
Hilary I. Okagbue et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February  2020, 266 – 273 

266 
 

 

 
ABSTRACT 
 
Genetic algorithm (GA) is an example of evolutionary 
algorithms that are bio-inspired computational methods. GA 
has been applied to numerous fields. It has been applied in 
different aspects of construction and building but that is 
scarcely any review that documents it. The paper reviewed the 
application of GA in construction and building. It was 
revealed that energy management is the major area of 
application which are further subdivided into load 
scheduling, prediction, and optimization. Other nonenergy 
applications are pricing, environment, and construction 
design or real estate. The review presents research 
information to researchers. The information can assist in the 
optimization of construction processes which can reduce the 
construction time and costs, ensure optimal allocation and use 
of energy, prediction of energy demands and supply in houses 
and incorporation of sustainability in construction and 
management of real estate.   
 
Key words: Construction, energy optimization, genetic 
algorithm, load scheduling, pricing, real estate.   
 
 
1. INTRODUCTION 
 

Genetic algorithm (GA) is one of the most widely applied 
evolutionary computational methods. Evolutionary 
computational methods are nature-inspired methods [1-2]. 
GA is used to solve multimodal and multiobjective 
optimization problems [3-4]. It is metaheuristic and inspired 
by the biological process of natural selection. It is a 
bio-inspired method used to generate highly optimal solutions 
to complex and multidimensional problems [5]. This is done 
by the use of bio-inspired operators namely; mutation, 
crossover and selection. The problem to be optimized often 
arises from natural phenomena and construed as an 
optimization problem with an objective and or fitness 
function minimized subject to the given constraints. GA has 
been extensively modified and applied in different fields, too 
numerous to mention [6-10]. 

 
 

 
This paper aims to present the summary of the recent 

applications of genetic algorithm to construction and 
housing. Areas, where GA has been applied, are grouped and 
a framework was obtained. The research presents research 
information to experts in the construction and housing 
industries on various avenues where GA can be applied to 
optimize their operations.  
 
2. GENETIC ALGORITHM IN CONSTRUCTION AND 
HOUSING 
 

A smart literature review was done focusing on recent areas 
where GA has been applied in this context. The results were 
arranged systematically and a framework was obtained and 
presented in Figure 1. The framework summarized the 
results in a way that theoretical frameworks for future 
research can emanate.  

 

 
Figure 1: Genetic algorithm in Construction and housing 

 
Two major areas where GA has been applied in this context 

are energy management and nonenergy (other applications. 
Furthermore, the present study identified that energy 
applications are further subdivided into three namely\; 
optimization, prediction, and load scheduling. On the other 
hand, nonenergy applications can further be divided into 
three namely: environment, pricing and real estate and 
construction design as shown in Figure 1.  
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3. ENERGY MANAGEMENT 
 

Most of the application of GA here is the management of 
energy supplied to residential and nonresidential homes, 
prediction of energy use and optimization of energy used in 
houses. This, as stated earlier, is subdivided into three, which 
are load scheduling, prediction and optimization.  
 

3.1 Scheduling and Load Management 
Different risk-constrained framework solvable by the use of 

GA has been developed for scheduling the electric storage 
space heating load in residential and non-residential 
homes [11]. The major work of the framework is to strike a 
balance between cost reduction and user’s thermal comfort by 
monitoring the different time-dependent behavior of the 
different loads [12].  

GA and other evolutionary algorithms have been used for 
scheduling residential loads between peak and off-peak hours 
in a real-time pricing (RTP) environment [13] while 
maximizing user thermal comfort and minimizing both 
electricity cost and the peak to average ratio (PAR) [14]. This 
is often referred to as demand-side management (DSM) 
which is often overwhelmed by the scheduling of energy 
during peak hours. GA is often applied as a home energy 
management (HEM) controllers [15] to achieve 
minimization of energy consumption or shifting of the 
loads [16]. The hybrid of GA and pigeon inspired 
optimization in DSM to achieve a reduction in the electricity 
price and consumption while maximizing user comfort [17].  

Also in DSM, load scheduling can be achieved via utility 
and rooftop photovoltaic (PV) units [18], although cautionary 
measures have been devised for rooftop photovoltaic (PV) to 
guide against issues concerning voltage [19]. GA has been 
applied as an optimal swapping strategy for monitoring load 
scheduling to minimize issues arising from an unbalanced 
problem in the scheduling and distribution of loads across 
residential homes [20]. The aftermath is the shifting of excess 
load from peak consumption periods to off-peak periods based 
on combined pricing scheme and generation from rooftop PV 
units [21]  

The use of GA in load scheduling has been extended to 
hybrid residential microgrid systems which are a combination 
of AC and DC tied together through an interlinking 
bidirectional AC/DC converter (IC) [22]. This has been 
further extended and solved problems related to redundant 
resident microgrid systems [23].  

GA has played a key role in scheduling load based on user 
demand [24], preferences, sizes of residential or 
nonresidential houses, smart electrical appliances in the 
various homes [25] under some constraints [26].  

Generally as seen from the review, GA has helped in the 
optimal scheduling of the three major sources of power 
sources namely: PV generation, battery storage and the utility 
grid [27-28].  

3.2 Prediction/Forecast 
One of the major roles of government of any country is to 

ensure that electric power is supplied to residential homes, 
public establishments and business premises to drive 
economic growth. Electric power supplied to residential 
homes is managed by many private firms in a deregulated 
economy or exclusively managed by the government in some 
countries. Moreover, in some countries, it is jointly run by 
government and the private sector.  

Genetic algorithm has been used to predict and estimate the 
energy performance of residential buildings. Some 
parameters accurately determine the consumption rate of 
electricity by consumers. The parameters are construed as an 
optimization problem and solved by using GA under some 
constraints. The accurate prediction of the parameters 
ultimately enhances efficient control of energy consumption 
especially in the deregulated energy sector [29]. In addition, it 
has been noted that poorly maintained, old or over-sized 
buildings tend to consume more energy and hence, more cost 
is expended to their management. GA was used to predict the 
energy to be minimized in old and poorly maintained 
nonresidential or commercial buildings [30] and energy 
generated from solar. In the use of GA to predict solar energy 
used by residential homes, the algorithm works just as time 
series analysis [31]. 

The use of GA in predicting energy consumption or 
demand helps to properly schedule of load between off and 
peak periods [32]. This has led to the efficient management of 
backup power supply and the smooth running of residential 
and nonresidential homes [33].    
 

3.3 Optimization 
The major use of GA is the optimization of a given 

phenomenon construed as an optimization problem given 
some constraints. Apart from energy consumption, other 
constraints inherent in building designs are environmental 
variables, technical issues [34], temperature [35] and day 
lightning regulation within buildings [36]. In this case, GA 
has been applied to architectural design in optimization of 
energy consumptions of residential homes [37]. This is 
achieved by maximizing the search capacity of GA to find 
sustainable design strategies that will guarantee energy 
optimization in buildings [38]. Examples are the application 
of GA in optimization of building shapes [39], building 
layouts and building envelope [40], which are building 
strategies on reduction of energy consumption. This is a 
much-needed relief as buildings consume 40% of global 
energy [41].                                           

Optimization of load allocation in both sufficient and 
insufficient supplies of energy has been done using the 
GA [42]. GA has been applied to different sources of power 
supplies to residential and non residential buildings such as 
renewable energy [43], gas engine combined cooling, heating 
and power system (CCHPS) [44], grid-connected hybrid 
solar-wind-hydrogen CHP system [45] and grid-connected 
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hybrid solar–hydrogen combined heat and power 
systems [46]. This leads to cost minimization [47]. Most of 
the application of GA in this context results in cost 
minimization or reduction. Some examples include: 

a). Minimization of the total daily operating cost of a group 
of residential homes [48-49]. 

b). Minimization of life cycle costs of a hybrid energy 
system for residential buildings [50-51]. 

c). Minimization of cost per unit satisfaction [52-53].  
d). Minimization of carbon emissions and total processing 

costs during the design process of housing parts [54] and old 
or deteriorating buildings [55]. 

e). Reduction of construction costs [56]. 
f). Reduction of the costs of solar energy supply to 

houses [57-58]. 
g). Minimization of users’ dissatisfaction [59] and 

discomfort hours [60]. 
h). Reduction of energy demands in newly built 

houses [61]. 
i). Reduction on the environmental impact of building 

stock [62]. 
j). Minimization of wholesale risk of supplying energy to 

residential homes [63]. 
GA aids in minimization of energy consumption during an 

outage in a PV-battery backup system [64] and identification 
of optimal operation of PV-battery backup system [65]. GA 
has been used to solve optimally, the trade-off problem 
involving various constraints in the solar lease payments for 
large residential homes [66]. Minimizing energy 
consumptions in homes is a product of proper estimation of 
the energy demanded and supply which are done by the use of 
GA [67].   

Generally, most of the outcome of the application of GA in 
optimization is to increase the probability of consumer 
thermal comfort in naturally ventilated rooms [68] and 
air-conditioned rooms [69-70] in buildings in individual 
homes or a collective community [71]. Apart from natural or 
artificial ventilation, other considerations such as the control 
of daylight entering residential homes have been optimized by 
the use of genetic algorithm [72]. GA has been used in the 
optimization of energy required in charging and discharging 
of electric vehicles in residential homes [73]. The current 
trend is that GA is used to implement energy optimization 
from the design stage to the maintenance and throughout the 
life cycle of the buildings [74].    
 
4. OTHER APPLICATIONS 
 
    Undoubtedly, most of the application of GA is in the 
management of energy supplied to residential and 
nonresidential homes, prediction of energy use and 
optimization of energy used in houses. However, other 
applications exist as revealed from this review. These are 
classified into three: namely, environment, pricing and real 
estate or construction design.  

  4.1 Environment 
Genetic algorithm is used to solve multiobjective 

optimization problems obtained by considering variables and 
constraints that will reduce to reduce the effects of climate 
change or extreme weather conditions on buildings and their 
occupants. The outcome of optimization using GA often 
results in designing adaptation or mitigation strategies 
against climate change based on the objective functions and 
their constraints. Hence, GA helps to determine the optimal 
adaptation and mitigation strategies associated with 
buildings, climatic and environmental variables 
notwithstanding [75]. Some of such climatic or 
environmental variables include but not limited to flooding, 
heat waves, heavy downpour, sunlight, extreme cold, 
tornadoes, hurricanes and pollution. GA has helped in the 
incorporation of adaptation and mitigation strategies into the 
design structure and layout of buildings. Examples are  

a). The design of residential houses to harvest storm 
water [76].   

b). The design of energy-efficient high-rise buildings to 
withstand the effect of a hot and humid climate [77]. The 
building ensures proper indoor thermal comfort and proper 
natural and artificial ventilation despite the harsh 
climate [78].  

c). Design optimization of thickness of insulation used in 
buildings for different climatic conditions [79]. 

The use of GA has helped to reduce the computational time 
and cost needed in finding an optimal solution in the presence 
of many variables and environmental constraints leading to 
desirable trade-offs [80-81]. 

 

4.2 Pricing 
The use of genetic algorithm in this aspect is the 

minimization of prices or costs related to some aspects of 
construction and housing. GA has been used to predict the 
price of new houses [82] and the price of buildings taking into 
consideration the location [83], spatial distribution [84], tax 
liability [85] and sustainability or climate change 
considerations [86]. The effect helps in prediction of the 
economic outlook of any country since real estate constitutes 
appreciably in the gross domestic product. The outcome 
presents valuable information for investors in real estate to 
monitor effectively the volatility or fluctuation of house 
prices, which can be modeled and solved using GA [87]. For 
example, the GA has been applied to predict the cost of 
building maintenance taking into cognizance, all the risks 
and variables in the building construction supply chain [88]. 
The use has also be extended to the simulation of the price of 
houses between buyers and sellers under different scenarios 
(constraints) [89].  

4.3 Pricing 
Genetic algorithm has aided building experts to choose the 

optimal construction design from several options under 
different constraints such as construction costs, 
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transportation, supply chain, expertise, construction waste 
disposals, preservation of historical and cultural heritage 
[90], sustainability, topography [91] and weather or climate 
change consideration. This is necessary to reduce the 
probability of waste of manpower and scarce resources. GA 
helps to design decision supports systems (DSS) that can 
assist building experts in optimal construction decisions and 
to reduce waste and inefficiency [92].  

GA has been applied in the management of the supply line 
of water distributed to residential homes. The algorithm helps 
to determine the optimal route and robust supply of water to 
residential homes [93]. In the same vein, GA has been used 
for allocation of facilities in residential houses, parks and 
community centers [94].  

Development exerts pressure on urban and rural lands and 
trade-offs are required against several constraints to ensure 
maximum utilization of lands. GA has been used in this 
aspect to achieve optimal utilization of land for real estate 
development [95].                                                                   
 

5. CONCLUSION 
Two major areas of applications of genetic algorithm in 

building and construction emerged from this research which 
was conceptualized with the aid of a chart. Energy 
optimization is the major area where GA is applied to this 
context. The use of GA has helped to achieve the optimum 
allocation of loads and efficient management of energy 
consumption in buildings. GA has also helped in the 
prediction of energy demand and supply in residential and 
nonresidential buildings. Genetic algorithm has helped to 
solve models intended to reduce the carbon emissions and 
construction costs of buildings. The review also reiterated the 
strength of GA as seen in the management of environment 
and efficient management of the life cycle of buildings. GA 
will continue to be applied in this aspect and other similar 
algorithms related to genetic algorithm can also be explored 
[96-101].   
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