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ABSTRACT 
 
Scientific simulations require both increasing computing and 
storage power, parallel and distributed computing are 
strongly recommended to deal with them. Despite the power 
of the parallel approach to solving complex simulations, it is 
more difficult and error-prone, therefore, several factors 
create significant programming challenges and have the 
effect of reducing performance, which must be carefully 
managed to achieve high parallelism. 
 This paper aims, on the one hand, to evaluate the 
performance of parallelism based on the graph partitioning 
approach, and on the other hand, to propose a performance 
analysis methodology that aims to help scientists to 
investigate the impact of inter-processor communication on 
the performance of an application First, a multilevel k way 
algorithms are used to compute a distribution of the 
calculations and associated data of simulation. Second, a 
performance evaluation strategy is used to investigate the 
efficiency of parallelism. Finally, we examine the results of 
the experiment and explain the perspective of this study. 
 
Key words: High performance computing, Graph 
Partitioning; Parallel Computing, Performance evaluation, 
Resource Allocation; Scientific simulation. 
 
1. INTRODUCTION 
 
To meet the growing needs of computing power in 
simulations, High-Performance Computing Systems (HPCs), 
offer potentially very significant computing power and 
storage capacity, by adopting a parallelization strategy. High 
performance computing (HPC) is an important and 
ubiquitous topic in all research fields [1], [2], [16], [17], [18], 
[25]. That consists of combining the power of several 
thousand processors to perform complex calculations and  

 
 

massive data processing at high speed. The goal of 
parallelization is to cut a problem into several sub-problems, 
in order to concurrently solve all the sub-problems [3]. 
According to Kennedy's methodology [10], the process of 
parallelization of a scientific simulation contains 4 stages 
illustrated by figure 1: first, the problem is partitioned into 
several parts or tasks. This partitioning is obtained using a 
decomposition of space or functional decomposition. Then 
the communications necessary to obtain the data used during 
the execution of the tasks are established. These 
communications occur when there are dependencies between 
tasks. Then some tasks are grouped together to reduce 
communication costs. Finally, these tasks are then placed on 
the processors with the objective of reducing the execution 
time.  

 
Despite the ability of the parallel approach to solving complex 
simulations, it has been documented as error-prone and 
difficult [11]. Thus several factors create significant 
programming challenges and have the effect of reducing 
performance, that must be managed carefully if we are to 
achieve high parallelism [12]: such as data decomposition, 
the number of processors, inter-processor communication 
[15], bandwidth, load balancing...etc.  
In order to enhance the performance measures such as 
efficiency, acceleration, execution time and scalability [13], 
[14], several performance-based metrics have been proposed 
in the literature [16], [4]: The parallel execution time is the 
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Figure 2: Graph partitioned in k=4 

sum of the computation time and communication time. It 
depends not only on the problem size but also on the number 
of processors used and communication cost between the 
processors, the speedup is defined as the ratio between the 
time taken to solve the problem on a single processor and the 
time taken to solve this same problem on p processors, the 
efficiency measures the time actually spent by processors in 
the algorithm. It is defined as the ratio between Speedup and 
the number of processors. 

Parallelizing a scientific simulation application to run in 
HPC systems presents many problems. A key problem is the 
decomposition and communication task. Several researchers 
[18], [19], [20] have studied the impact of decomposition and 
communication on parallelism, and found that decomposition 
is one of the most difficult phases. Decomposition of an 
application is a distribution into tasks and data to be executed 
on an architecture composed of a number of processors, where 
each processor executes one or more tasks, and the tasks 
strictly cooperate by exchanging messages. In such a 
numerical simulation, it often happens that the execution time 
is largely dominated by the time needed to perform the 
communication between processors, as the communication 
cost can be higher than the execution cost of a normal 
instruction.  

The authors [19], [20] asserts that the process of seeking an 
appropriate decomposition is a balance of competing forces, 
during the decomposition of a problem, we must take into 
account the size of the tasks as granularity. A fine granularity 
leads to poor performance because of the high additional 
costs: the creation of threads, synchronization, etc. Too coarse 
granularity may generate not enough parallelism and an 
unbalanced load. 

 In [21] break, the data distribution into two categories: 
static, the number of tasks is fixed at the start of the 
simulation, dynamic that evolves during the simulation. The 
load balancing is a crucial issue influencing the performance 
of parallel simulations. The aim is to distribute roughly the 
computational load across multiple processors in order to 
minimize the execution time. If the tasks are not evenly 
distributed, then it is possible that one processor is overloaded 
with work, while another has little work to do, and therefore is 
misused. The over-all effect of a load imbalance is, therefore, 
to increase the execution time and reduce the overall 
efficiency. However, ensuring a truly balanced distribution of 
the workload, particularly on a multi-processor architecture, 
can lead to significant additional costs mainly in terms of the 
inter processor communications. 
The graph model is most common approach to overcome 
these challenges of parallelism by performing a graph 

partitioning [2], [3] in k-parts. The vertices of the graph 
represent tasks and edges represent the dependencies between 
these tasks. Each part represents all the tasks assigned to a 
processor. Two connected vertices that are in two different 
parts (one will say that the edge is cut) induce a need for 
communication between these two processors. The objective 
of the distribution then becomes to build a partition whose 
parts are of the same size and cutting a minimum of edges [7]. 
Generally, this problem is known as an NP-complete [4] 
problem. However, several strategies have been proposed [9] 
[22], [23], [24], [25]. There are a wide variety of methods for 
partitioning meshes. The most common are geometric 
methods [25], based only on the coordinates of elements in 
space, and graph-based methods [5], [6], [25] using 
computational dependencies between elements and focusing 
only on topology and not to the geometry of the problem. 
 

Graph partitioning(GP) is a popular approach [3], [26] to 
solve the load balancing challenge in HPC. Consequently, to 
balance the load of a parallel simulation between processors, 
it is possible to carry out a GP process into K parts and to 
assign each part to a processor. GP aims at modelling the 
support of computation of the simulation, in general, a mesh 
with a graph and to divide this graph in K part, each part 
being associate with a processor. the GP problem has the 
following objectives: 

1. on the one hand, to minimize the calculation time by 
balancing the weight of the parts; 

2. and on the other hand, to minimize the 
communication time by minimizing the weight of 
the edges cut between the parts, as shown in 
Figure 2. When GP is used for load balancing in a 
parallel architecture, a balanced distribution of 
the workload among the available processors is 
achieved, while the communication costs of the 
simulation are reduced. Subsequently, GP 
emerges as an important parallelization method 
that ensures high performance by significantly 
minimizing total execution time. 

GP is an NP-complete problem [4], [32]. We, therefore, use 
different heuristics to be able to calculate a partition within a 
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reasonable time. A plethora of GP-based algorithms for data 
distribution and load balancing have been developed. The 
multilevel algorithm appeared as a very efficient method for 
calculating a k-way balanced partition of a graph [31], [33], 
[9]. Multi-level Framework uses a divide & conquer 
approach. In this approach, we build a family of smaller and 
smaller graphs (by contraction), then we calculate a valid 
partition on the smallest graph and we project the result from 
a graph to graph until the initial graph Figure 3. Currently, 
the well-known partitioning and load balancing algorithms 
are multi-level algorithms, which use a decomposition 
algorithm to calculate the partitioning on the smallest 
contracted graph. The decomposition methods consist of 
directly cutting the graph into K parts. Obtaining good 
distributions requires that the K partitions contribute to the 
minimization of the chosen cost function, generally by 
minimizing the cut between the parts of the graph, which has 
the effect of favoring the locality of the communications. 
Among the GP libraries implementing these techniques, one 
can cite METIS [34] or SCOTCH [35]. 

 
This paper aims, on the one hand, to evaluate the performance 
of parallel simulation based on the graph partitioning 
approach, and on the other hand, to propose a performance 
analysis methodology that aims to help scientists to 
investigate the impact of inter-processor communication on 
the performance of an application in order to improve it. 
By adopting this analysis method, developers will be able to 
identify performance problems by investigating the impact of 
communication on the speedup of applications. In this work a 
set of scientific simulation models will be used as practical 
cases to validate our methodology. 

The rest of this paper has been organized as follows: 
Section 2 presents the problem formulation. The detailed 
methodology is described in Section 3. The experimental 
results and discussions are presented in Section 4. Ultimately, 
Section 5 concludes the article. 
 
2. PROBLEM FORMULATION 

Given a non-oriented graph G = (V, E), where V is the set 
of vertices and E is the set of edges that connect pairs of 
vertices. Vertices and edges can be weighted, where |V| is the 
weight of the vertex V and where |E| is the weight of the edge 
E. The problem of partitioning a graph is to divide G into 
disjoint K partition of same size and minimum dependencies 
Fig 3. From a mathematical point of view, we can partition 
the vertices or the edges. On the other hand, in most 
applications, we are only interested in partitioning graph 
vertices. 

Let  and a set of  subsets of , denoted 
. We say that  is a partition of   if : 

The union of all the elements of PK is V, and No subset of 
V that is an element of PK is empty. 

The elements Vk of Pk are called the parts of the partition: 
 
 

The parts must be balanced, that is, of the same size: 
 
 
 

With a minimized cost (cut) function: represents the 
communication time between the processors:  
 

Where:  weight of an edge  
Partitioning serves, among other things, to solve problems of 
engineering, high-performance computing, resolution of 
linear systems, mesh, and in some cases, design of integrated 
circuits. However, some criticisms have been made about the 
use of this approach to model these problems, this is 
particularly the case in [28]. In the literature, graph 
partitioning is called multi-way graph partitioning [29] or 
k-way graph partitioning [30]. The problem of k-way graph 
partitioning is to find a partition in k parts that minimizes an 
objective function f and whose partitioning scale is unitary, 
i.e. the parts must have the same weight, to one unit.  
Despite the success of existing partitioning algorithms, 
research challenges remain and a new distribution algorithm 
should be proposed for efficient execution of simulations. In 
this context, in the rest of this article, we will study the 
distribution and load balancing strategies based on the 
optimal choice of the number of partitions, i.e. the optimal 
number of processors to execute a simulation efficiently and 
effectively. Finding the optimal number of partitions 
(processors) is necessary to optimize the execution time. We 
express the total simulation time Texe as: 

 
Where:  : the time of a calculation iteration, taken 

on the slowest processor and thus minimized by the 
balancing.  

: the time of the communications between processors, 
corresponding to the edge cut of the graph. The computation 
time is arithmetically measurable if we combine the 
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parameters of total load, number of partitions and the 
balancing constraint. The communication time evolves 
logically, proportionally to the number of computing nodes 
(processors). With a large number of nodes, the 
communication time can exceed the execution time of the 
program on a single compute node, Figure 3.  

In order to find the optimal number of partitions to run a 
parallel application, we should characterize the evolution of 
the communication volume.  

 In this paper, we measure the evolution of the 
communication volume in function of the number of 
partitions. In order to show how the structure of the graph 
influence this evolution by relying on a series of 
experimentation using METIS Libraries which implement 
the multilevel k-way Framework. We present experimental 
results on a large number of graphs arising in various 
domains including finite element methods, linear etc... 

. 
 

 
 

 

2.2  

 
3. METHODOLOGY 
The goal of our methodology proposed in this section is to be 
useful to researchers who run simulation applications on HPC 
environments and are ready to understand its performance, 
discovering problems related to communication that can 
potentially affect its efficiency. our methodology consists of 
the following steps: 
3.1. Analysis Steps: The analysis step contains 4: 

A. Partitioning step  
Firstly, we perform partitioning of each graph, which 
represents a simulation, several times by varying the number 
of partitions from 2 to 40, in order to learn more about how 
fast, it can run when using multiple computing nodes, when it 
reaches its maximum speed up, and also to investigate more 
about the problems that limit the performance of the 
parallelization process.  

B. Investigating communication behavior  
The purpose of the second step is to focus on the analysis of 
the behavior of communication volume when increasing the 
number of partitions. This step, allowed us to understand how 
the communication volume impacts the performance of 
parallelization.  

During this step, we also compared the evolution of 
communication volume for each graph and tried to 
understand what parameter engenders difference between the 
graphs. 

C. Determining optimal number of partitions 
Once we understood how the communication volume evolves, 
and determined the relationship between computational and 
communication time for each graph, the next step is to 
determine how many partitions must be invested to reach the 
peak execution time value. to have high performance and 
efficiency, the key solution is to choose the right number of 
processors for a simulation. 
 Using processors as much as possible is not always the right 
choice, in addition, if a simulation is run in parallel on too 
many processors, the communication time between nodes 
may become too long compared to the computation time. The 
cost of communication depends not only on the number of 
messages exchanged between the parties but also on the 
structure of the graph. This is why the cost of communication 
cannot be evaluated without taking into account the topology 
of the graph. We Named P* the number of partitions for 
which the execution time of a simulation is minimum.  

D. Finding the graph characteristics that influence the 
increase in communication time:  

this step aims to find the intrinsic characteristics of the graph, 
which can impact the evolution of communication, more 
precisely, finding the issues that are constraining the 
effectiveness of paralleling simulation. 
3.2. Metrics 
For the evaluation of performance, we used the following 
metrics: 

A. Communication volume: 

Let a graph and consider P be a vector of size V such 
that stores the number of the partition that 
vertex belongs to. 
Let  be the subset of interface (or boarder) vertices. 
That is, each vertex  is connected to at least one 
vertex that belongs to a different partition. For each vertex 

 be the number of domains other than 
 be the vertices adjacent to v belong to. the equation (5) 

corresponds to the total communication volume incurred by 
the partitioning because each interface vertex v needs to be 
sent to all of its  partitions [36] , [37] , [38] . 
 
 
 

Figure 3: Execution time evolution 



               Soumia CHOKRI  et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 10(4),  July – August  2021, 2916 – 2925 
 

2920 
 

 

B. Execution time: 
Execution time is defined as follows in equation 6: 
  
 
w (Pi) is the weight of the partition. 

C. Speedup 
Speedup or acceleration is the gain in partitioning speed over 
k partitions formulated in the equation 7:  
 

D. Efficiency 
Efficiency is the ratio of speedup to the number of processors, 
it can be calculated using equation 8: 

 
K is number of partitions(processors). 
3.3. Data 
The test graphs used for the experimental evaluation have 
been well chosen to be a representative sample of real medium 
and small scale problems mostly based on a mesh and 
comprise 2D and 3D examples of dual graphics and nodal 
graphs.  
These graphs are archived in DIMACS’10 collections [39] 
which contains34 real world graphics from various scientific 
computing applications, such as finite element computations, 
matrix computations, and VLSI design. The weights of their 
vertices and their edges are equal to one; these graphs are not 
amply available because most applications don’t accurately 
estimate costs and it is challenging to extract significant 
conclusions from the few examples which we have access. 
The list of used graphs, their characteristics; notably the 
number of vertices and the number of edges are detailed in the 
table 1. The choice of graphs was carried out in a completely 
random way and didn’t depend on any specific characteristic 
except that it represents a scientific simulation. 
3.4. Tools 
To performs the graph partitioning; we choose METIS [38] 
the most used graph partitioning framework. METIS is a 
Framework for partitioning large irregular graphs, written at 
the University of Minnesota, and is freely available, it 
implements several algorithms based on the multilevel graph 
partitioning paradigm. 
Table 1: Graph used in the experiment 
Nom graphe Nombre de 

nœuds 
Nombre 
d’arrêts 

3elt 4270 13722 
4elt 15606 45878 
144 graphe 144649 1074393 
598a 110971 741934 
add20 2395 7462 
add32 4960 9462 

auto 448695 3314611 
bcsstk29 13992 302748 
bcsstk30 28924 1007824 
bcsstk31 35588 572914 
bcsstk32 44609 985064 
bcsstk33 8738 291583 
Brack 62631 366559 
Crack 10240 30380 
Cs4 22499 43858 
Cti 16840 48232 
data 2851 15093 
fe4elt2 11143 32818 
fe_body 45087 163734 
fe_ocean 143437 409593 
fe_pwt 36519 144794 
fe_rotor 99617 662431 
fe_sphere 16386 49152 
fe_tooth 78136 452591 
finan512 74752 261120 
M14b 214765 1679018 
memplus 17758 54196 
t60k 60005 89440 
uk 4824 6837 
vibrobox 12328 165250 
wave 156317 1059331 
whitaker3 9800 28989 
wing 62032 121544 
wing nodal 10937 75488 
 
4.RESULTS AND DISCUSSION 
In our first set of experiments, we observe that the 
communication volume evolves as the number of partitions 
does. To make the graph comparable we normalized the 
communication volume and expressed it as a percentage of 
total vertex named in this paper “CVa”. We judged that it is 
not useful to represent the detailed results of each graph but 
we preferred to classify the graphs in four classes according to 
the connectivity of the graph and to present the results of only 
one graph per class. The graph we choose are described in the 
table 2: 
Table  2: Results for each graph of our benchmark 
Connectivity 
Range 

Chosen 
Graph 

Connectivity 

1-5  T60k 3   
6-10 3ELT 6 
11-15  Data 11 
Upper than 15  Vibrobox 27 
 

(6) 

(7) 

(8) 
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Figure 6 shows a clear difference in the evolution of the 
communication volume from one graph to another. It 
increases slowly for T60K, 3ELT, Data and increases rapidly 
for the Vibrobox graph. 
This evolution (see figure 4) has a direct impact on the 
evolution of the total execution time, the existing difference 
between the graphs can be explained by their connectivity. 
The greater the connectivity, the faster the communication 
volume evolves. 
 Figure 5 represents the evolution of speedup when we 
increase the number of partitions, and demonstrates that  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
when the communication evolves quickly, the acceleration is 
strongly limited.  
Figure 5, 6 helped us to draw another conclusion which is 
once we reach a number of partitions the gain in speed 
reaches a maximum value. Once this value is reached the 
addition of a partition is no longer justified. We call this 
Number P* and it is the optimal number of partition.  
The efficiency of partitioning decreases as we grow the 
number of partitions.  
The table 3 shows for each graph of our Benchmark the 
connectivity, the optimal number of partitions P* and the 

Graph Name Connectivity P* MaxSpeedup Efficiency  
at P* 

Range 
Connectivity 

Average 
P* 

Average 
MaxSpeedu

p 
uk 

t60k 
add32 
Cs4 

wing 

3 
3 
4 
4 
4 

16 
34 
16 
12 
16 

7,47 
11,91 
12,22 
3,83 
4,97 

46,69 % 
35,03 % 
76,38 % 
31,92 % 
31,06 % 

0-5 18,8 8,08 

fe_ocean 
Cti 

4elt 
fe4elt2 

whitaker3 
Crack 

fe_sphere 
memplus 

add20 
3elt 

finan512 
fe_body 
fe_pwt 

6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
7 
7 
8 

14 
6 

18 
12 
14 
16 
18 
8 
4 

12 
16 
28 
16 

6,09 
2,92 
7,65 
6,09 
5,42 
5,49 
5,37 
1,96 
2,24 

5,02  
12,1 

10,65 
 8,13 

43,50 % 
48,67 % 
42,50 % 
50,75 % 
38,71 % 
34,31 % 
29,83 % 
24,50 % 
56,00 % 
41,83 % 
75,63 % 
38,04 % 
50,81 % 

6-10 14 6,086923077 

data 
fe_tooth 

Brack 
fe_rotor 

598a 
wave 

wing nodal 

11 
12 
12 
13 
13 
14 
14 

8 
12 
14 
14 
10 
12 
6 

3,41 
4,52 
5,17 
5,09 
4,87 
4,26 
2,27 

42,63 % 
37,67 % 
36,93 % 
36,36 % 
48,70 % 
35,50 % 
37,83 % 

10-15 10,8571429 4,227142857 

auto 
144 graphe 

M14b 
vibrobox 
bcsstk31 
bcsstk29 
bcsstk32 
bcsstk33 
bcsstk30 

15 
15 
16 
27 
32 
43 
44 
67 
70 

14 
14 
16 
2 

10 
6 
8 
4 
8 

6,23 
4,73 
5,72 
1,34 
4,21 
3,02 
4,48 
1,67 
3,79 

44,50 % 
33,79 % 
35,75 % 
67,00 % 
42,10 % 
50,33 % 
56,00 % 
41,75 % 
47,38 % 

Sup 15 9,11111111 3,91 
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maximum acceleration we can achieve using multilevel 
K-way partitioning.  
In order to facilitate the reading of the results, we have 
classified the graphs in four classes according to the value of 
their connectivity. We then calculate the average P* and the 
average of Maximum Speedup for each class. 

Comparing the average of maximum speedup and the 
average of P* with the average connectivity of each class, we 
observed a significant correlation between these two 
parameters. The coefficient of correlation between average 
P*and average connectivity is estimated at r=-0,8. (see fig 8) 

The coefficient of correlation between average maximum 
speedup and average connectivity is estimated at r=-0,75. (see 
fig 7) 

Figures 7, 8 show the distribution of respectively maximum 
speedup and optimal number of partitions. 
 

 
 
 

 

 
 
 
 

 
 
 

  
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It should be noted that the correlation between 

connectivity, P * and Maximum Speedup remains very weak. 
This could be explained by the presence of some aberrant 
values as it is the case for example for the graphs Memplus 
and Cti. 

The fact that these two graphs represent an exception 
to the general rule and record low accelerations despite their 
weak connectivity is probably due to their topology. In the 
case of the Memplus, on the observation of the graphic 
representation, we notice that a small number of nodes group 

Figure 6: Evolution of Efficiency  

Figure 8: Maximum Speedup by connectivity 
range 

Figure 4: Cva Evolution by increasing number of partitions 

Figure 5: Evolution of Speedup By increasing number of 
partitions 

Figure 7: P* by connectivity range 
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together a large number of edges. This graph records a 
maximum degree =1100 and an average degree of just 8. 

Concerning the graph Cti it shows a balanced 
distribution of the edges by node however we notice that it is 
divided into several sub graphs which are disconnected from 
one another. 

Thus we conclude that the performance of 
parallelism as a technique allowing to reduce the execution 
time of a scientific simulation is limited by a set of constraints 
relating to the simulation itself.  

The average degree of a graph or otherwise its 
connectivity is not the only parameter that limits this 
performance despite the correlation existing between these 
two parameters. 

During the phase of partitioning the graph, it 
frequently happens that the execution time is largely 
dominated by the time necessary to carry out the 
communications between processors, the cost of the 
communication being able to be higher than the cost of 
executing the normal instruction. In this case, it may then be 
sufficient to estimate the complexity of the number of 
communications required by the simulation.  

We have concluded that the most critical point of 
such execution is the cost of communication. Performance 
can therefore be significantly increased if the time spent 
communicating is reduced or covered. This improvement 
can therefore be obtained either by reducing the number of 
messages sent or by the optimal choice of the number of 
processors. 

5. CONCLUSION 
In this work we have presented the analysis of the behavior of 
scientific simulations when they are executed on several 
computation nodes using graph partitioning. This descriptive 
study made it possible to identify important parameters 
influencing the performance of parallelism but does not in 
any case claim to draw up a model making it possible to 
predict the optimal conditions for the execution of a scientific 
simulation. Certainly there is a strong correlation between the 
connectivity of the graph and these parameters but we should 
investigate more graph’s characteristics besides the 
connectivity that may impact the communication volume that 
later influence the maximum speedup and the optimal 
number of partitions. Once these features are defined it would 
be appropriate to adopt a learning system such as artificial 
neural network to predict in a more or less precise way the 
maximum speedup and the P*. 
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