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 
ABSTRACT 
 
The number of spanning trees is a determinant factor of    
dynamic properties of   networks, such as their reliability. 
The well-known    algebraic method computes this number, 
is the Matrix-Tree Theorem. However, the calculation using 
this method is very tedious      and time consuming, in 
particular for large networks.  For this reason there is so 
much interest to investigate   explicit formula computing this 
number for relevant infinite graph families. In this paper, we 
aim to give an exact analytic expressions for the number of 
spanning trees in a small world network such as the recursive 
corona product	G௡

௞, which is similar to those existed in real 
life networks.  In addition, we aim at calculating the 
asymptotic spanning tree entropy of this product graph. 
 
Key words: Asymptotic Entropy, Corona product, Graph 
complexity, Small world network, spanning tree.  
 
1. INTRODUCTION  

 
Enumerating spanning trees of graph is one of the most 
studied problem in several   areas such as mathematics [1], 
[7] physics [8], and computer science [10]. The number of 
spanning trees is an important network parameter, it is   very 
useful in many practical areas such as    artificial neural 
networks.  To   estimate the   reliability level of this complex 
system, the number of   spanning trees is good factor of 
Systems Performance [11].   
The number of spanning trees is often called the complexity 
of the graph G, denoted by (G). Methods computing the 
number of spanning trees in a graph have been investigated 
for more than 200 years. The best known algebraic method 
that calculates this number is the Matrix-Tree Theorem 
which expresses the number of spanning trees as a co-factor 
matrix determinant of the Laplacian matrix of the graph G 
[1]. However the stated algorithm is significantly complex 
and poses serious issues for large graphs. For this reason, 
there has been much interest in finding efficient alternate 
methods in order to give explicit expressions of this number 
for some graph families such as Sierpinski gaskets [14] 
grids[12] and lattices [13], [15]. In this frame of reference, 
several methods were developed based on different 
principles. But these methods require a lot of calculus and 
are too intricate. The authors developed methods based on 

                                                        
 

Chebyshev Polynomials in [6] to count the complexity of 
corona product of some special graphs that need a lot of 
algebraic calculation. In our case, we propose an efficient 
combinatorial method, to investigate an exact formula for 
the number of spanning trees of an infinite family of outer 
planar graphs, such as small-world network that has several 
interesting properties. These properties of small-world can 
be found in networks associated   namely to social network 
[16, 17]. In this work we give an explicit analytic 
expression computing the number of spanning trees in the 
recursive corona product. 
 

1.1 BASIC NOTIONS AND DEFINITIONS. 
 
Now we introduce a recursive way based on corona product 
of graph G௡

௞ (k denotes the  ݇௧௛  iteration), to construct small 
world networks with an exponential degree distribution. Let 
௡ଵܩ    ݊ଶ denote the number of	௡ଶ be two graphs, ݊ଵ andܩ	݀݊ܽ	
vertices in ܩ௡ଵ	ܽ݊݀	ܩ௡ଶ  respectively. The corona product 
௡ଶܩ◊௡ଵܩ   is the graph which consists of one copy of ܩ௡ଵ  and 
݊ଵ copies of	ܩ௡ଶ , by joining the ݅௧௛ vertex of ܩ௡ଵ  by a new 
edge with every vertex in the ݅௧௛ copy of ܩ௡ଶ[1], see figure 
1. The order (number of vertices) of ܩ௡ଵ◊ܩ௡ଶ  is  
௡ଵܩ|  ◊ |௡ଶܩ = |(1݊ܩ)ܸ| + |(1݊ܩ)ܸ| ∗  |(2݊ܩ)ܸ|
= 	 ݊ଵ + ݊ଵ ∗ ݊ଶ. 
 
 

 
Figure 1: Planar graphs ܩ௡  ௠ and the corona productܩ,	
 ௠ܩ◊௡ܩ
 
 
Thus, the recursive corona graph Gkn is defined as follow, 
the  ݇௧௛ generation of recursive corona graph is the graph 
obtained from the corona product of the previous generation 
(݇ − 1)௧௛ of G௡

௞ିଵand ܩ௡(see figure 2)	G௡
௞ = G௡

௞ିଵ◊ܩ௡  with 
 G௡

଴  ௡. The number of spanning trees of an infinite graphܩ =  
like small-world network G௡

௞ has asymptotic exponential 
growth. That is why the entropy of spanning trees ߩ(G௡

௞)  is 
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used to determine level of reliability of networks rather than 
the number of spanning trees [19].  The entropy can be used 
to provide a natural measure of the rate of growth.  ߩ(G௡

௞) is 
defined  [18]  as the limiting value: 

G௡)ߩ
௞) = lim

|௏(ಸೖ)|→ାஶ

log߬(G௡
௞))

| (ܸୋ೙ೖ))|  

The   finite value of  ߩ(G௡
௞) characterizing the network 

structure, is a quantity of physical interest. 

 ଷଵܨ    ଷ଴ܨ   

 
 ଷଶܨ

 ,product	corona	recursive	the	of	Process	Generation	૛:	܍ܚܝ܏۴ܑ	
	showing	the	ϐirst	three	iteration	of	Fଷ௞			       
     

 
1.2 PRELIMINARY 
In this section we introduce some theorems which will 
provide basis to our work. 
 
Theorem 1: Let ܩ௡ଵ  be a planar graph and ܩ௡ଶ  an outer 
planar graph. So, the number of spanning trees in the corona 
product graph of ܩ௡ଵ  and ܩ௡ଶ  is given by the following 
formula [2]:  

1݊ܩ)߬ ◊ (2݊ܩ = ௡ଵܩ)߬ 	) ∗	߬( ଵܲ ◊  ௡ଵ	௡ଶ)ܩ

 ௡,௞ܩ	݌ܽ݉	ℎ݁ܶ.3	݁ݎݑ݃݅ܨ
 

Theorem 2 : Let ܩ௡,௞  be a map formed of k sub-graphs as 
shown in  Figure 3(ܩ௡,௞= ܩ௡ଵ • ௡ଶܩ • ௡ଷܩ •••  ௡௞), in suchܩ
way that each  adjacent pair sub-graph has an  articulation 
vertex in common. So, the number of spanning trees in ܩ௡,௞is 
given by [3]: 
௡ଵܩ)߬  • ௡ଶܩ • ௡ଷܩ ••• (௡௞ܩ = 	∏ (௡೔ܩ)߬

௞
௜ୀଵ  

 
Theorem 3: Let	ܨ௡be a fan graph (See Figure 4(a)). The 
number of spanning trees in the fan graph is given by [4]: 

(௡ܨ	)߬ =
1
√5

൭ቆ
3 + √5

2
ቇ
௡

−	ቆ
3 −√5

2
ቇ
௡

൱ 

Theorem 4 (Euler’s Formula) Let G be a connected planar 
graph, and let n, m and f denote, respectively, the numbers of 
vertices, edges, and faces in a planar graph of G. Then:        
݊	 −݉	 + 	݂	 = 	2 [1]. 
 

2. RESULTS 
 
In this section we make use of our method to calculate the 
number of spanning trees in the small-world network F௡௞ 
(recursive corona product of the fan graph	ܨ௡), then we 
give an explicit formula that calculates its asymptotic 
spanning tree entropy (F௡௞). Then we treat the general case 
investigating the complexity (G௡

௞) of recursive corona 
product G௡

௞ and its asymptotic spanning tree entropy 
ρ(G௡

௞). At first, In order to compute (G௡
௞) and make sure 

that G௡
௞ is a planar graph, we calculate the number of 

vertices, number of edges and number of faces in G௡
௞. Let 

 ௡ be a planar graph, ݊,݉,݂ denote the number ofܩ	
vertices, number of edges and number of 	ܩ௡ faces in 	ܩ௡. 

|(௡ܩ	)	ܸ)|	 = 	݊	, |(௡ܩ	)ܧ| 	= 	݉	,
|(௡ܩ	)	ܨ| = 	݂	). 

 
Lemma 1: The number of vertex, number of edges and 
number of faces in Gkn are given by:  

|V	(G௡
௞)| = 	n(n	+ 	1)௞ 

|E(G௡
௞)| = 	 (n	+ 	m)(n	+ 	1)௞ − n	 

|F	(G௡
௞)| = 	 (n + f − 2)(n	+ 	1)௞ − ݊ + 2 

Proof 1: According the definition of corona product, The 
number of edges in G௡

௞ is given by : 
|E(G௡

௞)| = |E(G௡
௞ିଵ)| + 	 |V	(G௡

௞ିଵ)|(݊ +݉) 
				|E(G௡

௞ିଵ)| = |E(G௡
௞ିଶ)| + 	|V	(G௡

௞ିଶ)|(݊ + ݉) 
⋮ 

|E(G௡
ଵ )| = |E(G௡

଴)| + 	 |V	(G௡
଴)|(݊ + ݉) 

by adding these k equations we obtain, 
|E(G௡

௞)| = |E(G௡
଴)| + 	 |V	(G௡

଴)|(݊ +݉) + |V	(G௡
ଵ)|(݊ +݉)

+⋯+ 	 |V	(G௡
௞ିଵ)|(݊ +݉) 

หE(G௡௞)ห = ݉ + n(1 + n)଴(݊+ ݉) + n(1 + n)ଵ(݊ +݉) + ⋯
+ 	n(n	+ 	1)݇−1(݊+݉) 

Hence the result. To prove the others formulas, we use the 
same method. Remark: The graph Gkn is still planar graph. 
in order to prove that, we use Euler Theorem. 
|F	(G௡

௞)| + 	 |V	(G௡
௞)|− |E(G௡

௞)| = 
	(n + f − 2)(n	+ 	1)௞ − ݊ + 2 

+n(n	 + 	1)௞ − ((n	 + 	m)(n	+ 	1)௞ − n) 
= 		 (n + f − 2 −m)((n	+ 	1)௞ + 2 



           Fouad Yakoubi  et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 601 – 604 
 

603 
 

 

As ܩ௡ a planar graph, (n + f − 2 −m = 0, that means G௡
௞ is 

a planar graph. Now we give an explicit formula to calculate 
the number of spanning trees (ܩ௡) and the asymptotic 
entropy of the recursive corona product  ߩ(G௡

௞). 
Theorem 1 The complexity of the recursive corona product 
of a planar graph ܩ௡ is : 
τ(G௡

௞) = 	 ௡ܩ)߬	x	(௡ܩ)߬ ◊	ܲ	ଵ)(௡ାଵ)ೖିଵ	  
 
Proof 2: 
	 τ(G௡

௞) = 	 τ(G௡
௞ିଵ (௡ܩ	◊ = τ(G௡

௞ିଵ)x	τ(	ܩ௡ ◊	ܲ	ଵ)n(n+1)݇−1 
τ(G௡

௞ିଵ) = 	 τ(G௡
௞ିଶ (௡ܩ	◊ = τ(G௡

௞ିଶ)x	τ(	ܩ௡ ◊	ܲ	ଵ)n(n+1)݇−2 
⋮ 

τ(G௡
ଵ) = 	 τ(G௡

଴ (௡ܩ	◊ = τ(G௡
଴)x	τ(	ܩ௡ ◊	ܲ	ଵ)݊ 

We multiply these equations we get:  
τ(G௡

௞) = τ(	ܩ௡)x	τ(	ܩ௡ ◊	ܲ	ଵ)݊x	τ(	ܩ௡ ◊	ܲ	ଵ)݊(݊+1)	 
														x	τ(	ܩ௡ ◊	ܲ	ଵ)n(n+1)2x⋯ x	τ(	ܩ௡ ◊	ܲ	ଵ)n(n+1)݇−1 
τ(G௡

௞) = τ(	ܩ௡)x	τ(	ܩ௡ ◊	ܲ	ଵ)∑ n(n+1)݇−1
݅=0

݅

 
Hence the result. 
After having an exact expression for the number of spanning 
trees of the graph Gkn, now we can calculate its spanning 
tree entropy, as defined in [18]. 
 
Theorem 2: Let G௡

௞ be the recursive corona product of a 
planar graph	ܩ௡. The asymptotic spanning tree entropy of the 
graph G௡

௞ is given by:  ρ(G௡
௞) = 	 ୪୭୥ த(	ீ೙◊	௉	భ)

௡
	  

Proof 3:  The spanning tree entropy is defined as the limiting 

value:  ߩ(G௡
௞) = lim

|௏(ಸೖ)|→ାஶ

୪୭୥ఛ(ୋ೙ೖ)
|୚(ୋ೙ೖ)|

 

Using Theorem 1 and substituting by its expression, 
where|V	(G௡

௞)| = 	n(n	 + 	1)௞, we get : 

G௡)ߩ
௞) = lim

|௏(ಸೖ)|→ାஶ

log߬(G௡
௞)

|V(G௡
௞)|  

G௡)ߩ
௞) = lim

|௏(ಸೖ)|→ାஶ

log	 ቀ߬(ܩ௡)	x	߬(ܩ௡ ◊	ܲ	ଵ)(௡ାଵ)ೖିଵቁ
|V(G௡

௞)|  

= lim
|௏(ಸೖ)|→ାஶ

log 	(௡ܩ)߬
|V(G௡

௞)| + ൬
1
݊ −

1
|V(G௡

௞)|
൰

log	(߬(ܩ௡ ◊	ܲ	ଵ))
|V(G௡

௞)|  

Hence the result. 
 
 
 

 
Figure 4: ܨ଺							,ܲ	ଵ						ܽ݊݀										ܨ଺ ◊ 	ܲ	ଵ	 

 
 
 
 
 
 

Theorem 3 : 
 Let ܨ௡	be a fan (see Figure 4(b)), the number of spanning 
trees in the recursive corona product F௡௞ of Fan graph ܨ௡ is 
given by: 

߬(F݊݇) =
1
√5

൭ቆ
3 + √5

2
ቇ
௡

−	ቆ
3 − √5

2
ቇ
௡

൱	 

									x ൬௡ାଵ
ଶ√ଷ

ቀ൫2 + √3൯
௡ିଵ

−	൫2− √3൯
௡ିଵ

ቁ൰
n(n+1)݇−1

						   

Corollary 1. Let F௡௞  be the recursive corona product of 
the Fan graph Fn. The asymptotic spanning tree entropy 
of the graph ߩ(F௡௞) is given by:  
 ρ(G௡

௞) = 	 ଵ
௡
	x		 log τ ൬	௡ାଵ

ଶ√ଷ
ቀ൫2 + √3൯

௡ିଵ
−	൫2− √3൯

௡ିଵ
ቁ൰ 

For n = 3. ߩ(Fଷ௞) = 0,92419624074659. We can compare 
the obtained asymptotic spanning tree entropy value of the 
graph Fଷ௞ with other graphs that have the same average 
degree. For example, the value of spanning tree entropy in 
the square lattice graph is 1,16624 [8], for the 3-dimensional 
Sierpinski graph is 1,5694 [14] and for the 3-dimensional 
hyper-cubic lattice is 1,6734 [13]. Although, the number of 
spanning trees in recursive corona product network grows 
exponentially, its asymptotic entropy value shows the rate of 
growth is lower than these graphs which have the same 
average degree. Therefore, this result reveals that the 
recursive corona product networks have a smaller number 
spanning trees; for that reason, their level of reliability is less 
than the networks cited above.  

3. CONCLUSION 
In this paper we give an explicit expression to calculate 
the number of spanning trees in recursive corona product 
networks by using a combinatorial approach, based on 
contraction and separation methods, which allows us to 
obtain the number of spanning trees for any graph order 
and any number of iterations. Then, knowing the number 
of spanning trees for recursive corona product networks 
we can find their asymptotic spanning tree entropy. In the 
near future, we aim to present new method to construct 
anther type of small world network by studying its 
structural properties. 
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