
Noor Atikah Amira Fauzi et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.3), 2019, 202 - 207

202


ABSTRACT

In requirement engineering, non-functional requirement is a
requirement that specifies characteristics of system behavior
and sys-tem quality attributes. Furthermore, a non-functional
requirement template facilitates system stakeholders in better
system documentation, system elicitation and system
traceability. However, some non-functional requirements may
come from many type of requirements document and no
stringent standard has been applied that lead to various pattern
of non-functional requirements tem-plate. Specifically, in
usability requirement, the quality attribute is being ignored
and less expressive in majority requirements document.
Therefore, this study was motivated to propose the most
feasible non-functional requirement template for usability
aspect. NIMSAD evaluation is used to obtain the most
feasible non-functional requirement template by comparing
existing non-functional requirement templates based on the
following criteria which are i) general concepts, ii) modeling
concepts and iii) analysis concepts. From the NIMSAD
evaluation results, it is found that Boilerplates template is the
most feasible non-functional requirement tem-plate for
usability aspect.

Key words : Non-Functional Requirement Template,
NIMSAD Evaluation, Usability, System Quality Attribute.

1. INTRODUCTION

Non- functional requirement (NFR) template is a set of simple
structure that can be used to extract requirement statement.
NFR template is used to facilitate the traceability and the
elicitation process. Thus, some of researches introduced
template which aim to help formulating NFR [1]. Generally,
during the system development, NFR need to be tested to
know how well the system executes its functions. Usability in
NFR is hard to be satisfied because the only way to know the
system is usable is by having real users try it out. Furthermore,
usability requirement is among NFR that is hard to interpret
completely in the template [2]. Therefore, this study has
pro-posed an investigation to determine the suitable
nonfunctional requirement template for usability aspect. The

investigation was conducted based on the Normative
Information Model-based Systems Analysis and Design
Evaluation (NIMSAD) framework.

This paper is organized as follows. In section 2, the related
works are given. In section 3, the normative information
model-based method based system analysis and design
evaluation is presented. The experimental results of
comparative evaluation proposed in this paper is also
presented in section 4. Finally, our work of this paper is
summarized in the last section.

2. RELATED WORKS
A successful system depends upon adherence to NFR.

When NFR are ignored issues can arise. The challenges in
requirement documentation impress NFR being express. The
big companies include government sector contain critical
NFR for projects. To meet the goal, the idea of extracting
NFR easily with use the best and suitable template. The use of
a template for non-functional during requirement phase deals
benefits to stakeholder [2]. There are several types of
templates that have been discussed and proposed by previous
researcher. Example of the templates are Easy Approach to
Requirements Syntax (EARS) [3], Rupp’s3, CESAR,
Parameterized Safe-ty Requirements Templates [4] and
Boilerplate [5]. From the previous researcher these five
templates have been discussed. These template has their
criteria based on the suitability. Some templates focus on
functional and some focus on specific quality. The templates
have been designed to improve the proficient and quality of
the requirements statement in variety quality aspect. In turn,
appropriate written template for requirements should facilitate
readable specification document.

In order to choose a feasible and suitable NFR template for
usability, we implemented NIMSAD evaluation framework.
NIMSAD is a framework that can be used to evaluate some
methodologies which are important to be implemented in a
system [6]. Those methodologies are compared then by using
different multi criteria. After making a comparison, one of
them will be chosen and applied on a desired system.
NIMSAD concerns about problem and problem solving
process in work. There are several researchers that used
NIMSAD in their research work such as [7].

Non-Functional Requirement Template for Usability Aspect based on

NIMSAD Evaluation Engineering

Noor Atikah Amira Fauzi1, Rohayanti Hassan1*, Muhammad Barja Sanjaya2, Zuraini Ali Shah1, Asraful
Syifaa’ Ahmad1, Shahreen Kasim3

1School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
2School of Industrial Engineering, Telkom University, 40257 Bandung, West Java, Indonesia

3Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, 86400, Batu
Pahat, Johor, Malaysia, rohayanti@utm.my

 ISSN 2278-3091
Volume 8, No.1.3, 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse4081.32019.pdf

https://doi.org/10.30534/ijatcse/2019/4081.32019

Noor Atikah Amira Fauzi et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.3), 2019, 202 - 207

203

3. NORMATIVE INFORMATION MODEL-BASED
SYSTEMS ANALYSIS AND DESIGN EVALUATION
STYLE
Normative Information Model-based Systems Analysis and
Design (NIMSAD) is a framework which is mainly used to
analyse and evaluate the existing non-functional requirement
templates that best fit for usability type requirement. Figure 1
illustrates the Software Process Engineering Meta-Model
(SPEM) that demonstrates how NIMSAD is used in this study
which comprises three major phase: i) Initialization, ii)
Evaluation and iii) Analysis. The process begins by defining
the criteria, sub-criteria and question for existing
non-functional requirements template in Initialization phase.
Next followed by the Evaluation phase that assess the existing
non-functional requirements template based on criteria
defined earlier. In the final phase, the existing non-functional
requirements template is analysed for the usability fitness
based on the prior evaluation. The process of NIMSAD is
illustrated in Figure 1.

Figure 1: Process of NIMSAD

3.1. NIMSAD Criteria Description

Table 1 tabulates the details criteria to evaluate the existing
non-functional requirement template with the scope of interest
is to find the best fit for usability aspect. The evaluation is
limited to: i) general used and focus quality attributes, ii)
modelling structure and iii) measuring metrics used.

Table 1: NIMSAD Criteria Description

Criteria Sub-criteria Questions

General
Concepts

Goal What is the primary goal of the NFR
template?

Use For What are the main problems that the NFR
template is used for?

Quality
attributes

What type of quality attributes that focus
to be addressed?

ISO Quality
Model

What ISO quality standard is followed?

Analysis
Concepts

Measuring
Metrics

What are the measuring metrics can be
used to access the NFR template?

4. RESULTS AND DISCUSSION

4.1. Comparison on General Used and Focus Quality
Attributes Detailed

Five NFR templates have been compared and evaluated.
There are EARS [3], Rupp’s [3], CESAR, Parameterized
Safety Requirements Templates [7] and Boilerplate [8]. Most
of the template was designed that aim to represent the
performance-based and functional-based type of
requirements. None of them was designed for usability-based
requirements. It was shown that the template was proposed in
order to overcome the traceability issues in the requirements
as well as to improve the proficient and the quality of the
requirement statements. Most researchers focused in
designing the non-functional requirements template that
comply the completeness, consistency and unambiguity.
Furthermore, majority of the non-functional requirements
template was designed based on ISO 9126 quality model,
except for Parameterized Safety Requirements [4] that
followed ISO 26262 and ISO 29148.

4.2. Comparison on General Used and Focus Quality
Attributes Detailed

The five NFR templates using structured natural language to
represent the needs and statements elicited from the
stakeholders. All requirements document used in this study
used natural language-based approach with various document
templates and notations. Since the structure of the five
referred template are too varies, thus this study generalized
the template structure by using the notations in Table 2. There
are eight notations were used in the template structure, which
the NFR statements can be broken into several segments, for
instance as follows:

i. Original non-functional requirement statements;

ii. The system shall allow the users to access the system from
the Internet using HTML or its derivative technologies.

iii. The existing structured of non-functional requirements
statement; the system #shall [allow the users to access the
system from the] (Internet using HTML or its derivative
technologies).

iv. The non-functional requirements statement is broken into
segment using our notation; S1: The system S2: #shall S3:
[allow the users to access the system from the]
S4 :(Internet using HTML or its derivative technologies).

v. The proposed structure and notation of non-functional
requirements; S1: The system S2: #shall/ should/will S3:
[process] S4 :(object).

This notation template is made up of 8 parts. (1) An input
variable. This notation is used for system name or any
component or item name; (2) the action variable used for
capturing functions that the system performs; (3) condition,
the optional addition details about the action; (4) object is
used for which functionality is needed. (5) A modal
shall/should/will be specifying how important the

Noor Atikah Amira Fauzi et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.3), 2019, 202 - 207

204

requirement is. (6) Unit metric, this alternative is used for
measurement unit to access action. (7) Segment, the segment
is the sequence of structure template. The last is (8)
underlined text, which is used for fixed text. The sentence that
remain unchanged in the requirements. With using the
proposed notations, the non-functional requirement
statements may consist of combination of input variable,
action variable, conditional, object, modal of importance, unit
metric and/or fixed text. Table 3 presents the structure model
for five non-functional requirements template using our
proposed notations.

The minimum number of segment being used is four, which is
EARS template [12] and Boilerplate template [9] for type 1,
while for demonstrates the maximum number of segment
being used is CESAR template which is 10. Requirement
template without unit metric are EARS and Rupp’s [3].
However, the rest of template are requirement template with
metric.

4.3. Comparison on Modelling Structure

There are five metrics have been used by the existing studies in order
to measure the effectiveness of NFR templates which are precision,
recall, f-measure, stability, containment and feasible. EARS and
Rupp’s template [3] analyzing of effectiveness based on precision
and recall. Precision is used for low number of false positives. Recall
is used for low number of false negative. Besides, to be able to
compare precision and recall f-measure is used to computes the
mean. Boilerplates [9] covers feasible as measuring metrics.

4.4. Analysis on Usability Quality Attributes

Since none from the five templates above concentrate on the
usability quality attribute, thus we extended our study on
investigating the characteristics that frequently used by
usability related ISO quality standard. Four types of ISO
quality standard that support the usability aspect are known as

ISO 9126, ISO 9241, ISO 25010 and ISO 12119. The ISO
9126 is a standard for determining the quality of software
product for software evaluation.

It consists of four parts: quality model, external metrics,
internal metrics and quality in use metrics. This standard can
be used in many sectors. In addition, ISO 9126 standard has
been upgraded to ISO 25010. The ISO 25010 standard is
designed to strengthen the security and compatibility aspect of
the system. However, ISO 25010 is very minimum focus on
usability aspect which not cover understandability,
effectiveness, efficiency, usability compliance and
attractiveness.

Furthermore, ISO 9241 standard has been implemented for
system usability and ergonomics. This standard focus to
strengthen quality of interaction between a user and an
interactive system. On the other hand, ISO/IEC 12119 is
applicable to software package. Example are word processing,
spreadsheets, database and presentation programs and utility
programs. This standard deals only with soft-ware package as
offered and delivered. In this study, we choose to use ISO
9126 as a guideline to construct on non-functional
requirement template for usability aspect due to the following
reasons:

i. This standard covers the most usability aspect such as
learnability, understandability, operability, usability
compliance and attractiveness compared to the other
standard.

ii. More adaptable and can be used across many sector

Table 2: Notation used in Non-Functional Requirements Template

Notation Name Description Example

< > Input variable The system, component or item name. The <system> shall be available at all times.

[] Action variable The process of functionality which interacts
with system. The system shall be able to [send notification] by SMS.

{ } Conditional The optional about the action.
{As soon as a power outage is detected}, the Surveillance
and Tracking module shall record (a warning in the system
alert log file.

() Object The object which the functionality is needed. The system shall be able to send notification (by SMS).

Shall/ should/
will

Modal specifying how important the
requirement. The system #shall be available at all times.

| | Unit metric Measuring unit to assess the action. The system shall respond not more than |3seconds|.

S1: … Sn: Segment Sequence of structure.

S1: The system
S2: shall be able to
S3: send notification
S4: by short message services (SMS).

Underlined
text Fixed text Sentence that fixed, remain unchanged in the

requirements. The system shall be able to send notification by SMS.

Noor Atikah Amira Fauzi et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.3), 2019, 202 - 207

205

Table 3: Comparative Evaluation for Modelling Concepts

Types of
template

Criteria: Modelling Concepts
Construction Structure

Construction template Input Variable Action
Variable

Conditional Unit
Metric

EARS [3,5] Structure 1: Ubiquitous Requirement
S1: The S2: <system name> S3:#shall S4: [system response]

System name System
response

NA NA

Structure 2: Event Driven Requirement
S1:When S2:{optional precondition} S3:<system name>
S4:#shall S5:[system response]

System name System
response

Optional
pre-condition

NA

Structure 3: Unwanted Behavior Requirement
S1: If S2:{optional preconditions} S3:Then S4: <system
name> S5:#shall S6: [system response]

System name System
response

Optional
pre-condition

NA

Structure 4: State Driven Requirement
S1: While S2:{in a specific state} S3:<system name>
S4:#shall S5:[system response]

System name System
response

In a specific
state

NA

Structure 5: Optional Feature Requirement
S1: Where S2:{feature is included} S3:<system name>
S4:#shall S5:[system response]

System name System
response

Feature is
included

NA

Rupp’s [3] Structure:
S1: {When? Under what condition?} S2:<system name>
S3:#shall/should/will S4:[process] S5:(object) S6:|additional
details|

System name

Process Condition

NA

CESAR
Requirement
Specification
Languages

Structure:
S1:The S2:<system name> S3:#shall S4:be able to
S5:[action] S6:|entity| S7:at least S8:|number| S9:times per
S10:|unit|

System name Action NA -Unit
-Number
-Entity

Parameterized
Safety
Requirements
[4]

Structure:
S1:The S2:<system/Component/Item> S3:#shall
S4:[avoid/not allow/ not causes] S5:[harm]

-System
-Component
-Item

Harm NA NA

Boilerplates
[9,10]

Structure 1:
S1:The S2: <system name> S3:#shall/ should/will
S4:[process] S5:(object)

Or
S1:The S2: <system name> S3:#shall/ should/will
S4:[process]

System name

Process Conditions NA

Structure 2:
S1:The S2:<entity> S3:#shall be able to S4:[action] S5: at
least / not less than / within S6: |quantity| |units|

Entity Action NA -Quantity
-Units

Structure 3:
S1:{conditions} S2:the S3:<system name>
S4:#shall/should/will S5:[process] S6: (object)

System name Process Conditions NA

Noor Atikah Amira Fauzi et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.3), 2019, 202 - 207

4.5. Feasibility Analysis

In this analysis, feasible score is used to determine which
NFR template is the most feasible for usability aspect. For
every original NFR statement, we transform them into five
different tem-plates that were discussed earlier.
Subsequently, the feasible score is then calculated for
every NFR template using the following formula:

ݐ݋ܰ = ୒୭ .୭୤	୫ୟ୲ୡ୦	ୱୣ୥୫ୣ୬୲ୟ୲୧୭୬
୘୭୲ୟ୪	୬୭.୭୤	ୱୣ୥୫ୣ୬୲ୟ୲୧୭୬

 (1)

where Not is a number of match segmentation (see Table
2) that being used in a selected transformed NFR
statement. For example, given NFR statement as follows:

The system shall allow the users to access the system from
the Internet using HTML or its derivative technologies.

1. Firstly, the NFR statement is transformed into

respective templates as example below:
a. Using Boilerplate template
The <system> #shall [allow the users to access the
system] from the (Internet using HTML or its
derivative technologies)
b. Using CESAR template

The <system> #shall be able to [allow the users to
access the system] from the Internet using HTML or
its derivative technologies.

2. Not is calculated. See example below:
a. Structure by Boilerplates; S1:The S2: <system

name> S3:#shall/ should/will S4:[process]
S5:(object) is compared with transformed
NFR statement, S1: The S2: <system> S3:
#shall S4: [allow the users to access the system]
from the S5: (Internet using HTML or its
derivative technologies)

Thus, from five segments in Boilerplate structure, all five
segments found match in selected transformed NFR
statement. Not score will be 5/5.

b. Structure by CESAR; S1:The S2:<system
name> S3:#shall S4:be able to S5:[action]
S6:|entity| S7:at least S8:|number| S9:times per
S10:|unit| is compared with transformed NFR
statement,S1: The S2: <system> S3: #shall S5:
[allow the users to access the system] from the
Internet using HTML or its derivative
technologies.

Thus, from seven segments in CESAR structure, only four
segments found match in selected transformed NFR
statement. Not score will be 4/7.

3. Boilerplates is chosen for this example of NFR

statement since it has the highest score of Not, with
5/5:

Table 4 shows the feasible score for five different
templates that being quantified on 25 NFR statements.
Boilerplates is found to be the most feasible usability NFR

template, since it obtained the highest chosen score which
20 out of 25 NFR statements got the highest Not.
Boilerplates is mostly chosen is due to the flexibility of
this template that able to match most NFR statements. In
fact, in Table 2, Boilerplate provides three structures of
template that flexible to the uncertain NFR statements.
For Rupp’s, it shows the least chosen for requirements.
This is due to an optional condition is required at the
beginning of the template structure which is not favor in
most NFR statements.

Table 4: Feasible Score

Types of template
Feasible Score

No. of chosen
requirements Requirements no.

EARS [3,5] 9/25 [1], [2], [3], [4], [10],
[11], [14], [16], [21]

Rupp’s [3] 1/25 [22]

CESAR
Requirement
Specification
Languages

8/25 [5], [6], [13], [18], [19],
[23], [24], [25]

Parameterized
Safety
Requirements [4]

6/25 [1], [2], [3], [4], [8], [9]

Boilerplates [9,10] 20/25

[1], [2], [3], [5], [6], [7],
[8], [9], [10], [11], [12],

[14], [15], [16], [17],
[19], [20], [21], [22],

[25]

5. CONCLUSION

In this paper, NIMSAD evaluation framework has been
implemented in order to determine the most feasible
template for usability non-functional requirements
statement. The results showed that Boilerplates is the most
feasible template for usability non-functional
requirements statement. However, we assume and limit
that those 25 requirements that extracted from 11
specification documents are represented the usability
aspect. For future work, we would like to automate the
static review process by including the Boilerplates as a
searching template guideline.

ACKNOWLEDGEMENT

This work is supported by MyMaster Scholarship of the
Minis-try of Education Malaysia, RMC UTM, G-Heart
scheme under the Gates Scholars Foundation and GUP
grant, with Vot No: 16H73. We also would like to thank
Universiti Tun Hussein Onn Malaysia for supporting this
research under the Contract Grant (Vot number: U558),
also, thanks to Gates IT Solution Sdn Bhd for the whole
support

REFERENCES

1. Kopczyńska, S. & Nawrocki, J. Using

non-functional requirements templates for
elicitation: A case study. in 2014 IEEE 4th
International Workshop on Requirements Patterns,

Noor Atikah Amira Fauzi et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.3), 2019, 202 - 207

207

RePa 2014 - Proceedings 47–54 (IEEE, 2014).
doi:10.1109/RePa.2014.6894844

2. Lauesen, S. & Younessi, H. Six Styles for Usability
Requirements. in REFSQ 1–12 (1988).

3. Arora, C., Sabetzadeh, M., Briand, L. & Zimmer, F.
Automated checking of conformance to
requirements templates using natural language
processing. IEEE Trans. Softw. Eng. 41, 944–968
(2015).
https://doi.org/10.1109/TSE.2015.2428709

4. Antonino, P. O., Trapp, M., Barbosa, P. & Sousa, L.
The Parameterized Safety Requirements
Templates. in Proceedings - 2015 IEEE/ACM 8th
International Symposium on Software and Systems
Traceability, SST 2015 29–35 (IEEE, 2015).
doi:10.1109/SST.2015.12

5. Mavin, A., Wilkinson, P., Harwood, A. & Novak, M.
Easy Approach to Requirements Syntax (EARS).
in 2009 17th IEEE International Requirements
Engineering Conference 317–322 (IEEE, 2009).
doi:10.1109/RE.2009.9

6. Jayaratna, N. Understanding and Evaluating
Methodologies: NIMSAD - A Systemic Framework.
Information systems, Management and Strategy
series 47, (Palgrave Macmillan UK, 1994).

7. Isa, M. A., Zaki, M. Z. M. & Jawawi, D. N. A. A
Survey of Design Model for Quality Analysis:
From a Performance and Reliability Perspective.
Comput. Inf. Sci. 6, 55–70 (2013).
https://doi.org/10.5539/cis.v6n2p55

8. Mavin, A. & Wilkinson, P. Big Ears (The Return of
"Easy Approach to Requirements
Engineering"). in 2010 18th IEEE
International Requirements Engineering Conference
277–282 (IEEE, 2010).
https://doi.org/10.1109/RE.2010.39

9. Daramola, O., Sindre, G. & Stalhane, T.
Pattern-based security requirements specification
using ontologies and boilerplates. in 2012 Second
IEEE International Workshop on Requirements
Patterns (RePa) 54–59 (IEEE, 2012).
https://doi.org/10.1109/RePa.2012.6359973

10. Ibrahim, N., Wan Kadir, W. M. N. & Deris, S.
Documenting requirements specifications using
natural language requirements boilerplates. in
2014 8th. Malaysian Software Engineering
Conference (MySEC) 19–24 (IEEE, 2014).
https://doi.org/10.1109/MySec.2014.6985983

