
Gamil Gardan et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 272 – 280

272


ABSTRACT

Parallel programming models have become commonplace,
and these models allow developers and programmers to deal
with data in many ways. There are many parallel
programming models available to date, however, the current
study has chosen the seven most recognized parallel
programming paradigms to be compared and benchmarked,
namely MPI (point-to-point and collective), OpenMP,
PThreads, TBB and hybrid (MPI/OpenMP and
MPI/PThreads). Besides that, the benchmark used in this
study is matrix multiplication, and they are evaluated based
on different matrix sizes. The execution time, speedup, and
efficiency of the models are used to analyse the behaviours of
these models with different number of processors and matrix
sizes. The results have demonstrated that, in most cases,
OpenMP and MPI (Point-to-Point) are ideal for
compute-intensive problems, and they both benefit from
many-core architecture. In addition, the findings have also
exhibited that TBB provides good performance with low
programming complexity and code changes, especially with
small sized computation problems.

Key words : HPC, MPI, OpenMP, Parallel programming
models, PThreads, TBB.

1. INTRODUCTION

High Performance Computing (HPC) is a practice that
accumulates computing power to generate higher
performance level, compared to a normal computer. The
higher accumulated power is especially crucial to solve
complex tasks from diverse sectors, namely engineering,
business and science and business [1]. HPC is also commonly
referred to as parallel computing and supercomputing [1]. In
addition, the chief goal of HPC is to enhance the efficiency
and performance, and this is achieved through every step of
parallelization, which includes assignment, mapping,
decomposition, and synchronization [2]. This development
and enhancement incorporates supercomputers, data centers,
and devices that run through GPU or CPU processing unit.
Due to the growing needs of parallel computing, there is also

a steady increase in the number of processors to conform with
the demands [3]. While there are numerous parallel
programming models introduced in assisting researchers,
developers and programmers, four of the most widely applied
are POSIX threads (Pthreads), MPI, OpenMP, and Threading
Building Blocks (TBB) [4], [5].

Although there are a number of comparative studies that
have been done on two or three of these selected models,
namely (Openmp vs Pthreads) [6], (MPI vs OpenMP) [7, 19].
(OpenMP vs TBB), (OpenMP vs Pthreads vs TBB) or any
hybrid models (combining of two models) [8], none of these
studies so far have compared these five models together.
Thus, in this paper, five selected parallel programming
models, namely POSIX threads (Pthreads), MPI Shared
Memory with two communication routines (Point-to-Point
and Collective), Threading Building Blocks (TBB), OpenMP,
and Hybrid(MPI/OpenMP and MPI/Pthreads) will be
examined. Based on these selected models, a comparative
study are conducted in compute-intensive problems to acquire
and offer a lucid information to assist potential researchers in
choosing the most appropriate models that fit their
requirements.

The rest of the paper is organized as follows. In Section 2, a
brief discussion of parallel programming models and their
features. The related studies have been discussed in Section 3.
The implementation of the test, applying the algorithm and
the performance metrics, and other requirements have been
explained in Section 4. Section 5 illustrates the results of the
experiment and analysing them, and in Section 6 the findings
are stated. Finally, Section 7 presents a conclusion for the
study and future work.

2. PARALLEL PROGRAMMING MODELS ON
MULTI-CORE SYSTEMS

After the discovery of how clock speeds are increased through
the chip heat dissipations, the concept of Moore’s law has
been changed into add processor cores. Due to this, the
manufacturing principle has changed, by equipping a single
chip with more processor cores [9].

Message Passing Interface (MPI) is the most preferable
approach for programming parallel applications, and most
systems are using this strategy. For this reason, many MPI
developers take into account of the implementation of MPI on
multi-core shared memory, and try to improve the

CNDS-Performance Analysis of Parallel Programming Models for

Compute-Intensive Problems in Multi-core Environment

Gamil Gardan1, Nor Asilah Wati Abdul Hamid1,2, Mustafa Saleh Al-Khaffaf3
1Communication Technology and Network Department, Universiti Putra Malaysia, Malaysia

2Institute for Mathematical Research (INSPEM), Universiti Putra Malaysia, Malaysia
3Computer Science and Information Technology Department, University of Kufa, Iraq

j.jar49n@gmail, asila@upm.edu.my, mustafamsk91@gmail.com

 ISSN 2278-3091
Volume 8, No.1.4, 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse4281.42019.pdf

https://doi.org/10.30534/ijatcse/2019/4281.42019

Gamil Gardan et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 272 – 280

273

communication with one node. Thus, the parallel
programming users can run their application based on
standardized programming model with a good performance
[10]. MPI has an extension which uses shared-memory
process model (SMPM), to deal with a shared-memory
platform [7].

The second model, Open Multi-Processing (OpenMP), is a
portable shared memory API and the de-facto standard for
parallel programming which is a high-level, which aims to
make shared memory parallel programming easier. Most of
HPC programs use OpenMP [11]. Next, PThreads or Portable
Operating System Interface (POSIX) Threads, is a low-level
thread library and a common portable API [12].

Another selected model, which is Threading Building
Blocks (TBB), is a C++ template library developed by Intel.
TBB divides a computation into tasks, to assign them to
chosen core to be processed in parallel. TBB consists of
Parallel algorithms and data structures and it provides
scalable memory allocation and task scheduling [13]. Besides
that, this study also utilizes hybrid programming, which
combines two parallel programming models in order to obtain
the strengths of both models. These include scalability of the
distributed memory model, the ease of programming, the
efficiency, and memory savings of the shared memory one.
Hybrid model usually combines MPI as a distributed memory
model with any shared memory model, either OpenMP,
PThreads, or CUDA [11].

3. RELATED WORK

Several parallel programming models have been studied on
multi-core systems using matrix multiplication algorithm as a
benchmark program by researchers. While there are a number
of studies done on the qualitative pros and cons of each model,
there are, however, only limited studies done on their
quantitative performance, which is needed to assist new
researchers in choosing the most suitable model. Studies have
been done by [6], [7], [14], [15] to compare a pair of parallel
programming models that involve MPI, OpenMP, Pthreads,
and TBB. Through the comparison between OpenMP, and
MPI, openMP has been found to be providing great
performance due to its ability to utilize thread level
parallelism in most situations [14]. However, another study
[7] concluded that, although OpenMP performed better than
MPI in some matric sizes, it has been found that MPI
performs significantly better in other sizes. PThreads has
been found better performance against MPI, but for a lesser
number of threads, MPI takes the lowest execution time [6].
Kim and Seo (2016) have found that OpenMP and TBB
performed substantially faster and better, compared to the
serial ones. Nevertheless, in comparison to TBB, OpenMP is
able to provide better performance. However, the earlier
mention studies have limited to a small number of cores
which do not exceed 32 cores and some of them have a small
size of matrices.

Other studies [12], [16], [17] have compared three different
models together; Sharma and Soni (2014) have compared
Posix Threads, OpenMP, and Microsoft Parallel Patterns

libraries. The study has identified that PThreads and OpenMP
provide the best speedup compared to the Microsoft Parallel
Patterns libraries. Besides that, in terms of providing a higher
number of matrices and better outcomes, OpenMP precedes
PThreads and Microsoft Parallel Patterns Libraries. In
general, OpenMP also requires less execution time compared
to the other, however, PThreads is a better option for smaller
matrix dimensions, with a better speedup and lower time
execution. This study however, does not offer a thorough
explanation of the link between the speedup with the
processors' numbers. Another important point to note is that
this study limits itself to only 8 processors. OpenMP, Intel cilk
plus, and TBB have been compared together [12], [17]. From
an experiment with 8 cores conducted by Leist and Gilman
(2014), it has also been found that the task creation and
scheduling overheads introduced by a very large number of
small tasks, affect OpenMP more severely than they affect
Cilk Plus, or TBB. In another study [17] with a higher number
of cores which is 60, their results have demonstrated that TBB
excels in providing better speedup for smaller sized problems,
compared to the other two models, while OpenMP delivers
better performance for larger sized problems.

A comparison between five models, namely OpenMPI,
Thread Building Blocks (TBB), OpenMP, Pthreads, and
Intel®’s CilkTM Plus has been conducted [18] in order to
analyze the performance and problem complexity. It has been
found that OpenMP, Cilk++, or TBB can lessen the level of
the problem complexity, as they will automatically manage
the threads. On the other hand, PThreads has been found to be
the most complex model. In addition, this study has also
identified that TBB provides a better control and performance
on data-parallel loops. However, a generalization of the
results cannot be made on a higher number of cores, as the
experiment was performed with only 2 cores and threads.
Besides that, a study [13] has also been done on six parallel
programming models namely PThreads, Intel Cilk Plus,
OpenMP, Intel TBB, FastFlow, and SWARM to compare
them based on their performance, and programmer
productivity. Based on the experiment, it has been identified
that at medium or large scales matrix operations, both
SWARM and OpenMP are able to provide good results. In
addition, this study has also found that SWARM, OpenMP,
TBB, and Cilk Plus do not demand high programming effort.

In the final study [8], the researchers have implemented
and analysed Sparse matrix vector multiply (SpMVM)
algorithms on multi-core architectures through the utilization
of a hybrid parallel paradigm between OpenMP, and MPI.
The comparison is made between SpMVM and the previous
implementations, by measuring the resource usage on
supercomputers with CPU core hours metric, and run on two
large clusters. They have found that the usage of the selected
hybrid parallel paradigm helps to markedly reduce data
movement overheads and generate the best value in terms of
the CPU core hours metric.

Gamil Gardan et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 272 – 280

274

4. TEST SETUP
In the current study, seven selected parallel programming
paradigms, namely MPI (point-to-point and collective),
OpenMP, PThreads, TBB and hybrid (MPI/OpenMP and
MPI/PThreads) are compared using matrix multiplication
algorithm. In order to measure the programs’ performance, a
significant number of experiments were performed with
various sets of matrices, namely 64, 128, 256, 512 and 1024
(small sized matrix) and for large sized matrices are 2048,
4096 and 5120, also with different number of core processors
P, namely 2, 4, 8, 16, 32, 48 and 64. To obtain the final
results, the average of both matrix sizes are then calculated.
Besides that, on the same platform, the test is also performed
in both parallel and sequential execution.

4.1 Algorithm

To conduct the experiment, matrix multiplication has been
applied as the algorithm, which is a binary operation that
consists of a pair of matrices (A and B), that later generates
another matrix (C). Three nested loops; an algorithm which
has the highest amount of implementation in solving this
problem is demonstrated in (1). Each i, j entry is given by
multiplying the Aik entries (across row i of A), by the entries
Bkj (down column j of B), for k = 1,2,..., m, and summing the
results over k.

 (1)

The time required for this algorithm is O(nmp), in asymptotic
notation. However, to fit the needs of the study, the algorithm
is simplified for the purpose of algorithms analysis, by
assuming that the inputs are entirely square matrices with the
size of , and run time of .

4.2 Experiment platform

The HPC machine used is equipped with an AMD Opteron™
6272 (4 CPU sockets × 16-core), each working at 2.1 GHz
with 16 MB of L3 cache. The machine has 4 × 16 GB of RAM

memory, 1 TB SATA HardDisk and is running CentOS Linux

6.9 with kernel version 4.8. GCC version, 4.8.5, supports the
OpenMP 3.1, and the MPI implementation is MPICH3 and
TBB 4.4.

4.3 Test framework
In order to compare between the selected parallel
programming models, the matrix multiplication has been
applied in a sequential way on C/C++ language, which is then
ran as the benchmark program. As demonstrated in Figure 1,
the benchmark program has been injected and enveloped
before being performed on the selected models mentioned
earlier. Performing multiply function of matrices in a parallel
manner is also the prime component of the parallel operation.

4.4 Performance metrics
Execution time: Execution time carries the meaning of the
amount of time used to solve matrix multiplication problem.
It is measured by calculating the time period between the
program’s start and end. Parallel execution time, on the other
hand, can be calculated by calculating the time period
between the start and end of the parallel computation. Besides
that, the average of an enormous number of experiments are
calculated and taken as execution time. Execution time also
has been taken for sequential program which denoted by TS,
while the parallel is denoted by TP.

Speedup: In parallel programming, the speedup of a program
is defined to be the proportion of the rate at which work has
been done on N processors, to the rate of work which has been
done by only one processor as shown in (2) [3]. Efficiency is
calculated using the formula based on Admahl’s law. In the
formula, E represents efficiency, SP for speedup and P is the
number of cores used in parallel as we can see in (3) [3].

 (2)

 (3)

 Figure 1: The experiment Framework of the study that shows how the algorithm applied over the parallel models.

Gamil Gardan et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 272 – 280

275

5. RESULTS AND ANALYSIS

In this section, we present the experiments results for the
performance of the selected parallel programming models.
The tested results have been divided into two parts; the
sequential implementation and parallel implementation,
which the latter is based on the selected performance metrics.

5.1 Sequential implementation

From the results, it has been found that sequential
implementation is in its ideal execution time when the matrix
size is small (64:1024). In contrast, testing large size of
matrix (2048:5120) gives undesirable results that take longer
execution time, as demonstrated in Figure 2. This is due to the
large size of the matrix which requires more effort to be
executed by a sequential program. Thus, the performance of
the program is clearly degraded.

5.2 Parallel implementation

A. Execution time
As can be seen from Figure 3, TBB provides the best

performance among all the sizes and it maintains the optimal
performance level while increasing the number of processors.
Similarly, PThreads also provides efficient performance, and
is able to maintain it while increasing the number of threads.
Moreover, this study has also identified that MPI
(Point-to-Point), and OpenMP perform best with small
matrices and both consume lesser time than PThreads.
However, the performance of both MPI-Ptp and OpenMP
drop with the increasing number of processors or threads.
Besides that, from our experiments, none of these models,
namely MPI-collective, MPI-OpenMP, and MPI-PThreads
are found to be performing well with small matrices, as their
overall performance decline with the increasing number of
processors. It is also important to note that there are no
significant differences that have been found between parallel
performance and sequential performance for very small
compute sized problems, such as multiplying matrices that
are lesser than 128.

B. Speedup
The speedup shows how the parallel computing can

minimize the execution time to solve a problem that has high
level of complexity [3]. Figure 4 illustrates the speed up of
selected parallel programming models with all sizes.

TBB speedups are more prominent from other six models in
most cases for all different matrix sizes. OpenMP algorithm
behaves similarly to MPI(Point-to-Point) counterparts, as
they did not generate steady speedup. Both of them have
demonstrated good speedup particularly when the number of
processors are less than 32, however, their speedup rate
decline with the increasing number of processors and threads.
Hybrid (MPI-OpenMP) demonstrated the lowest speedup
when compared with the other models in most cases. Besides
that, Pthreads speedup has been found to be the best for small
matrices, as it can speed the performance up, and is able to
outperform TBB when the matrices sizes are 512 and 1024.
This is due to the independency of threads management and
code. The drawback of parallel programming with small sized
problems is that the speedup growth cannot continue with the
increasing number of processors.

As shown in Figure 4, the graphical relationship between
seven parallel programming models to solve large size
problems (2048:5120) using different processors. The
speedups continue to rise while increasing the number of
processors. From graphs, it’s clear that OpenMP and
MPI(Point-to-Point) behave similarly and perform well by
providing high speedups which are near to the theoretical
speedups. TBB and PThreads provide almost same and worse
speedups with large size of problems. Hybrid (MPI-PThreads
and MPI-OpenMP) are performing well with large size of
matrices when the number of processors less than eight and
this is because processors’ architecture which may affect
modules performance. Many things that can affect the
performance of TBB and PThreads, cache misses during the
experiments, the time taken for creating and terminating
threads and tasks.

C. Efficiency
Even though all models have outperformed the sequential

execution, their performances are not equal. Thus, we don’t
know if they are efficient compared with the supplied
resources [3]. The communication overhead which may
happen during the increasing number of processors affects
parallel models’ efficiency. This demonstrates that
parallelizing of small size problems is not efficient. Both MPI
(Point-to-Point) and OpenMP performed better than other
models, which leads to their higher level of efficiency with
large problem sizes. The efficiency of Hybrid (MPI-PThreads
and MPI-OpenMP) models is better with small number of
processors, and the overall efficiency is moderate. As
demonstrated in Figure 5.

0

500

1000

1500

2000

2500

3000

3500

64 128 256 512 1024 2048 4096 5120

Ex
ec

ut
io

n
tim

e
in

 se
c.

Matrix size

C

Serial execution time

Figure 2: The sequential result of matrix multiplication
of matrices from 64 to 5120.

Gamil Gardan et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 272 – 280

276

Figure 3: The parallel execution time of the seven paradigms for all chosen sizes of matrix.

Gamil Gardan et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 272 – 280

277

Figure 4: The speedup of the seven paradigms for all chosen sizes of matrix.

Gamil Gardan et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 272 – 280

278

Figure 5: The efficiency of the seven paradigms for all chosen sizes of matrix.

Gamil Gardan et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 272 – 280

279

6. FINDINGS

It has been identified that TBB and PThreads are the
preferred models to solve small sized problems (matrices),
particularly with large number of processors. However, it is
impractical to parallelize problems with small sizes, as each
model will not be able to perform better than the serial
method. In addition, MPI(Point-to-Point) and OpenMP have
also been found to be the best models to solve large sized
problems (matrices).

7. CONCLUSION AND FUTURE WORK

In this paper, we analysed the performance of seven parallel
programming paradigms by exploring the past related works.
We then implemented matrix multiplication on the seven
selected paradigms as a compute-intensive problem. HPC
server with 4 CPU sockets * 16 cores has been used to
implement the experiment with different sizes of matrices.
The execution time, speedup and efficiency have been
recorded for each model as metrics for the test. In addition a
computational quantitative comparison of those models has
been done in order to determine the best parallel
programming model for compute-intensive problems. Based
on the previous performance and comparison, it can be
concluded that in most cases, OpenMP and
MPI(Point-to-Point) are the ideal models to enable
compute-intensive problems to benefit from multi-core
architecture. Both models provide significant speedup results
over other models and sequential implementation. On the
other hand, TBB exhibits good performance with low
complexity programming and code changes when compared
to other models, especially with smaller sized computation
problems.

For the future work, there are a number of ways to further
extend the current study, namely implementing it on other
environments with HPC machine that has higher number of
cores. Besides that, it would also be beneficial to further
widen the number of parallel programming models and
adding additional benchmark algorithms, to further assist
future researchers or programmers in choosing the most
efficient models for their needs. In addition, future
researchers could also examine the factors that affect the
performance of TBB and PThreads performance with larger
sized problems to further improve the algorithms to raise
their performance.

ACKNOWLEDGEMENTS

This research is fully funded by the Universiti Putra
Malaysia under the Grant Putra, GP/2017/9569600.

REFERENCES
1. M. U. Ashraf, F. A. Eassa, A. A. Albeshri, and A.

Algarni. Performance and Power Efficient Massive
Parallel Computational model for HPC
Heterogeneous Exascale Systems. IEEE Access, vol. 6,
pp. 1–1, 2018.
https://doi.org/10.1109/ACCESS.2018.2823299

2. D. E. Culler, J. P. Singh, and A. Gupta. Parallel
computer architecture: a hardware/software approach.
San Francisco: Morgan Kaufmann Publishers, 1999.

3. C. A. Navarro, N. Hitschfeld-Kahler, and L. Mateu. A
Survey on Parallel Computing and its Applications in
Data-Parallel Problems Using GPU Architectures.
Communications in Computational Physics, vol. 15, no.
2, pp. 285–329, Feb. 2014.
https://doi.org/10.4208/cicp.110113.010813a

4. H. Asaadi, D. Khaldi, and B. Chapman. A Comparative
Survey of the HPC and Big Data Paradigms: Analysis
and Experiments. in Proc. IEEE International
Conference on Cluster Computing, 2016, pp. 423–432.
https://doi.org/10.1109/CLUSTER.2016.21

5. S. Salehian, J. Liu, and Y. Yan. Comparison of
Threading Programming Models. in Proc.2017 IEEE
International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 2017, pp. 766–774.
https://doi.org/10.1109/IPDPSW.2017.141

6. A. Asaduzzaman, F. N. Sibai, and H. El-Sayed.
Performance and power comparisons of MPI Vs
Pthread implementations on multicore systems. in
Proc. 2013 9th International Conference on Innovations
in Information Technology (IIT), 2013, pp. 1–6.
https://doi.org/10.1109/Innovations.2013.6544384

7. Z. Krpic, G. Martinovic, and I. Crnkovic. Green HPC:
MPI vs. OpenMP on a shared memory system. in
Proc. 2012 MIPRO of the 35th International
Convention, 2012, pp. 246–250.

8. D. Oryspayev, H. M. Aktulga, M. Sosonkina, P. Maris,
and J. P. Vary. Performance analysis of distributed
symmetric sparse matrix vector multiplication
algorithm for multi-core architectures. CONCURR
COMPUT-PRACT EXP, vol. 27, no. 17, pp. 5019–5036,
2015.
https://doi.org/10.1002/cpe.3499

9. C.-Y. Chou and K.-T. Chen. Performance Evaluations
of Different Parallel Programming Paradigms for
Pennes Bioheat Equations and Navier-Stokes
Equations. in Proc. 2016 International Computer
Symposium (ICS), Chiayi, Taiwan, 2016, pp. 503–508.
https://doi.org/10.1109/ICS.2016.0106

10. H. Jin, D. Jespersen, P. Mehrotra, R. Biswas, L. Huang,
and B. Chapman. High performance computing using
MPI and OpenMP on multi-core parallel systems.
PARALLEL COMPUT, vol. 37, no. 9, pp. 562–575, Sep.
2011.
https://doi.org/10.1016/j.parco.2011.02.002

11. J. Diaz, C. Munoz-Caro, and A. Nino A Survey of
Parallel Programming Models and Tools in the Multi

Gamil Gardan et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 272 – 280

280

and Many-Core Era. IEEE TRANS PARALL DISTRIB
SYS, vol. 23, no. 8, pp. 1369–1386, Aug. 2012.
https://doi.org/10.1109/TPDS.2011.308

12. A. Leist and A. Gilman. Comparative Analysis of
Parallel Programming Models for C++. in Proc. The
Ninth International Multi-Conference on Computing in
the Global Information Technology, 2014.

13. P. D. Michailidis and K. G. Margaritis. Scientific
computations on multi-core systems using different
programming frameworks. Applied Numerical
Mathematics, vol. 104, pp. 62–80, Jun. 2016.
https://doi.org/10.1016/j.apnum.2014.12.008

14. M. Silven. Evaluation and Comparison of
Programming Frameworks for Shared Memory
Multicore Systems, M.S. thesis, Dept. Comput,
Linkopings Univ., Linköping, Sweden 2014.

15. C. G. Kim and Y.-H. Seo. Parallel JPEG Color
Conversion on Multi-Core Processor. IJMUE, vol.
11, pp. 9–16, 2016.
https://doi.org/10.14257/ijmue.2016.11.2.02

16. M. Sharma and P. Soni. Comparative Study of Parallel
Programming Models to Compute Complex
Algorithm. International Journal of Computer
Applications, vol. 96, no. 19, pp. 9–12, Jun. 2014.
https://doi.org/10.5120/16900-6961

17. A. Tousimojarad and W. Vanderbauwhede.
Comparison of Three Popular Parallel Programming
Models on the Intel Xeon Phi. in Proc. Euro-Par 2014:
Parallel Processing Workshops, 2014, pp. 314–325.
https://doi.org/10.1007/978-3-319-14313-2_27

18. E. Ajkunic, H. Fatkic, E. Omerovic, K. Talic, and N.
Nosovic. A Comparison of Five Parallel
Programming Models for C++. in Proc. 2012 MIPRO
of the 35th International Convention, 2012, pp.
1780–1784.

19. Amjad Kotobi, Nor Asilah Wati Abdul Hamid, Mohamed
Othman, and Masnida Hussin. Performance Analysis of
Hybrid OpenMP/MPI Based on Multi-Core Cluster
Architecture. In Compu tational Science and
Technology (ICCST), 2014 International Conference on,
pages 1–6. IEEE, 2014.

