superior than 
MOAIS in providing high-quality solution to economic 
dispatch problem with multiple objectives in terms of cheap 
total generation cost and low total system loss.  
 
Key words : Economic dispatch, evolutionary programming, 
multi-objective optimisation, weighted-sum method.  
 
1. INTRODUCTION 
 
Throughout the present increasingly sophisticated era of 
technology, one of the abiding issues in power system 
operations and power generation is to find the most efficient 
solution to Economic Dispatch (ED) problem. Generally, 
economic dispatch is a subroutine of unit engagement, for 
which the objective is to identify ideal generator outputs so 

 
 

that the entire load can be delivered in the most economical 
manner. This goal has been an issue for power system 
networks for many years, with many methods being advanced 
as a solution [1]-[6]. Put simply, the problem is to minimise 
the generation cost produced by each of the generator outputs. 
In addition to the generation cost, increasing transmission loss 
in systems also remains an issue requiring optimisation for the 
the smooth running of power systems.  
Indeed, the problem can be summarised in the following 
scenario: a system which consists of a quantity of generators 
serving an electrical load in a system which uses multiples 
types of fuel input consuming at high generation cost to 
operate power plants such as Hydro, Gas, Steam Diesel, 
Nuclear, Coal, Solar, Wind, etc [7]. Ideally, the power 
systems should be operated with the highest quality 
performance and as economically as possible; at the lowest 
generation cost. In order to minimise generation cost, a 
specific function is required that will extract the output 
produced by the generators. As mentioned in [8], to find the 
value of generation cost a quadratic equation was developed 
by previous researchers to form a value for the thermal 
generator output. Next, while acquiring the value of total 
generation cost, the transmission losses can also be obtained 
in the power system from the B loss coefficients which are 
approximately considered as a quadratic function of the real 
power generation [9]–[16]. 
HO methods are considered compatible with current power 
systems for solving their economic dispatch problem. HO 
methods are more advanced than mathematical methods like 
linear programming and quadratic programming in terms of 
searching for the global optima of optimisation problems. HO 
methods include: Genetic Algorithm (GA), Evolutionary 
Strategy (ES) [17], Evolutionary Programming (EP) [18], 
Particle Swarm Optimisation (PSO) [19], Simulated 
Annealing (SA) [20] Artificial Immune System (AIS) [21], 
[22], etc. Methods such as these are usually an improved 
version which are adapted to handle highly nonlinear 
economic dispatch problem with any kind of shape of cost 
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curve [23]. HO methods do not rely on the calculation of 
derivatives such as gradient vectors or Jacobian/Hessian 
matrices, where non-convexity and non-differential problem 
might have an effect [24].  
This paper proposed the use of the Heuristic optimisation 
method to solve ED problem in power systems with multiple 
objectives. Although there are various types of Heuristic 
optimisation methods, EP was chosen for this study to 
develop an algorithm that will satisfy all constraints, functions 
and to provide the most optimised result for ED problem with 
multiple objectives. EP has proven to be a powerful method to 
solve many power system optimisation problem. EP is a 
probabilistic, worldwide search method that starts with a 
population of randomly-produced candidate solutions and 
evolves over a number of generations or iterations towards 
superior alternatives [25]. Initialisation, mutation, 
competition and choice are the primary phases of this method; 
a method which is considered one of the most widely 
recognised methods for producing the best results for ED. EP 
was integrated with WSM to solve ED problem with multiple 
objectives. The objectives are to minimise total production 
cost and to minimise total system loss. This proposed method 
is named as Multi-Objective Evolutionary Programming 
(MOEP). ED solution produced via MOEP was compared 
with non-optimised power system and Multi-Objective 
Artificial Immune System (MOAIS) method. And MOEP 
successfully outperformed MOAIS in giving the best ED 
solution in terms of low total generation cost and low total 
system loss for the IEEE 30-Bus RTS. 
 
2.  PROBLEM FORMULATION OF 
MULTI-OBJECTIVE ECONOMIC DISPATCH 
 
The main problem for this study is to reduce the total 
generation cost and total system loss of the power system, 
which for this study is the IEEE 30-Bus RTS. Formulas of ED 
such as cost function, power losses function and constraints 
and are needed in order to solve this multi-objective ED 
problem. All the required objective functions and constraints 
equations of the ED problem and equations of the proposed 
MOEP method are explained in this section. 
 
2.1 Cost Function 
 
Equation 1 shows the cost function, expressed as a single 
quadratic function in terms of real power output and cost 
coefficients (ߟ,ߜ, ߦ ). The cost of each generator will be 
summed up to arrive at a total value of cost for optimisation 
purposes, as shown in Equation 2. 
 

(݅݃ܲ)݅ܥ = ݅ߜ + ݅݃ܲ݅ߟ	 +  ଶ (1)݅݃ܲ݅ߦ	
 

minܨଵ = ௦ܥ = ܥ(ܲ݃)


ୀଵ

 (2) 

Where: 
ߜ ߟ, ,   = the thermal generator’s cost coefficientsߦ	

of the ith generator 
݊ = total number of generators 
 cost of the ith generator = ݅ܥ
 total generation cost = ݏܥ
ܲ݃݅ = real power output of the ith generator 

: 

2.2 Losses Function 
The second objective of this study is to minimise the total 
system loss for the transmission system. The total system loss 
is also known as transmission losses that can be expressed by 
Equation 3 and Kron’s loss formula in Equation 4. ܤ  is 
defined as a loss matrix, ܤ as a loss coefficient vector and 
  as a constant of loss coefficient. By using the Hadi Saadatܤ
load flow program, total system loss in the test system is 
automatically calculated by certain commands in MATLAB 
and the obtained value can then be combined with the total 
generation cost in a single equation for multi-objective 
optimisation.  
 

ܲ =  ܲܤ ܲ



ୀଵ



ୀଵ

 (3) 

 

minܨଶ = ܲ =  ܲܤ ܲ



ୀଵ



ୀଵ

+ܤ ܲ



ୀଵ

+   (4)	ܤ

Where: 
ܲ  = power losses 
݊ = total number of generators 
 loss coefficient for a network branch = ܤ
݅, ݆ = power generation and production 

units 
 
2.3 Constraints 
 
There are a few constraints which needed to be fulfilled for 
this study in order to make the power system run 
economically and efficiently; namely, an equality constraint 
and an inequality constraint. For solving quadratic equations, 
it is possible to use the equality constraint, which in this study 
was the real power balance constraint, while the generator 
limit constraint would represent the inequality constraint. 
Equation 5 represents the real power output of each generator, 
confined by the lower and upper boundaries in order to 
guarantee stable operation; limits which are also usually 
known as problem boundaries. The balance of power is a 
constraint that confines the power system to a fundamental 
principle of equilibrium among both total system generation 
and total system loads. The total power of the generation 
must, therefore, be equal to the sum of power demand and 
power losses to balance the power inside the generation which 
is expressed in Equation 6. 
 

ܲ
 ≤ ܲ ≤	 ܲ

௫ 		 (5) 
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 ܲ − ܲ − ܲ = 0	


ୀଵ

	 (6) 

Where: 
ܲ
  = lower limit for generator power of ith 

unit 
ܲ
௫ = upper limit for generator power of ith 

unit 
ܲ  = power demand 
ܲ  = power losses 
݊ = total number of generators 
݅ = unit of generators 

 

2.4 Penalty Factor 
By definition, the penalty factor, ܳ݉  is the ratio between 
maximum cost and maximum losses in a power system. This 
study aimed at solving multi-objective ED problem in which 
the penalty factor would be placed inside the Weighted Sum 
Method (WSM) to provide better optimised results. The 
implementation of the penalty factor would be executed by 
taking the highest cost and highest losses produced by using 
the maximum limit of the generators, as shown in Equation 7. 
 

ܳ݉ =
(ݔܽ݉)ݔܨ
 (7) 	(ݔܽ݉)ݕܨ

Where: 
 maximum total generation cost = (ݔܽ݉)ݔܨ
 maximum total system loss = (ݔܽ݉)ݕܨ
ܳ݉ = penalty factor 

 

2.5 Weighted Sum Method 
The combination of both objectives into a single objective 
was essential for this study, where both objectives needed to 
be minimised simultaneously. WSM was able to solve this 
problem by weighting both objective functions according to 
relative requirement and both weighted functions would be 
added together to produce a single objective function as 
shown in Equation 8. From the equation, values of ܨ would 
be in the range 0 until 1. When ܨ is 0, only the power losses 
function is optimised and when ܨ is 1, only the cost function 
is optimised. A trade-off between the cost and the power 
losses function would be determined by the varying value of 
ܨ  which would provide the best solution for this optimal 
dispatch problem. 
 

ܱܯ = ௫ܨܨ + (1 −  ௬ (8)ܨ(݉ܳ)(ଵܨ
Where: 

 ௫ = cost functionܨ
 ௬ = power losses functionܨ
 multi-objective function = ܱܯ
  = weighting coefficient (vary from 0 to 1)ܨ

 
3. MULTI-OBJECTIVE EVOLUTIONARY 
PROGRAMMING (MOEP) 
 
EP is a population-based algorithm that begins with a 
population produced randomly and evolves over a number of 

iterations towards finding ideal alternative solutions. The EP 
algorithm works straight over the alternatives through tiny 
mutations and utilises an elitist-based selection method. 
Solutions are described as generation values for all units 
within the system and are originally identical with earlier run 
unit engagement algorithm's pre-dispatch values. 
Furthermore, EP can minimise and maximise any fitness, 
which can be implemented by mathematical equations. The 
fitness function evaluates the quality of the suggested solution 
that sets the foundation for the method of choice. EP will 
produce a result after a convergence criterion is met and all of 
the constraints have been followed. There are three types of 
EP: Classical EP (CEP), Fast EP (FEP) and Improved Fast EP 
(IFEP). Mutation is a very significant part of EP and these 
three types of EP use different techniques of mutation. CEP 
uses a Gaussian operator for the mutation part while FEP uses 
a Cauchy operator where it converges quicker than CEP. For 
IFEP, the mutation part runs using a combination of Gaussian 
and Cauchy operatorship, composed at a higher rate of 
convergence compared to CEP and FEP. However, for this 
study, CEP was selected as the method is easier to understand 
and any solution produced would, therefore, be clearer and 
more easy to implement. The steps of EP are listed below, 
steps which impose critical functions that are very important 
for achieving the most successful result for EP: 

• Initialisation 
• Fitness (1) Computation 
• Mutation 
• Fitness (2) Computation 
• Combination 
• Selection 
• Convergence Test 

 

3.1 Initialisation 
The initial population was generated containing combinations 
of the candidate-only dispatch alternatives that meet all the 
constraints. The population was randomly generated from the 
range of minimum and maximum generator values allowed, 
based on inequality constraints. This was applied to all 
generators at bus 2, 5, 8, 11, and 13 where bus 1 is considered 
a slack bus. Bus 1 would be calculated using the 
Newton-Raphson method where the value would fulfil the 
remaining value left to obey the equality constraint. The 
random values are called trial parent individuals (I) in the EP 
method. 
 

3.2 Fitness Computation 
In an EP algorithm, fitness can be defined as a single 
mathematical equation or a long subroutine. Fitness applies to 
the equation, function or subroutine that needs to be 
optimised. Fitness, therefore, applies in this study to the 
objective functions which are cost function and losses 
function, with the addition of WSM, required for MOEP, as it 
is a WSM equation. There would, of course, be minimum and 
maximum fitness values, which are restricted by the 
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constraints used. The fitness process would generate offspring 
individuals that have been transferred from parent individuals 
(I) from the initialisation process. 
 

3.3 Mutation 
The mutation process has three different techniques for each 
type of EP. Classical EP (CEP) approach of mutation was 
chosen to produce the new generation of population which the 
mutation process uses Gaussian operator to mutate the parent 
population. In this process, each vector component has the 
mutation process in which a normally distributed random 
number with a mean of zero and standard deviation is added, 
which is denoted as ܰ൫0, ଶ൯ߪ . The values of objective 
functions for both offspring would be obtained before 
proceeding to the evaluation and comparison stages. In this 
way, the best individual selected from all of the stages would 
be represented as an offspring for the next step. The output 
from this stage would then become another fitness output 
which also consists of 20 populations. Put simply, parents 
from the previous step would breed (mutation process) and 
produce children called offspring. Both parents and offspring 
would then compete with each other to become the best output 
for the next step. 
 

3.4 Selection 
The classification processes for to solve the ED issue are to 
find the non-dominated alternative in the present 2I 
population (parents and offspring) using all of the calculated 
finesses. A rank would be assigned for the solutions by 
counting the amount of solutions that outperform every 
situation. The rank assigned to each solution would then sort 
the 2I solutions into the ascending order. Hence, the first I 
solutions were chosen as parents and the next generation 
would be defined without their rank values in terms of rows 
and columns. Ranking, for this of selection process, would be 
sorted by putting the minimum fitness at the highest order and 
the maximum fitness will be placed at the lowest order. After 
that, new generation is defined for the convergence test. 
 

3.5 Convergence Test 
After each new generation was defined from the previous 
process, the values would undergo a convergence test to 
define minimum and maximum fitness by listing the 20 best 
values in rows and columns. The convergence test would 
converge only after the stopping criterion was met. The 
stopping criterion for this MOEP algorithm was equal to 
0.00001. If the test failed to converge, the mutation and 
selection process would be repeated until the maximum 
generation number was reached to terminate the iteration 
process. The solution would converge only after the objective 
function and fitness were the same for all populations. The 
number of iterations could only be determined when the 
solution converged. The output for this stage would represent 
the best solution for the optimisation of ED problem. 

4. RESULTS AND DISCUSSION 
The IEEE 30-Bus RTS with six generators was used for 
implementing the proposed method for solving the ED 
problem. This test system consisted of thirty buses equipped 
with six generators located at buses 1, 2, 5, 8, 11 and 13. 
While Bus 1 could be considered a slack bus, buses 2, 5, 8, 11 
and 13 were the generator buses. The balance of the other 
buses could be considered load buses. Figure 3.1 illustrates 
the sample model of the test system used. 
The proposed solution was executed via EP method that was 
developed using MATLAB. WSM was applied to optimise 
both objectives simultaneously with the addition of penalty 
factor. WSM would vary the equation using a weighing factor 
 ଵ would produce valuesܨ from 0 to 1, where each value of (ܨ)
for total generation cost and total system loss. Two criteria 
needed to be considered for the best solution: the lowest value 
and the fastest CPU time. Three different case studies were 
introduced in this study. Case Study 1 was a normal operation 
(without any increment), while for Case Study 2 and 3 the 
load was increased to 50 % and 70 %, respectively, as the 
increment would affect the value of total power demand 
(PDT). EP was developed to optimise ED problem and the 
algorithm was integrated with Hadi Saadat’s power system 
load flow program of the IEEE 30-Bus RTS in MATLAB 
software. The results produced by this method were then 
compared with a non-optimised power system and the final 
results were produced via the Artificial Immune System (AIS) 
method. The purpose of the comparison was to show that EP 
is a superior method for optimising multi-objective ED 
problem. All parameters and constraints were set equally for 
both methods. 
 

4.1 Case Study 1: Normal Load Operation 
Values of total generation cost and total system loss from the 
non-optimised power system were recognised as base values. 
The base value for total generation cost was 875.40 $/h, while 
the total system loss was 17.60 MW. Furthermore, the penalty 
factor, ܳ݉  value inside the WSM equation was equal to 
0.2389. Table 1 shows the optimised result for the first case of 
MOEP. From the table, it is clear that the lowest value of total 
generation cost and total system loss were generated when the 
weighing factor was at ܨ  equal to 0 until 0.7. Total 
generation cost and total system loss found via MOEP with 
0.7 weighing factor were 866.60 $/h and 5.39 MW 
respectively. Based on the criteria, the values produced when 
  was equal to 0.7 were the best option to minimise bothܨ
objectives where the CPU time taken was the fastest among 
the other results that consumed six iterations. 
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Table 1: ED Result via MOEP for Case Study 1 

Weighing 
Factor, ܨଵ 

Total 
System 

Loss 
(MW) 

Total 
Generation 
Cost ($/h) 

CPU time 
(s) Iteration 

0.0 5.39 866.60 8.921419 9 
0.1 5.39 866.60 9.673227 9 
0.2 5.39 866.60 9.052752 8 
0.3 5.39 866.60 8.181559 8 
0.4 5.39 866.60 8.858250 8 
0.5 5.39 866.60 8.071019 7 
0.6 5.39 866.60 7.563589 7 
0.7 5.39 866.60 7.484498 6 
0.8 6.08 802.10 6.474046 6 
0.9 6.08 802.10 7.391302 6 
1.0 8.97 787.60 7.694458 6 

 

4.2 Case Study 2: 50% Load Increment 
In Case Study 2 the value of PDT was increased by 50%, 
which affected the base value for the total generation cost 
and total system loss. The base values for both objectives 
were 1654.20 $/h and 45.44 MW. The result of this case 
study is tabulated in Table 2. The penalty factor, ܳ݉ was 
equal to 0.0864 for this case. It can be seen from the table 
that the best solution of ED was found when ܨ  was set to 
0.7 which were 19.27 MW and 1394.70 $/h for total system 
loss and total generation cost respectively. This is based on 
the values of the two objectives satisfied each other. 
Compared to when ܨ was equal to 0 until 0.6 and ܨ was 
equal to 0.9 until 1.0. Although the values of the total 
system loss and total generation cost are the same with 
when ܨ was equal to 0.8, but the CPU time was faster for 
  . equal to 0.7ܨ

 
Table 2: ED Result via MOEP for Case Study 2 

Weighing 
Factor, ܨଵ 

Total 
System 

Loss 
(MW) 

Total 
Generation 
Cost ($/h) 

CPU time 
(s) Iteration 

0.0 19.27 1394.70 14.585223 8 
0.1 19.27 1394.70 14.684424 8 
0.2 19.27 1394.70 16.609822 8 
0.3 19.27 1394.70 13.347557 7 
0.4 19.27 1394.70 13.507548 7 
0.5 19.27 1394.70 13.473950 6 
0.6 19.27 1394.70 11.951955 6 
0.7 19.84 1373.00 12.713393 6 
0.8 19.84 1373.00 12.789038 6 
0.9 21.58 1352.40 12.038246 6 
1.0 21.58 1352.40 12.377625 6 

 

4.3 Case Study 3: 70% Load Increment 
PDT was increased by 70% for this case. The base values for 
both objectives also automatically increased where the values 
were 2055.10 $/h for total generation cost and 481.78 MWh 
for total system loss. Table 3 shows all the results obtained for 
this case. The penalty factor ܳ݉ calculated for this case was 

equal to 0.0667. Unlike in case study 1 and case study 2, it can 
be seen that MOEP produced the same values of total system 
loss and total generation cost for all values of ܨ. Therefore, 
  equal to 0.6 was considered as the best solution for bothܨ
objectives based on its fastest CPU time which was 12.567457 
s. The total system loss and total generation produced for this 
case were 27.00 MW and 1632.50 $/h. 
 

Table 3: ED Result via MOEP for Case Study 3 

Weighing 
Factor, ܨଵ 

Total 
System 

Loss (MW) 

Total 
Generation 
Cost ($/h) 

CPU time 
(s) Iteration 

0.0 27.00 1632.50 15.461241 8 
0.1 27.00 1632.50 15.263331 8 
0.2 27.00 1632.50 15.493620 8 
0.3 27.00 1632.50 14.070168 7 
0.4 27.00 1632.50 15.365154 7 
0.5 27.00 1632.50 15.912519 7 
0.6 27.00 1632.50 12.567457 6 
0.7 27.00 1632.50 13.411568 6 
0.8 27.00 1632.50 13.383327 6 
0.9 27.00 1632.50 15.536478 6 
1.0 27.00 1632.50 15.460824 6 

 

4.4 Comparison of Multi-Objective Methods 
A comparison between MOEP, Multi-Objective Artificial 
Immune System (MOAIS) and the non-optimised power 
system was performed to prove the good quality of MOEP. 
Table 4 presents the ED results taken from the non-optimised 
power system, MOEP and MOAIS methods for the normal 
load condition (case study 1). The total generation cost and 
total system loss produced by MOEP were lower than by 
MOAIS and non-optimised power system which were 866.60 
$/h and 17.60 MW respectively. Furthermore, MOEP 
optimally distributed the generation between the generators to 
give the better solution of ED.  
 

Table 4: Comparison of ED Results for Normal Load 

Method Non-Opti
mised MOAIS MOEP 

Generator Real 
Power Output 

(MW) 

ܲଵ  261.00 123.23 112.28 
ܲଶ  40.00 45.84 63.52 

ܲହ  0.00 29.13 49.98 
଼ܲ  0.00 34.68 32.21 
ܲଵଵ  0.00 29.34 14.66 
ܲଵଷ  0.00 27.01 16.13 

ܲ(௧௧) 301.00 289.22 288.79 
PDT 283.40 283.29 283.34 

Total Generation Cost ($/h) 875.40 869.87 866.60 
Total System Loss (MW) 17.60 5.94 5.39 
 
For the case study 2, the total power demand was increased by 
50 %. All the ED results found via MOEP and MOAIS were 
tabulated in Table 5. While total generation cost and total 
system loss were reduced to a lower amount using MOAIS 



Noor Azlan Adnan et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 296 - 302 

301 
 

 

and MOEP from non-optimised power system. MOEP 
continued to provide lower amount of the both objectives than 
MOAIS. The results also show that the value of PDT was the 
same for both methods and the non-optimised power system, 
meaning that all of the constraints were followed properly. 
MOEP produced total generation cost of 1394.70 $/h and total 
system loss of 19.27 MW. While MOAIS produced total 
generation cost of 1396.50 $/h and total system loss of 
1396.50 MW and. 
 

Table 5: Comparison of ED Results for 50% Load 
Increment 

Method Non-Opti
mised MOAIS MOEP 

Generator 
Real Power 

Output 
(MW) 

ܲଵ  430.53 267.04 248.92 
ܲଶ  40.00 65.38 79.23 
ܲହ  0.00 49.69 48.40 
଼ܲ  0.00 19.13 31.28 
ܲଵଵ 0.00 14.94 15.79 
ܲଵଷ 0.00 29.65 20.75 

ܲ(௧௧) 470.53 445.84 444.37 
PDT 425.10 425.10 425.10 

Total Generation Cost 
($/h) 1654.20 1396.50 1394.70 

Total Loss (MW) 45.44 20.74 19.27 
 
Finally, the experiment continued by increasing the total 
power demand by 70 %. Table 6 displays all the results of ED 
of the IEEE 30-Bus RTS taken from non-optimised power 
system, MOAIS and MOEP. For this case study, the reduction 
of total generation cost and total system loss obtained via 
MOEP were lower than those obtained via AIS. Table 6 also 
shows that the generators’ real power output was distributed 
accordingly with respect to all constraints. Again, the lowest 
values of the both objectives were found via MOEP. The total 
generation cost and total system loss obtained via MOEP were 
27002.20 $/h and 1.63 MW and respectively. There were 
significant difference between MOEP and MOAIS especially 
for the total system loss 

Table 6: Comparison of ED Results for 70% Load 
Increment 

Method Non-Opti
mied MOAIS MOEP 

Generator 
Real Power 

Output 
(MW) 

ܲଵ  503.40 335.93 307.08 
ܲଶ  40.00 63.52 68.87 
ܲହ  0.00 49.98 46.42 
଼ܲ  0.00 32.21 32.99 
ܲଵଵ 0.00 14.66 28.02 
ܲଵଷ 0.00 16.12 25.40 

ܲ(௧௧) 543.40 512.44 508.78 
PDT 481.78 481.78 481.78 

Total Generation Cost 
($/h) 2.0551 1.69 1.63 

Total Loss (MW) 61.6230 30658.60 27002.20 

5. CONCLUSION 
Overall, it can be concluded with confidence that the 
domination of MOEP over the MOAIS method was 
demonstrated conclusively in the results for all of the cases 
simulated in this study. Trade-off solutions were found for all 
cases using WSM. Based on the results, for all case studies, 
the values of the objectives: total generation cost and total 
system loss found via MOEP were lower than MOAIS. 
Furthermore, MOEP clearly did not have any problem in 
providing lower values in both objectives than MOAIS by 
optimally distributing the generation between the generators. 
Therefore, confidently advances that MOEP should be 
considered the superior method for solving any future ED 
problem. 
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