
Galal A. Al-Rummana et  al.,  International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May -  June 2021, 1776 – 1783 

1776 
 

 

 
ABSTRACT 
 

In the present study, an algorithm for big data encryption 
has been designed which is concerned with encrypting data in 
a short time and in a safe manner and difficult to be penetrated 
by attackers and hackers according to the mechanism used for 
encryption in this study. 

The proposed algorithm is a development of an earlier 
NSCT algorithm. This development is based on adding a key 
expansion mechanism to generate keys by F-function, and 
also the number of cycles have been reduced to get less time. 
The proposed algorithm has been implemented in three 
stages; the first stage is implemented by FELICS simulation 
to find out the efficiency of the algorithm. In the second stage 
the proposed algorithm is implemented on the Java language 
to encrypt the text and to find out the execution time for the 
encryption. In the last step, the proposed algorithm is 
implemented on the MATLAB language to encrypt images 
and to know the performance of the algorithm in terms of 
countering attacks by hackers. 
After performing these steps and obtaining the results 
presented in this study, we can say that the proposed 
algorithm is capable of dealing with big data and that it can be 
considered safe and free from risks. 
 
Key words: Big Data, Big Data Security, Big Data 
Encryption, Cryptography, key Generation. 
 
1. INTRODUCTION 
 
From day to another, information technology is moving at a 
fast pace towards a very great horizon. The data is increasing 
tremendously due to the massive use of modern technology 
that has become present in every part of the world to manage 
the affairs of people, organizations and governments and 
facilitate their work. This tremendous acceleration imposes 
the existence of huge data that are difficult to quantify, for 
instance, at the home level a large amount of data is generated, 
so how is the situation at a larger level for companies, 
institutions and governments. Taking all these in 
consideration, serious questions should be raised; 

 How can we protect this data safely? , 
 Are the traditional protection systems in place now 

capable of protecting in the same manner as they 

 
 

were previously? And 
 Are there no other ways to deal with, analyze and 

store these data more accurately? 
By observing the data, we find that their increase is not 

limited to an individual level, as we note that there are many 
areas for data that include science, medicine and other 
different fields, and this does not include structured data only, 
but exceeds them to unstructured data and semi-structured 
data. 

When describing these data, the matter is focused on their 
quantitative size, we can say that they are (terabyte) or (beta 
byte), and because they are of this enormous size, it is certain 
that they carry sensitive data, which makes the possibility of 
data corruption a source of concern and fear for the user. 
However, it becomes more serious when data corruption 
happened in government or private institutions. So, it must be 
protected by strong systems that keep them safe from any 
attack and damage, and we can also say that volume, variety 
and velocity are among the most important characteristics of 
big data [1].  
Therefore, in this study, we will talk about solutions that are 
summarized in improving one of the data encryption 
techniques used to encrypt big data. This can be done through 
making a small change in the structure of the previous 
algorithm, in terms of the key and the number of cycles, as 
well as a comparison of the new algorithm with some existing 
algorithms for encrypting big data. This will improve work 
efficiency and reduce execution time by reducing the number 
of cycles. 
 
Aim of the study 
The aim of this study is to compare the performance and 
security of the encryption system in the New Stream Cipher 
Technique for Data Encryption (NSCT), Blowfish, 
Novel-Blowfish, and the proposed algorithm. The study also 
aims to calculate the execution time taken in encryption and 
which one is more appropriate for big data. 
 
2. LITERATURE REVIEW 
 
Generally, the science of cryptography is the study of 
concealing information and the permission of protection of 
information from other third parties when communication 
occurs through an unreliable medium such as the internet. 
This science has two encryption keys: the public encryption 
key and the private encryption key. 

 
Faster Big Data Encryption Technique Using Key Generation 

Galal A. Al-Rummana1, Abdulrazzaq H. A. Al-Ahdal2, G. N. Shinde3 
1 School of Computational Sciences, S.R.T.M. University, India,Galal300z@gmail.com 

2 School of Computational Sciences, S.R.T.M. University, India,alahdal201211@gmail.com 
3Yeshwant College, Former Pro-Vice Chancellor, S.R.T.M. University, India, shindegn@yahoo.co.in 

 

ISSN 2278-3091 
Volume 10, No.3, May - June 2021 

International Journal of Advanced Trends in Computer Science and Engineering 
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse411032021.pdf 

https://doi.org/10.30534/ijatcse/2021/411032021 
 



Galal A. Al-Rummana et  al.,  International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May -  June 2021, 1776 – 1783 

1777 
 

 

In big data technology, we deal with symmetric algorithms 
not asymmetric algorithms because the asymmetric 
algorithms are very slow and takes very long time. The 
symmetric algorithms are used in many modern computer 
systems to provide security for sensitive information.  
 
There are many standard basic algorithms that are used for 
encryption, but in term of productivity, you may find that the 
Blowfish algorithm is one of the algorithms that have proven 
to be effective from unbreakable encryption non-penetration 
compared to similar algorithms such as DES and T-DES [2], 
[3]. In the Big data, we need to have the encrypting and 
decrypting in a shorter time as possible. Returning to the 
Blowfish, we find that it needs less time than other algorithms 
such as AES [4]. 
 
Thoyazan and B Rama [5] worked to protect large data by 
improving the Blowfish algorithm and merging it with the 
Hadoop to ensure a high level of security against any 
attempted attack. This method is based on the original 
Blowfish algorithm with a simple modification to process 
more than one block of 128 bits and reduce the number of 
cycles. As for the key, it extracts the key for each operation 
from the predefined main key. 
 
Gupta, et al. [6] improved the security of big data by using the 
technology of Elliptic Curve Cryptography by storing the data 
in the cloud. They also introduced in their paper the 
techniques of processing the big data used to secure the data 
and they explain that this technology reduces time and money 
and also leads to secure access to data as well as increases 
reliability and scalability. 
 
Galal, et al. [7] suggested a protection for large data by using 
an encryption technique that depends on processing more than 
one block, dividing each block into two parts, switching 
between them and merging them, and then applying a logical 
operation XOR and finally the cycle process. This model 
shows that there is a large key space that makes the text secure 
and protected from the attacks and hackers, then it shows the 
execution time and some performance analysis metrics. 
 
Vinit Gopal Savant [8] discusses Big data security issues and 
security challenges in a Big data environment and categorizes 
them into authentication level, data level, network level, and 
general problem level. He also discusses approaches to 
encryption techniques. 
 
ShadiAljawarneh, et al. [9] develop and design a 
resource-efficient encryption algorithm system that applies 
multi-threaded programming process for encrypting 
multimedia big data. This proposed system describes a 
multi-level encryption model that uses the Feistel encrypting 
system, genetic algorithms, and the Advanced Encryption 
Standard (AES). They evaluate their system to multimedia 
data and compared with standard encryption algorithms such 
as RC6, MARS, 3-DES, DES, and Blowfish for 
computational runtime and transfer rate for encoding and 
decoding actions. In addition, a multi-threaded programming 
approach was adopted to implement the proposed coding 

scheme in order to enhance the system's efficiency and 
characteristics.  
H.Amellal, et al. [10] studied big data security based on 
quantum information theory. They discuss the opportunities 
provided by quantum key distribution (QKD) protocols and 
quantum algorithms to increase the security of big data. In this 
regard, the researchers used the BB84 protocol to transport 
qubits sent via a quantum channel and Grover's algorithm to 
search NoSql databases in the quantum environment. In order 
to analyze the effectiveness of quantitative information theory 
on big data. 
 
3. THE PROPOSED ALGORITHM 
 
The proposed algorithm encrypts the data in a complex 
manner and by processing the data in blocks, each block used 
a new key. The goal of improving the algorithm is to improve 
efficiency and reduce execution time by reducing the number 
of cycles and also to make key expansion. When designing a 
new encryption algorithm, it is necessary to focus on the 
environment in which the algorithm works, the execution time 
spent, and the results of the encrypted text. This means that 
the algorithm has enough confusion for the text. 
In our proposed algorithm, the file to be encrypted is divided 
into several blocks, each block has 64 bits, every block is 
processed individually and includes a sequence of operations 
such as splitting, switching, logical operations such as xor, 
then splitting into smaller blocks, and a specific technique for 
bit selection after that grouping, finally at the end of this 
sequence there is a 7-cycle rotation process as show in Figure 
(1).  
This process makes the encrypted text difficult to predict and 
protect it from break-ins, also keeps it safe from attack and 
hackers. As for what is new in these algorithms is the key 
generation technology, key expansion, which has been used to 
generate a key that is difficult to guess because in this 
technology we use what is called an f-function. We will 
explain some of the concepts in the following. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Encryption Process. 



Galal A. Al-Rummana et  al.,  International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May -  June 2021, 1776 – 1783 

1778 
 

 

3.1 Key Expansion 
 
We all know that the key is the most important part of any 
encryption algorithm because the person who knows the key 
will be able to obtain the encrypted text. Therefore, 
consideration must be given to the importance of the key, the 
mechanism for generating the key that creates confusion that 
lead to increase security and difficulty in guessing and 
predicting. The proposed algorithm uses a 64-bit key to 
encrypt a 64-bit block. The key is entered by the user, and then 
the process of generating the new key is done by the method 
of key expansion, which is shown in Figure (2). 
 
In the key expansion process, the key entered by the user is 
separated into four sections. Each section contains 16 bits, and 
then the first bit of each section is grouped into a block and 
then the second bit, and so on until four blocks are obtained, 
each block has 16 bits. In the next step, the four blocks will be 
input on the F-function that will be explained in section 3.2. 
and the output is four keys each key has 16-bit, now the four 
keys (GFK1, GFK2, GFK3, GFK4) are combined to obtain 
the key with 64 bit which the encryption is done by it. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Key Expansion Process. 
 
 
 
 
 
 
 
Figure 3: P and Q Value. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: F-Function [13]. 

3.2 F- Function 
 
This strategy is also called the strategy of confusion and 
diffusion because it intends to confuse the input values and 
convert them to other new values, as illustrated in the Figure 
(3). In Figure (4). We can find an illustration of this strategy 
and mechanism of this action [11], [12], [13]. 
 

3.3 Decryption Process 
 
The decryption process is based on the encryption process but 
in a reverse order as described in the decryption algorithms in 
the Algorithms section 3.4.3. 
 

3.4 Algorithms 
3.4.1 Key Expansion 
Input: 64 bit key i.e. user key(ܷܭ). 
Output: 64 bit key i.e. cipher key (ܭܥ). 

1. Divide UK into four group, each group consist of 16 
bits. 

1ܩ =  [13]ܭܷ‖[9]ܭܷ‖[5]ܭܷ‖[1]ܭܷ
2ܩ =  [14]ܭܷ‖[10]ܭܷ‖[6]ܭܷ‖[2]ܭܷ
3ܩ =  [15]ܭܷ‖[11]ܭܷ‖[7]ܭܷ‖[3]ܭܷ
4ܩ =  	[16]ܭܷ‖[12]ܭܷ‖[8]ܭܷ‖[4]ܭܷ

2. Get F-Function for each group G1, G2, G3, G4. 
1ܨܩ = ܨ −  (1ܩ)	݊݋݅ݐܿ݊ݑܨ
2ܨܩ = ܨ −  (2ܩ)	݊݋݅ݐܿ݊ݑܨ
3ܨܩ = ܨ −  (3ܩ)	݊݋݅ݐܿ݊ݑܨ
4ܨܩ = ܨ −  (4ܩ)	݊݋݅ݐܿ݊ݑܨ

3. Generate final Key. 
ܭܥ =  4ܨܩ‖3ܨܩ‖2ܨܩ‖1ܨܩ

4. End 
 

3.4.2 Encryption Procedure  
1. Divide 64 bits (plain text) to (ܮ) and (ܴ)  both of 32 

bit.  
2. Swap (ܮ) and (ܴ) and,  
3. Merge (ܮ) and (ܴ)to the (ܺ). 
4. ܺ = ܺ ⊕  ܭܥ

For the first round do the following  
 Divide ܺ to four parts each of 16 bits each have (ܽ) 

and (ܾ) 
 Divide each part to two equal array(ܽ) and (ܾ) 

each of 8 bits  
 Recombine ܺܮ = ܽ1 + ܽ2 + ܽ3 + ܽ4 
 Recombine ܴܺ = ܾ1 + ܾ2 + ܾ3 + ܾ4 
 Swap (ܺܮ) and (ܴܺ) 
 Recombine ܺܮ and ܴܺ 
 Repeat step 4 for 7 time 

 
3.4.3 Decryption Procedure 

1. Divide 64 bit (cipher text) to (ܮ) and (ܴ) both of 32 
bit.  



Galal A. Al-Rummana et  al.,  International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May -  June 2021, 1776 – 1783 

1779 
 

 

2. Swap (ܮ) and (ܴ) and,  
3. Divide each part (ܮ) and (ܴ) into equal array each 

has 8 bit 
4. Recombine each 8 bit into 4 part each of 16 bit as 

following  
1ܮ) + ܴ1), 2ܮ) + ܴ2), 3ܮ) + ܴ3), 4ܮ) + ܴ4) 

5. Recombine 16 part into (ܺ)	 
6. ܺ =  ݅ܭ^ܺ
7. Repeat step (1) to step (6) for 7 round 
8. Divide	(ܺ) to (ܮ) and (ܴ) 
9. Swap (ܮ) and (ܴ) 
10. Merge (ܮ) and (ܴ) to the (plain text). 

4. IMPLEMENTATION 
 
The algorithm was implemented on several parts. The first 
part was applied to the FELICS simulation and then the code 
of the algorithm was written and implemented in the Java 
language and finally the code was written and implemented in 
the MATLAB language, the implementation is done as 
follows: 
 

4.1 Implementation and Analysis by FELICS Simulation 
 
In this part, the algorithm was applied to the FELICS 
simulation to ensure that the steps of the algorithm and the 
implementation mechanism are correct or not. 
This simulation is done by comparing first the entered plain 
text with the expected plain text, second the input key with the 
expected key, then the encrypting process begins, finally 
comparing the cipher text with the expected cipher text [14], 
[15]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Implementation on FELICS Simulation. 

Figure (5) shows the output of the implementation and we 
note that the algorithm works well, where the text to be 
encrypted appears identical with the expected text. After that, 
the appearance of the expected key and key are identical, then 
appearance of the beginning of the encryption message then 
the end of the encryption after that the appearance of the 
cipher text with the expected cipher text, and so on in the 
decryption process and as shown in Figure 5. As apparently 
noted through this process there are no errors in the encryption 
process. 
 

4.2 Implementation and Analysis by Java 
 
In this part, the performance of the algorithm is evaluated and 
compared with the NSCT algorithm, the Blowfish algorithm, 
and Novel Blowfish. In this stage the analysis is done only for 
encrypted text. 
This stage was done by using java programming implemented 
on Core i7 (9th generation) CPU of Lenovo laptop with 16 GB 
RAM and 64bit Windows 10 operation system, and the 
analysis was conducted by the following tests. 
 
4.2.1 Security Analysis 
From the table 1, regardless of the NSCT algorithm, the 
convergence of these algorithms becomes evident in many of 
the characteristics that were compared with them, and this 
does not mean that there is no difference between them, but 
rather evidence of the proportionality of the choice in the 
comparison, the difference will appear in what we will discuss 
in the following points. 
 

Table 1: Comparison of algorithms 
Security 

algorithm Cipher type Key 
size 

Block 
size 

Key 
space 

Rou
nd 

NSCT 
Symmetric 

block 
cipher 

256-
3840 256 

2^256
-2^38

40 
15 

Blowfish 
Symmetric 

block 
cipher 

32-4
48 64 2^32-

2^448 16 

Novel 
Blowfish 

Symmetric 
block 
cipher 

64-4
48 

Each 
operat

ion 
(128 
bits) 

2^64-
2^448 

For 
each 

Opera
tion 

7 

proposed 
algorithm 

Symmetric 
block 
cipher 

64-4
48 64 2^64-

2^448 7 

 
4.2.2 Key Space 
Key space is the most important point that supports the size 
and durability of the encryption system.  It plays an effective 
role in countering and preventing attacks and brute force 
attacks. In our proposed algorithm we note that the key space 
is strong, which is observed during the key generation process 
by expansion key where a user entered a single block 
consisting of 64 bits. After that four keys will be generated, 



Galal A. Al-Rummana et  al.,  International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May -  June 2021, 1776 – 1783 

1780 
 

 

each key consists of 16 bits, the four keys are combined in one 
block and entered in an XOR operation with the text to be 
encrypted. The output from the first encryption is entered as a 
new key for the second block of the text to be encrypted and 
so on, until we obtain the fully encrypted text. Finally, we can 
say that the proposed algorithm has a key space starting from 
2 ^ 64 and ends at 2 ^ 448, this means that there is no 
opportunity for brute force attack or hackers to break the key 
of the proposed algorithm [16]. 
 
4.2.3 Execution Time 
One of the important points that must be focused on while 
designing an encryption algorithm concerned with encrypting 
big data is the time taken to encrypt the data. In Figure (6) an 
illustration of the time execution taken to encrypt files of 
gradually different sizes starting from 1 MB to 500 MB. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Encryption Performance Comparison. 
 
From figure (6), we note that the proposed algorithm is less 
time consuming, and this is one of the main reasons that made 
us emphasize the efficiency of the algorithm. As the results 
indicated that the time taken in the encryption 1MB file is 0.11 
second, 10MB is 0.24 second, 50MB is 1 second, 100MB is 
2.02 second, 200MB is 4.21 second, and 500MB is 6.83 
second.Finally, we note that the proposed algorithm proves its 
worth with much more large files than small files. That is, the 
larger the file size, the faster the processing i.e. suitable with 
big data. 
 
4.2.4 Avalanche Test Effect 
 
This test determines the strength of the encrypted text, where 
a change of 50 % of the text is an indication that the 
encryption was good according to the Avalanche test effect 
standard [17]. 

	ݐℎ݂݂݈݁݁݁ܿܿ݊ܽܽݒܣ
= 	ݐݔ݁ݐ݀݁ݎℎ݁݌ℎ݁ܿ݅ݐ݊݅ݏݐܾ݅݃݊݅݌݌ℎ݂݈݁݅ݐ݂݋ݎܾ݁݉ݑܰ))
(ݐݔ݁ݐ݀݁ݎℎ݁݌ℎ݁ܿ݅ݐ݊݅ݏݐܾ݂݅݋ݎܾ݁݉ݑܰ/ 	× 	100	) 

Table 2: Avalanche Test 
Variable Binary code 

Key = aaaaaaaaaaaaaaaa 

01100001 01100001 
01100001 01100001 
01100001 01100001 
01100001 01100001 
01100001 01100001 
01100001 01100001 
01100001 01100001 
01100001 01100001 

Plain text = 
ABCDEFGHABCDEFGH 

01000001 01000010 
01000011 01000100 
01000101 01000110 
01000111 01001000 
01000001 01000010 
01000011 01000100 
01000101 01000110 
01000111 01001000 

Cipher text = %"# )&'$%"# 
)&'$ 

00100101 00100010 
00100011 00100000 
00101001 00100110 
00100111 00100100 
00100101 00100010 
00100011 00100000 
00101001 00100110 
00100111 00100100 

Bit of change = 44 68.75% 
  

Key = 12345abcdefg6789 

00110001 00110010 
00110011 00110100 
00110101 01100001 
01100010 01100011 
01100100 01100101 
01100110 01100111 
00110110 00110111 
00111000 00111001 

Plain text = 
1A2B3C4D5E6F7G8H 

00110001 01000001 
00110010 01000010 
00110011 01000011 
00110100 01000100 
00110101 01000101 
00110110 01000110 
00110111 01000111 
00111000 01001000 

Cipher text = 
'rsUuU# ــــــــــ v YqQ 

00100111 00000111 
01110010 00000101 
01110011 01010101 
01110101 01010101 
00100011 00000011 
01110110 00000001 
01111111 01011001 
01110001 01010001 

Bit of change = 42 65.62% 
Average 67.18% 

 
From the table (2) from the result obtained here through using 
Avalanche test, it becomes very clear to us the efficiency of 
the proposed algorithm with a mean of (67.18) % is very high 
compared with the minimum result of the Avalanche test 



Galal A. Al-Rummana et  al.,  International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May -  June 2021, 1776 – 1783 

1781 
 

 

which is > = 50 % to determine the strength of the encrypted 
text. 
 

4.3 Implementation and Analysis by MATLAB 
 
In this part of the analysis, we will apply the analysis to three 
randomly selected images from the database [18]. As an 
essential part of any cryptosystem for images, there must be a 
difference between the original image and the encrypted 
image, viz the encrypted image is completely different from 
the original image.  
The figure (7) shows the difference between the original 
image and the encrypted image. To determine this difference, 
we must use the following measurements [19, 20, 21]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Difference between the original image and the encrypted 
image. 
 

 Number of Pixels Change Rate (NPCR) 

It is the percentage of pixels that differs between the original 
image and the encrypted image, and it is calculated by the 
following equation: 
 

 	,݁݃ܽ݉݅݀݁ݐ݌ݕݎܿ݊ܧாܣ,݈݁݃ܽ݉݅ܽ݊݅݃݅ݎℎܱ݁ݐݏ݅ܣݐ݈݁
,݅)ܣ,݂݁݃ܽ݉݅݋݁ݖ݅ݏܰܺܯ ,݅)ாܣ݀݊ܽ(݆ ݆) 
,݅)	݊݋݅ݐܽܿ݋݈ݐ݂ܽ݁݃ܽ݉݅݋ݏ݈݁ݔ݅݌ℎ݁ݐ ݆)	 
 

ܴܥܲܰ =
∑ ∑ ,݅)ܦ ݆)ே

௝ୀଵ
ெ
௜ୀଵ

×	ܯ ܰ 	× 100%										(1) 
 

With  ܦ(݅, ݆) = 	 ቄ0 ,݅)ܣ݂݅ ݆) = 	 ,݅)ாܣ ݆)
1 ݁ݏ݅ݓݎℎ݁ݐ݋

ቅ, 
 

If the result of this difference is greater than 99%, then this 
means that the proposed algorithm is strong and from the table 
(3) we notice that the values are greater than 99%, which 
indicates that the pixel locations changed randomly. 
 

 Unified Average Changing Intensity (UACI) 

It is an expression of the average intensity of the difference 
between the original and the encrypted image, and it is 
calculated by the following equation: 

 	,݁݃ܽ݉݅݀݁ݐ݌ݕݎܿ݊ܧாܣ,݈݁݃ܽ݉݅ܽ݊݅݃݅ݎℎܱ݁ݐݏ݅ܣݐ݈݁
,݅)ܣ,݂݁݃ܽ݉݅݋݁ݖ݅ݏܰܺܯ ,݅)ாܣ݀݊ܽ(݆ ݆) 
,݅)	݊݋݅ݐܽܿ݋݈ݐ݂ܽ݁݃ܽ݉݅݋ݏ݈݁ݔ݅݌ℎ݁ݐ ݆)	 

ܫܥܣܷ = ቎෍෍
,݅)ܣ| ݆) − ,݅)ாܣ ݆)|

255

ே

௝ୀଵ

ெ

௜ୀଵ

቏ ×
100%
ܯ × ܰ					(2) 

If the result of this difference is around 33%, then this means 
that the proposed algorithm is strong and from the table (3) we 
note that the values are greater than 33%, which indicates that 
it is greater than the acceptable range. 
 

Table 3: NPCR and UACI Value 
Image NPCR UACI 

p650_l_s1 99.57 36.16 
p646_l_s2 99.65 39.56 
p677_l_s3 99.63 37.61 

 
4.3.1 Key Sensitive 
The proposed algorithm should be of high sensitivity to the 
keys, which means that a simple modification of only one bit 
leads to a completely different image. The algorithm was 
tested by encrypting images by using the K1 and decrypting 
by using K1 as well as K2, the different between K1 and K2 
only one bit. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Different Decrypt Image using K1 and K2. 
 
We observed when we decrypt the image by using K1 will get 
the original image and when we use K2 will get different 
image as shown in figure (8). Regarding to these results we 
can say the proposed algorithm is robust against exhaustive 
attack. 
 
4.3.2 Statistical Analysis 
In this part of the test, we will focus on a statistical analysis in 
order to prove the safety of the proposed algorithm against 
statistical attacks. Shannon [22], proposed two methods based 
on confusion and diffusion in order to counteract powerful 
attacks based on a statistical analysis. 
 
 



Galal A. Al-Rummana et  al.,  International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May -  June 2021, 1776 – 1783 

1782 
 

 

 Histogram analysis 

In this part, the graph of the encrypted image should be 
uniform histogram. Figure (9) shows that the pixels of the 
encrypted image are uniform distributed. This means that the 
algorithm possesses high security against statistical attacks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Histogram of Original and encrypted Images. 
 

 Correlation analysis 

It is used to calculate the correlation relationship between the 
encrypted data and the data before encryption. It is also 
characterized by its ability to cover the characteristics of the 
image [23]. 
In this part. We note that the correlation coefficient of pixels 
adjacent to the encrypted image are very small, closer to zero 
that is an indication of the strength of the proposed algorithm 
according to the following mathematical expression: 
 

݂݁݋ܥݎݎ݋ܥ =
,ݔ)ݒ݋ܿ (ݕ

(ݔ)ݎܸܽ√ 	× 	ඥܸܽ(ݕ)ݎ
										(3) 

(ݔ)ݎܸܽ =
1
ܰ
෍[(ݔ௜ − (4)																							ଶ]((ݔ)ܧ
ே

௜ୀଵ

 

ݒ݋ܥ = 	
1
ܰ

௜ݔ)] − ((ݔ)ܧ 	× ௜ݕ) −  (5)						[((ݕ)ܧ
 

Where, the correlation coefficient is CorrCoef and the 
covariance of Cov(x,y) is pixel x and y. Var(x) is the pixel 
value variance in an image, E(x) is the value operator 
predicted and N is the total number of pixels in the matrix. 
 
 
 
 
 

Table 4: Correlation of Image. 

Image 
Correlation 

Before 
Encryption 

Correlation After 
Encryption 

p650_l_s1 0.9958 0.0531 
p646_l_s2 0.9886 0.0181 
p677_l_s3 0.9924 0.1054 

 
 Information entropy analysis 

This analysis is applied to image to measure randomness in 
the image and is considered one of the important analysis to 
prove the security of the encryption. If the result of entropy is 
high, then this is an evidence of the safety of the encryption 
algorithm [16]. We notice from the table (5) that the proposed 
algorithm has a higher output, which makes the security of the 
encryption high and is mathematically represented as follows: 

(ܪ)ݕ݌݋ݎݐ݊ܧ = ෍ܲ(ݔ௜) logଶ (4)(௜ݔ)ܲ
ଶହହ

௜ୀ଴

 

 
Table 5: Entropy Analysis. 

Image Entropy Before 
Encryption 

Entropy After 
Encryption 

p650_l_s1 5.6988 7.9924 
p646_l_s2 6.2106 7.9967 
p677_l_s3 5.1785 7.9578 

 
5. CONCLUSION 
 
In this paper, we developed a previous algorithm called 
NSCT. This development is based on the addition of key 
expansion, which works with F-function to generate keys. 
We divide the text to be encrypted into several blocks, each 
block contains 64 bits. The key generated by the key 
expansion process is entered and combined with this block by 
a logical operation called XOR to obtain a new block that 
contains 64 bits. A sequence of operations is performed on 
this block to obtain Encrypted text. 
What is significant in this algorithm is that each cycle is 
encrypted with a new key based on the result of the previous 
cycle and completely different from the previous key. 
We calculated the execution time taken for encryption and 
compared it with the algorithms that operate on the same 
mechanism. It has been concluded that the proposed algorithm 
consumes less time. 
In addition to that, we calculated the key space of the 
algorithm to ensure that the algorithm is resistant to attacks 
such as brute force attack. 
Using avalanche test to test the algorithm it has been found 
that the result was 67.18% which proves the efficiency of the 
encrypted text.  
To test the resistance of the exhaustive attack of the algorithm 
the key sensitive was also used finally we tested the algorithm 
using statistical analysis to make sure that the algorithm is 
against statistical attacks. 
From the results obtained, we can say that the proposed 
algorithm is able to deal with big data effectively and safely. 



Galal A. Al-Rummana et  al.,  International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May -  June 2021, 1776 – 1783 

1783 
 

 

REFERENCES 
1. G. A. AL-Rummana and G. N. Shende, “Homomorphic 

Encryption for Big Data Security A Survey,” Int. J. 
Comput. Sci. Eng., vol. 6, no. 10, pp. 503–511, 2018.  
DOI: 10.26438/ijcse/v6i10.503511.  

2. V. Vaidhyanathan and G. Manikandan, “A Novel 
Approach to the Performance and Security 
Enhancement Using Blowfish Algorithm,” pp. 
451–454, 2010. 

3. N. A. Kofahi, T. Al-Somani, and K. Al-Zamil, 
“Performance evaluation of three 
encryption/decryption algoriithms,” no. June 2018, pp. 
790–793, 2006. 
DOI: 10.1109/mwscas.2003.1562405. 

4. P. V. Maitri and A. Verma, “Secure file storage in cloud 
computing using hybrid cryptography algorithm,” 
Proc. 2016 IEEE Int. Conf. Wirel. Commun. Signal 
Process. Networking,WiSPNET 2016, pp. 1635–1638, 
2016. 
DOI: 10.1109/WiSPNET.2016.7566416. 

5. T. S. Algaradi and B. Rama, “A Novel Blowfish 
Based-Algorithm To Improve Encryption 
Performance In Hadoop Using Mapreduce,” Int. J. 
Sci. Technol. Res., vol. 8, no. 11, pp. 2074–2081, 2019. 

6. S. Gupta, S. Vashisht, D. Singh, and P. Kushwaha, 
“Enhancing Big Data Security using Elliptic Curve 
Cryptography,” 2019 Int. Conf. Autom. Comput. 
Technol. Manag. ICACTM 2019, pp. 348–351, 2019. 
DOI: 10.1109/ICACTM.2019.8776764.   

7. G. A. AL-Rummana, G. N. Shinde, and A. H. A. 
Al-Ahdal, “MapReduced Based: A New Stream 
Cipher Technique for Data Encryption,” Int. J. Eng. 
Adv. Technol., vol. 9, no. 5, pp. 763–769, Jun. 2020.  
DOI: 10.35940/ijeat.E9394.069520. 

8. V. G. Savant, “Approaches to Solve Big Data Security 
Issues,” vol. 3, no. 3, pp. 425–428, 2015. 

9. S. Aljawarneh, M. B. Yassein, and W. A. Talafha, “A 
resource-efficient encryption algorithm for 
multimedia big data,” Multimed. Tools Appl., vol. 76, 
no. 21, pp. 22703–22724, 2017.  
DOI: 10.1007/s11042-016-4333-y. 

10. H. Amellal, A. Meslouhi, and A. El Allati, “Secure Big 
Data using QKD protocols,” Procedia Comput. Sci., 
vol. 148, pp. 21–29, 2019.  
DOI: 10.1016/j.procs.2019.01.003. 

11. P. Barreto and V. Rijmen, “The Khazad Legacy-Level 
Block Cipher,” NESSIE Work., no. January 2000, p. 15 
pages, 2000. 

12. A. H. A. Al-ahdal, G. A. Al-rummana, G. N. Shinde, and 
N. K. Deshmukh, “International Journal of Computer 
Sciences and Engineering Open Access NLBSIT : A 
New Lightweight Block Cipher Design for Securing 
Data in IoT Devices,” vol. 8, no. 10, 2020. 

13. A. H. A. Al-Ahdal, G. A. AL-Rummana, G. N. Shinde, 
and K. D. Nilesh, “Security Analysis of a Robust 
Lightweight Algorithm for Securing Data in Internet 
of Things Networks,” pp. 1–12, 2020. 

14. D. Dinu, A. Biryukov, J. Großschädl, D. Khovratovich, 
Y. L. Corre, and L. Perrin, “Felics–fair evaluation of 

lightweight cryptographic systems,” NIST Work. Light. 
Cryptogr., vol. 128. 

15. https://www.cryptolux.org/index.php/FELICS. 
16. M. E. Hodeish, L. Bukauskas, and V. T. Humbe, “A new 

efficient TKHC-based image sharing scheme over 
unsecured channel,” J. King Saud Univ. - Comput. Inf. 
Sci., Aug. 2019.  
DOI: 10.1016/j.jksuci.2019.08.004. 

17. C. Echeverri, “Visualization of the Avalanche Effect in 
CT2,” vol. 2016, 2016. 

18. A. Magalh˜ et al., “Hand Geometric Points Detection 
Competition Database,” 2011. 
Available:  httpwww.fe.up.pt~hgc2011. 

19. K. Loukhaoukha, M. Nabti, and K. Zebbiche, “An 
efficient image encryption algorithm based on blocks 
permutation and Rubik’s cube principle for iris 
images,” 2013 8th Int. Work. Syst. Signal Process. Their 
Appl. WoSSPA2013, no. October, pp. 267–272, 2013. 
DOI: 10.1109/WoSSPA.2013.6602374. 

20. G. Chen, Y. Mao, and C. K. Chui, “A symmetric image 
encryption scheme based on 3D chaotic cat maps,” 
Chaos, Solitons and Fractals, vol. 21, no. 3, pp. 749–761, 
2004.  
DOI: 10.1016/j.chaos.2003.12.022 

21. M. E. Hodeish and V. T. Humbe, “An Optimized 
Halftone Visual Cryptography Scheme Using Error 
Diffusion,” Multimed. Tools Appl., vol. 77, no. 19, pp. 
24937–24953, 2018.  
DOI: 10.1007/s11042-018-5724-z. 

22. C. E. Shannon, “Communication theory of secrecy 
systems. 1945.,” MD. Comput., vol. 15, no. 1, pp. 57–64, 
1998. 

23. B. S. Al-Attab, H. S. Fadewar, and M. E. Hodeish, 
“Lightweight Effective Encryption Algorithm for 
Securing Data in Cloud Computing,” Comput. 
Commun. Signal Process., vol. 810, pp. 105–121, 2019. 
DOI :https://doi.org/10.1007/978-981-13-1513-8_13. 


