
 Soumia CHOKRI et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(4), July – August 2021, 2916 – 2925

2916

ABSTRACT

Scientific simulations require both increasing computing and
storage power, parallel and distributed computing are
strongly recommended to deal with them. Despite the power
of the parallel approach to solving complex simulations, it is
more difficult and error-prone, therefore, several factors
create significant programming challenges and have the
effect of reducing performance, which must be carefully
managed to achieve high parallelism.
 This paper aims, on the one hand, to evaluate the
performance of parallelism based on the graph partitioning
approach, and on the other hand, to propose a performance
analysis methodology that aims to help scientists to
investigate the impact of inter-processor communication on
the performance of an application First, a multilevel k way
algorithms are used to compute a distribution of the
calculations and associated data of simulation. Second, a
performance evaluation strategy is used to investigate the
efficiency of parallelism. Finally, we examine the results of
the experiment and explain the perspective of this study.

Key words: High performance computing, Graph
Partitioning; Parallel Computing, Performance evaluation,
Resource Allocation; Scientific simulation.

1. INTRODUCTION

To meet the growing needs of computing power in
simulations, High-Performance Computing Systems (HPCs),
offer potentially very significant computing power and
storage capacity, by adopting a parallelization strategy. High
performance computing (HPC) is an important and
ubiquitous topic in all research fields [1], [2], [16], [17], [18],
[25]. That consists of combining the power of several
thousand processors to perform complex calculations and

massive data processing at high speed. The goal of
parallelization is to cut a problem into several sub-problems,
in order to concurrently solve all the sub-problems [3].
According to Kennedy's methodology [10], the process of
parallelization of a scientific simulation contains 4 stages
illustrated by figure 1: first, the problem is partitioned into
several parts or tasks. This partitioning is obtained using a
decomposition of space or functional decomposition. Then
the communications necessary to obtain the data used during
the execution of the tasks are established. These
communications occur when there are dependencies between
tasks. Then some tasks are grouped together to reduce
communication costs. Finally, these tasks are then placed on
the processors with the objective of reducing the execution
time.

Despite the ability of the parallel approach to solving complex
simulations, it has been documented as error-prone and
difficult [11]. Thus several factors create significant
programming challenges and have the effect of reducing
performance, that must be managed carefully if we are to
achieve high parallelism [12]: such as data decomposition,
the number of processors, inter-processor communication
[15], bandwidth, load balancing...etc.
In order to enhance the performance measures such as
efficiency, acceleration, execution time and scalability [13],
[14], several performance-based metrics have been proposed
in the literature [16], [4]: The parallel execution time is the

Performance Evaluation of Parallel Data-Intensive
Simulations Based on Graph Partitioning Approach

Soumia CHOKRI a*, Sohaib BAROUDb, Safa BELHAOUSc, Mohamed MESTARId,
Mohammed YOUSSFIe

SSDIA laboratory, ENSET, Hassan II University, Mohammedia, Morocco
 achokri.soumaya90@gmail.com, bsohaib.baroud@hotmail.fr,csafaabelhaous@gmail.com,

dmestari@enset-media.ac.ma, emed@youssfi.net

Figure 1: Parallelization process

ISSN 2278-3091
Volume 10, No.4, July - August 2021

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse411042021.pdf

https://doi.org/10.30534/ijatcse/2021/411042021

 Soumia CHOKRI et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(4), July – August 2021, 2916 – 2925

2917

Figure 2: Graph partitioned in k=4

sum of the computation time and communication time. It
depends not only on the problem size but also on the number
of processors used and communication cost between the
processors, the speedup is defined as the ratio between the
time taken to solve the problem on a single processor and the
time taken to solve this same problem on p processors, the
efficiency measures the time actually spent by processors in
the algorithm. It is defined as the ratio between Speedup and
the number of processors.

Parallelizing a scientific simulation application to run in
HPC systems presents many problems. A key problem is the
decomposition and communication task. Several researchers
[18], [19], [20] have studied the impact of decomposition and
communication on parallelism, and found that decomposition
is one of the most difficult phases. Decomposition of an
application is a distribution into tasks and data to be executed
on an architecture composed of a number of processors, where
each processor executes one or more tasks, and the tasks
strictly cooperate by exchanging messages. In such a
numerical simulation, it often happens that the execution time
is largely dominated by the time needed to perform the
communication between processors, as the communication
cost can be higher than the execution cost of a normal
instruction.

The authors [19], [20] asserts that the process of seeking an
appropriate decomposition is a balance of competing forces,
during the decomposition of a problem, we must take into
account the size of the tasks as granularity. A fine granularity
leads to poor performance because of the high additional
costs: the creation of threads, synchronization, etc. Too coarse
granularity may generate not enough parallelism and an
unbalanced load.

 In [21] break, the data distribution into two categories:
static, the number of tasks is fixed at the start of the
simulation, dynamic that evolves during the simulation. The
load balancing is a crucial issue influencing the performance
of parallel simulations. The aim is to distribute roughly the
computational load across multiple processors in order to
minimize the execution time. If the tasks are not evenly
distributed, then it is possible that one processor is overloaded
with work, while another has little work to do, and therefore is
misused. The over-all effect of a load imbalance is, therefore,
to increase the execution time and reduce the overall
efficiency. However, ensuring a truly balanced distribution of
the workload, particularly on a multi-processor architecture,
can lead to significant additional costs mainly in terms of the
inter processor communications.
The graph model is most common approach to overcome
these challenges of parallelism by performing a graph

partitioning [2], [3] in k-parts. The vertices of the graph
represent tasks and edges represent the dependencies between
these tasks. Each part represents all the tasks assigned to a
processor. Two connected vertices that are in two different
parts (one will say that the edge is cut) induce a need for
communication between these two processors. The objective
of the distribution then becomes to build a partition whose
parts are of the same size and cutting a minimum of edges [7].
Generally, this problem is known as an NP-complete [4]
problem. However, several strategies have been proposed [9]
[22], [23], [24], [25]. There are a wide variety of methods for
partitioning meshes. The most common are geometric
methods [25], based only on the coordinates of elements in
space, and graph-based methods [5], [6], [25] using
computational dependencies between elements and focusing
only on topology and not to the geometry of the problem.

Graph partitioning(GP) is a popular approach [3], [26] to
solve the load balancing challenge in HPC. Consequently, to
balance the load of a parallel simulation between processors,
it is possible to carry out a GP process into K parts and to
assign each part to a processor. GP aims at modelling the
support of computation of the simulation, in general, a mesh
with a graph and to divide this graph in K part, each part
being associate with a processor. the GP problem has the
following objectives:

1. on the one hand, to minimize the calculation time by
balancing the weight of the parts;

2. and on the other hand, to minimize the
communication time by minimizing the weight of
the edges cut between the parts, as shown in
Figure 2. When GP is used for load balancing in a
parallel architecture, a balanced distribution of
the workload among the available processors is
achieved, while the communication costs of the
simulation are reduced. Subsequently, GP
emerges as an important parallelization method
that ensures high performance by significantly
minimizing total execution time.

GP is an NP-complete problem [4], [32]. We, therefore, use
different heuristics to be able to calculate a partition within a

 Soumia CHOKRI et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(4), July – August 2021, 2916 – 2925

2918

reasonable time. A plethora of GP-based algorithms for data
distribution and load balancing have been developed. The
multilevel algorithm appeared as a very efficient method for
calculating a k-way balanced partition of a graph [31], [33],
[9]. Multi-level Framework uses a divide & conquer
approach. In this approach, we build a family of smaller and
smaller graphs (by contraction), then we calculate a valid
partition on the smallest graph and we project the result from
a graph to graph until the initial graph Figure 3. Currently,
the well-known partitioning and load balancing algorithms
are multi-level algorithms, which use a decomposition
algorithm to calculate the partitioning on the smallest
contracted graph. The decomposition methods consist of
directly cutting the graph into K parts. Obtaining good
distributions requires that the K partitions contribute to the
minimization of the chosen cost function, generally by
minimizing the cut between the parts of the graph, which has
the effect of favoring the locality of the communications.
Among the GP libraries implementing these techniques, one
can cite METIS [34] or SCOTCH [35].

This paper aims, on the one hand, to evaluate the performance
of parallel simulation based on the graph partitioning
approach, and on the other hand, to propose a performance
analysis methodology that aims to help scientists to
investigate the impact of inter-processor communication on
the performance of an application in order to improve it.
By adopting this analysis method, developers will be able to
identify performance problems by investigating the impact of
communication on the speedup of applications. In this work a
set of scientific simulation models will be used as practical
cases to validate our methodology.

The rest of this paper has been organized as follows:
Section 2 presents the problem formulation. The detailed
methodology is described in Section 3. The experimental
results and discussions are presented in Section 4. Ultimately,
Section 5 concludes the article.

2. PROBLEM FORMULATION

Given a non-oriented graph G = (V, E), where V is the set
of vertices and E is the set of edges that connect pairs of
vertices. Vertices and edges can be weighted, where |V| is the
weight of the vertex V and where |E| is the weight of the edge
E. The problem of partitioning a graph is to divide G into
disjoint K partition of same size and minimum dependencies
Fig 3. From a mathematical point of view, we can partition
the vertices or the edges. On the other hand, in most
applications, we are only interested in partitioning graph
vertices.

Let and a set of subsets of , denoted
. We say that is a partition of if :

The union of all the elements of PK is V, and No subset of
V that is an element of PK is empty.

The elements Vk of Pk are called the parts of the partition:

The parts must be balanced, that is, of the same size:

With a minimized cost (cut) function: represents the
communication time between the processors:

Where: weight of an edge
Partitioning serves, among other things, to solve problems of
engineering, high-performance computing, resolution of
linear systems, mesh, and in some cases, design of integrated
circuits. However, some criticisms have been made about the
use of this approach to model these problems, this is
particularly the case in [28]. In the literature, graph
partitioning is called multi-way graph partitioning [29] or
k-way graph partitioning [30]. The problem of k-way graph
partitioning is to find a partition in k parts that minimizes an
objective function f and whose partitioning scale is unitary,
i.e. the parts must have the same weight, to one unit.
Despite the success of existing partitioning algorithms,
research challenges remain and a new distribution algorithm
should be proposed for efficient execution of simulations. In
this context, in the rest of this article, we will study the
distribution and load balancing strategies based on the
optimal choice of the number of partitions, i.e. the optimal
number of processors to execute a simulation efficiently and
effectively. Finding the optimal number of partitions
(processors) is necessary to optimize the execution time. We
express the total simulation time Texe as:

Where: : the time of a calculation iteration, taken

on the slowest processor and thus minimized by the
balancing.

: the time of the communications between processors,
corresponding to the edge cut of the graph. The computation
time is arithmetically measurable if we combine the

 Soumia CHOKRI et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(4), July – August 2021, 2916 – 2925

2919

parameters of total load, number of partitions and the
balancing constraint. The communication time evolves
logically, proportionally to the number of computing nodes
(processors). With a large number of nodes, the
communication time can exceed the execution time of the
program on a single compute node, Figure 3.

In order to find the optimal number of partitions to run a
parallel application, we should characterize the evolution of
the communication volume.

 In this paper, we measure the evolution of the
communication volume in function of the number of
partitions. In order to show how the structure of the graph
influence this evolution by relying on a series of
experimentation using METIS Libraries which implement
the multilevel k-way Framework. We present experimental
results on a large number of graphs arising in various
domains including finite element methods, linear etc...

.

2.2

3. METHODOLOGY
The goal of our methodology proposed in this section is to be
useful to researchers who run simulation applications on HPC
environments and are ready to understand its performance,
discovering problems related to communication that can
potentially affect its efficiency. our methodology consists of
the following steps:
3.1. Analysis Steps: The analysis step contains 4:

A. Partitioning step
Firstly, we perform partitioning of each graph, which
represents a simulation, several times by varying the number
of partitions from 2 to 40, in order to learn more about how
fast, it can run when using multiple computing nodes, when it
reaches its maximum speed up, and also to investigate more
about the problems that limit the performance of the
parallelization process.

B. Investigating communication behavior
The purpose of the second step is to focus on the analysis of
the behavior of communication volume when increasing the
number of partitions. This step, allowed us to understand how
the communication volume impacts the performance of
parallelization.

During this step, we also compared the evolution of
communication volume for each graph and tried to
understand what parameter engenders difference between the
graphs.

C. Determining optimal number of partitions
Once we understood how the communication volume evolves,
and determined the relationship between computational and
communication time for each graph, the next step is to
determine how many partitions must be invested to reach the
peak execution time value. to have high performance and
efficiency, the key solution is to choose the right number of
processors for a simulation.
 Using processors as much as possible is not always the right
choice, in addition, if a simulation is run in parallel on too
many processors, the communication time between nodes
may become too long compared to the computation time. The
cost of communication depends not only on the number of
messages exchanged between the parties but also on the
structure of the graph. This is why the cost of communication
cannot be evaluated without taking into account the topology
of the graph. We Named P* the number of partitions for
which the execution time of a simulation is minimum.

D. Finding the graph characteristics that influence the
increase in communication time:

this step aims to find the intrinsic characteristics of the graph,
which can impact the evolution of communication, more
precisely, finding the issues that are constraining the
effectiveness of paralleling simulation.
3.2. Metrics
For the evaluation of performance, we used the following
metrics:

A. Communication volume:

Let a graph and consider P be a vector of size V such
that stores the number of the partition that
vertex belongs to.
Let be the subset of interface (or boarder) vertices.
That is, each vertex is connected to at least one
vertex that belongs to a different partition. For each vertex

 be the number of domains other than
 be the vertices adjacent to v belong to. the equation (5)

corresponds to the total communication volume incurred by
the partitioning because each interface vertex v needs to be
sent to all of its partitions [36] , [37] , [38] .

Figure 3: Execution time evolution

 Soumia CHOKRI et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(4), July – August 2021, 2916 – 2925

2920

B. Execution time:
Execution time is defined as follows in equation 6:

w (Pi) is the weight of the partition.

C. Speedup
Speedup or acceleration is the gain in partitioning speed over
k partitions formulated in the equation 7:

D. Efficiency
Efficiency is the ratio of speedup to the number of processors,
it can be calculated using equation 8:

K is number of partitions(processors).
3.3. Data
The test graphs used for the experimental evaluation have
been well chosen to be a representative sample of real medium
and small scale problems mostly based on a mesh and
comprise 2D and 3D examples of dual graphics and nodal
graphs.
These graphs are archived in DIMACS’10 collections [39]
which contains34 real world graphics from various scientific
computing applications, such as finite element computations,
matrix computations, and VLSI design. The weights of their
vertices and their edges are equal to one; these graphs are not
amply available because most applications don’t accurately
estimate costs and it is challenging to extract significant
conclusions from the few examples which we have access.
The list of used graphs, their characteristics; notably the
number of vertices and the number of edges are detailed in the
table 1. The choice of graphs was carried out in a completely
random way and didn’t depend on any specific characteristic
except that it represents a scientific simulation.
3.4. Tools
To performs the graph partitioning; we choose METIS [38]
the most used graph partitioning framework. METIS is a
Framework for partitioning large irregular graphs, written at
the University of Minnesota, and is freely available, it
implements several algorithms based on the multilevel graph
partitioning paradigm.
Table 1: Graph used in the experiment
Nom graphe Nombre de

nœuds
Nombre
d’arrêts

3elt 4270 13722
4elt 15606 45878
144 graphe 144649 1074393
598a 110971 741934
add20 2395 7462
add32 4960 9462

auto 448695 3314611
bcsstk29 13992 302748
bcsstk30 28924 1007824
bcsstk31 35588 572914
bcsstk32 44609 985064
bcsstk33 8738 291583
Brack 62631 366559
Crack 10240 30380
Cs4 22499 43858
Cti 16840 48232
data 2851 15093
fe4elt2 11143 32818
fe_body 45087 163734
fe_ocean 143437 409593
fe_pwt 36519 144794
fe_rotor 99617 662431
fe_sphere 16386 49152
fe_tooth 78136 452591
finan512 74752 261120
M14b 214765 1679018
memplus 17758 54196
t60k 60005 89440
uk 4824 6837
vibrobox 12328 165250
wave 156317 1059331
whitaker3 9800 28989
wing 62032 121544
wing nodal 10937 75488

4.RESULTS AND DISCUSSION
In our first set of experiments, we observe that the
communication volume evolves as the number of partitions
does. To make the graph comparable we normalized the
communication volume and expressed it as a percentage of
total vertex named in this paper “CVa”. We judged that it is
not useful to represent the detailed results of each graph but
we preferred to classify the graphs in four classes according to
the connectivity of the graph and to present the results of only
one graph per class. The graph we choose are described in the
table 2:
Table 2: Results for each graph of our benchmark
Connectivity
Range

Chosen
Graph

Connectivity

1-5 T60k 3
6-10 3ELT 6
11-15 Data 11
Upper than 15 Vibrobox 27

(6)

(7)

(8)

 Soumia CHOKRI et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(4), July – August 2021, 2916 – 2925

2921

Figure 6 shows a clear difference in the evolution of the
communication volume from one graph to another. It
increases slowly for T60K, 3ELT, Data and increases rapidly
for the Vibrobox graph.
This evolution (see figure 4) has a direct impact on the
evolution of the total execution time, the existing difference
between the graphs can be explained by their connectivity.
The greater the connectivity, the faster the communication
volume evolves.
 Figure 5 represents the evolution of speedup when we
increase the number of partitions, and demonstrates that

when the communication evolves quickly, the acceleration is
strongly limited.
Figure 5, 6 helped us to draw another conclusion which is
once we reach a number of partitions the gain in speed
reaches a maximum value. Once this value is reached the
addition of a partition is no longer justified. We call this
Number P* and it is the optimal number of partition.
The efficiency of partitioning decreases as we grow the
number of partitions.
The table 3 shows for each graph of our Benchmark the
connectivity, the optimal number of partitions P* and the

Graph Name Connectivity P* MaxSpeedup Efficiency
at P*

Range
Connectivity

Average
P*

Average
MaxSpeedu

p
uk

t60k
add32
Cs4

wing

3
3
4
4
4

16
34
16
12
16

7,47
11,91
12,22
3,83
4,97

46,69 %
35,03 %
76,38 %
31,92 %
31,06 %

0-5 18,8 8,08

fe_ocean
Cti

4elt
fe4elt2

whitaker3
Crack

fe_sphere
memplus

add20
3elt

finan512
fe_body
fe_pwt

6
6
6
6
6
6
6
6
6
6
7
7
8

14
6

18
12
14
16
18
8
4

12
16
28
16

6,09
2,92
7,65
6,09
5,42
5,49
5,37
1,96
2,24

5,02
12,1

10,65
 8,13

43,50 %
48,67 %
42,50 %
50,75 %
38,71 %
34,31 %
29,83 %
24,50 %
56,00 %
41,83 %
75,63 %
38,04 %
50,81 %

6-10 14 6,086923077

data
fe_tooth

Brack
fe_rotor

598a
wave

wing nodal

11
12
12
13
13
14
14

8
12
14
14
10
12
6

3,41
4,52
5,17
5,09
4,87
4,26
2,27

42,63 %
37,67 %
36,93 %
36,36 %
48,70 %
35,50 %
37,83 %

10-15 10,8571429 4,227142857

auto
144 graphe

M14b
vibrobox
bcsstk31
bcsstk29
bcsstk32
bcsstk33
bcsstk30

15
15
16
27
32
43
44
67
70

14
14
16
2

10
6
8
4
8

6,23
4,73
5,72
1,34
4,21
3,02
4,48
1,67
3,79

44,50 %
33,79 %
35,75 %
67,00 %
42,10 %
50,33 %
56,00 %
41,75 %
47,38 %

Sup 15 9,11111111 3,91

 Soumia CHOKRI et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(4), July – August 2021, 2916 – 2925

2922

maximum acceleration we can achieve using multilevel
K-way partitioning.
In order to facilitate the reading of the results, we have
classified the graphs in four classes according to the value of
their connectivity. We then calculate the average P* and the
average of Maximum Speedup for each class.

Comparing the average of maximum speedup and the
average of P* with the average connectivity of each class, we
observed a significant correlation between these two
parameters. The coefficient of correlation between average
P*and average connectivity is estimated at r=-0,8. (see fig 8)

The coefficient of correlation between average maximum
speedup and average connectivity is estimated at r=-0,75. (see
fig 7)

Figures 7, 8 show the distribution of respectively maximum
speedup and optimal number of partitions.

It should be noted that the correlation between

connectivity, P * and Maximum Speedup remains very weak.
This could be explained by the presence of some aberrant
values as it is the case for example for the graphs Memplus
and Cti.

The fact that these two graphs represent an exception
to the general rule and record low accelerations despite their
weak connectivity is probably due to their topology. In the
case of the Memplus, on the observation of the graphic
representation, we notice that a small number of nodes group

Figure 6: Evolution of Efficiency

Figure 8: Maximum Speedup by connectivity
range

Figure 4: Cva Evolution by increasing number of partitions

Figure 5: Evolution of Speedup By increasing number of
partitions

Figure 7: P* by connectivity range

 Soumia CHOKRI et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(4), July – August 2021, 2916 – 2925

2923

together a large number of edges. This graph records a
maximum degree =1100 and an average degree of just 8.

Concerning the graph Cti it shows a balanced
distribution of the edges by node however we notice that it is
divided into several sub graphs which are disconnected from
one another.

Thus we conclude that the performance of
parallelism as a technique allowing to reduce the execution
time of a scientific simulation is limited by a set of constraints
relating to the simulation itself.

The average degree of a graph or otherwise its
connectivity is not the only parameter that limits this
performance despite the correlation existing between these
two parameters.

During the phase of partitioning the graph, it
frequently happens that the execution time is largely
dominated by the time necessary to carry out the
communications between processors, the cost of the
communication being able to be higher than the cost of
executing the normal instruction. In this case, it may then be
sufficient to estimate the complexity of the number of
communications required by the simulation.

We have concluded that the most critical point of
such execution is the cost of communication. Performance
can therefore be significantly increased if the time spent
communicating is reduced or covered. This improvement
can therefore be obtained either by reducing the number of
messages sent or by the optimal choice of the number of
processors.

5. CONCLUSION
In this work we have presented the analysis of the behavior of
scientific simulations when they are executed on several
computation nodes using graph partitioning. This descriptive
study made it possible to identify important parameters
influencing the performance of parallelism but does not in
any case claim to draw up a model making it possible to
predict the optimal conditions for the execution of a scientific
simulation. Certainly there is a strong correlation between the
connectivity of the graph and these parameters but we should
investigate more graph’s characteristics besides the
connectivity that may impact the communication volume that
later influence the maximum speedup and the optimal
number of partitions. Once these features are defined it would
be appropriate to adopt a learning system such as artificial
neural network to predict in a more or less precise way the
maximum speedup and the P*.

REFERENCES
1. Jannesari A, Wolf F, Tichy WF. SEPS 2014: first

international workshop on software engineering for
parallel systems. In: SPLASH ’14. Association for
Computing Machinery; 2014; New York, NY,
USA: 85–86.

2. Amaral V, Norberto B, Goulão M, et al.
Programming languages for data-Intensive HPC
applications: A systematic mapping study.
Parallel Computing 2020; 91: 102584. doi:
10.1016/j.parco.2019.102584.

3. Asanovic K, Bodik R, Demmel J, et al. A view of the
parallel computing landscape. Communications of
the ACM 2009; 52(10): 56–67. doi:
10.1145/1562764.1562783.

4. Kwiatkowski J. Evaluation of Parallel Programs by
Measurement of Its Granularity. In: Wyrzykowski
R, Dongarra J, Paprzycki M, Waśniewski J., eds.
Parallel Processing and Applied
MathematicsLecture Notes in Computer Science.
Springer; 2002; Berlin, Heidelberg: 145–153.

5. Teresco JD, Devine KD, Flaherty JE. Partitioning
and Dynamic Load Balancing for the Numerical
Solution of Partial Differential Equations. In:
Bruaset AM, Tveito A., eds. Numerical Solution of
Partial Differential Equations on Parallel
Computers. 51. Berlin/Heidelberg: Springer-Verlag.
2006 (pp. 55–88)

6. Rus P, Štok B, Mole N. Parallel computing with load
balancing on heterogeneous distributed systems.
Advances in Engineering Software 2003; 34(4):
185–201. doi: 10.1016/S0965-9978(02)00141-2

7. Hendrickson B, Leland R. An Improved Spectral
Graph Partitioning Algorithm for Mapping
Parallel Computations. SIAM Journal on
Scientific Computing 1995; 16(2): 452–469.
Publisher: Society for Industrial and Applied
Mathematicsdoi:10.1137/0916028

8. Hendrickson B, Kolda TG. Graph partitioning
models for parallel computing q. Parallel
Computing Elsevier 2000: 16.

9. Chokri S, Baroud S, Belhaous S, Bentaleb M, Mestari
M, Youssfi ME. Heuristics for dynamic load
balancing in parallel computing. In: 2018 4th
International Conference on Optimization and
Applications (ICOA). IEEE Xplore; 2018: 1–5

10. Pankratius V, Schaefer C, Jannesari A, Tichy WF.
Software engineering for multicore systems: an
experience report. In: IWMSE ’08. Association for

 Soumia CHOKRI et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(4), July – August 2021, 2916 – 2925

2924

Computing Machinery; 2008; New York, NY, USA:
53–60

11. Dongarra J, Foster I, Fox G, et al., eds.Source book
of parallel computing. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc. . 2003.

12. Meade A, Buckley J, Collins JJ. Challenges of
evolving sequential to parallel code: an
exploratory review. Proceedings of the 12th
International Workshop on Principles of Software
Evolutionand the 7th annual ERCIM Workshop on
SoftwareEvolution. ACM. 2011: 5.

13. Nielsen IM, Janssen CL. Multicore Challenges and
Benefits for High Performance Scientific
Computing. Scientific Programming 2008; 16(4):
277–285. doi: 10.1155/2008/450818

14. McCool MD. Scalable Programming Models for
Massively Multicore Processors. Proceedings of
the IEEE 2008; 96(5): 816–831. Conference Name:
Proceedings of the IEEEdoi:
10.1109/JPROC.2008.917731

15. Muresano R, Meyer H, Rexachs D, Luque E. An
approach for an efficient execution of SPMD
applications on Multi-core environments. Future
Generation Computer Systems 2017; 66: 11–26. doi:
10.1016/j.future.2016.06.016

16. Yan B, Regueiro R. Superlinear Speedup
Phenomenon in Parallel 3D Discrete Element
Method (DEM) Simulations of Complex-shaped
Particles. Parallel Computing 2018; 75. doi:
10.1016/j.parco.2018.03.007

17. Schryen G. Parallel computational optimization in
operations research: A new integrative
framework, literature review and research
directions. European Journal of Operational
Research 2020; 287(1): 1–18. Publisher: Elsevier.

18. Meade A, Deeptimahanti DK, Buckley J, Collins JJ.
An empirical study of data decomposition for
software parallelization. Journal of Systems and
Software 2017; 125. doi: 10.1016/j.jss.2016.02.002

19. Dovolnov E, Kalinov A, Klimov S. Natural Block
Data Decomposition for Heterogeneous Clusters.
In: Proceedings of the 17th International
Symposium on Parallel and Distributed Processing
IPDPS ’03. IEEE Computer Society; 2003; USA:
102.1.

20. Massingill BL, Mattson TG, Sanders BA.
Reengineering for Parallelism: an entry point
into PLPP for legacy applications. Concurrency
and Computation: Practice and Experience 2007;

19(4): 503–529. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe
.1147doi: https://doi.org/10.1002/cpe.1147

21. Pautasso C, Alonso G. Parallel computing patterns
for Grid workflows. In: 2006 Workshop on
Workflows in Support of Large-Scale Science. IEEE
Computer Society; 2006: 1–10. ISSN: 2151-1381

22. Campbell PM, Devine KD, Flaherty JE, Gervasio
LG, Teresco JD. Dynamic Octree Load Balancing
Using Space-Filling Curves. Tech. Rep. CS-03-01,
Williams College Department of Computer Science;
2003.

23. Meyerhenke H, Monien B, Schamberger S.
Accelerating shape optimizing load balancing for
parallel FEM simulations by algebraic multigrid.
In: Proceedings 20th IEEE International Parallel &
Distributed Processing Symposium. IEEE; 2006;
Rhodes Island, Greece: 10 pp.

24. Sanders P, Schulz C. Think Locally, Act Globally:
Highly Balanced Graph Partitioning. In:
Hutchison D, Kanade T, Kittler J, et al., eds.
Experimental Algorithms. 7933. Berlin, Heidelberg:
Springer Berlin Heidelberg. 2013 (pp. 164–175).
Series Title: Lecture Notes in Computer Science

25. Hendrickson B, Kolda TG. Graph partitioning for
parallel computing. Parallel Computing 2000;
26(12): 1519–1534.

26. Pothen A, Simon HD, Liou KP. Partitioning Sparse
Matrices with Eigenvectors of Graphs. SIAM
Journal on Matrix Analysis and Applications 1990;
11(3): 430–452. Publisher: Society for Industrial and
Applied Mathematicsdoi: 10.1137/0611030

27. Garey MR, Johnson DS. Computers and
Intractability; A Guide to the Theory of
NP-Completeness. New York, NY, USA:W. H.
Freeman & Co. . 1990.

28. Andreev K, Räcke H. Balanced graph
partitioning. In: SPAA ’04. Association for
Computing Machinery; 2004; New York, NY, USA:
120–124

29. [29] Pellegrini F. Graph partitioning based methods
and tools for scientific computing.
ParallelComputing 1997; 23(1): 153–164. doi:
10.1016/S0167-8191(96)00102-0

30. Wang N, Wang Z, Gu Y, Bao Y, Yu G. TSH:
Easy-to-be distributed partitioning for
large-scale graphs. Future Generation Computer
Systems 2019; 101: 804–818. doi:
10.1016/j.future.2019.06.033

 Soumia CHOKRI et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(4), July – August 2021, 2916 – 2925

2925

31. Karypis G, Kumar V. Multilevel k-way
Partitioning Scheme for Irregular Graphs.
Journal of Parallel and Distributed Computing 1998;
48(1): 96–129. doi: 10.1006/jpdc.1997.1404

32. Yarack E, Carletta J. An evaluation of move-based
multi-way partitioning algorithms. In:
Proceedings 2000 International Conference on
Computer Design. ; 2000: 363–369. ISSN:
1063-6404

33. Karypis G. METIS - Serial Graph Partitioning
and Fill-reducing Matrix Ordering | Karypis Lab.
2013. Version 5.1.0,
http://glaros.dtc.umn.edu/gkhome/metis/metis/over
view.

34. Bader DA, Kappes A, Meyerhenke H, Sanders P,
Schulz C, Wagner D. Benchmarking for Graph
Clustering and Partitioning. In: Alhajj R, Rokne J.
, eds. Encyclopedia of Social Network Analysis and
MiningNew York, NY: Springer. 2018 (pp.
161–171)

35. Soper A, Walshaw C, Cross M. A Combined
Evolutionary Search and Multilevel Optimisation
Approach to GraphPartitioning. Journal of Global
Optimization 2004; 29:
225–241.doi:10.1023/B:JOGO.0000042115.44455.
f3

36. Rossi RA, Ahmed NK. The Network Data
Repository with Interactive Graph Analytics and
Visualization. 2015: 2.
http//http://networkrepository.com.

37. Schloegel K, Karypis G, Kumar V. Graph
partitioning for high-performance scientific
simulations. In: San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc. 2003 (pp. 491–541).

38. Kernighan BW, Lin S. An efficient heuristic
procedure for partitioning graphs. The Bell
System Technical Journal 1970; 49(2): 291–307.
Conference Name: The Bell System Technical
Journaldoi: 10.1002/j.1538-7305.1970.tb01770.x

39. Karypis G, Kumar V. Parallel multilevel k-way
partitioning scheme for irregular graphs. In:
ACM Press; 1996; Pittsburgh, Pennsylvania, United
States: 35–es

