
Marcel Migdalovici  et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 8(1.1),  2019,  209 -215 
 

209 
 

 

 
ABSTRACT 
Mathematical environmental modelling, based on our past 
research on dynamical systems evolution stability, generally 
in the case of dynamical systems dependent on parameters 
and approaching the phenomena from reality, is introduced 
and justified in the first section of this paper. Reality 
perception is signified by the continuity perception quality for 
the functions defining a concrete dynamical system from the 
reality, and additionally by a limited number of possible 
function discontinuities. Piecewise property continuity for the 
functions defining the dynamical system which approaches 
environmental phenomena implies the properties of stable 
region separations in the dynamical system’s free parameters. 
These stable region free parameters allow the optimization of 
the evolutions of the dynamical system using compatible 
criteria for optimization. That is, we are able to realize 
stability control of the evolution of the dynamical system. We 
state that every dynamical system depends on parameters 
from the literature and have separation properties between 
unstable and stable regions in the free parameter domain. The 
second part of the paper our theory on dynamical system 
stability control from the environment is applied for specific 
multi-legged walking robot models which rely on two 
dimensional parameters, three dimensional in the case of legs 
evolution. Our critical position theory on the evolution of the 
walking robot is recapped and developed on our analysis cases 
of walking robot models which take their inspiration from the 
environment.  
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1. INTRODUCTION 
Any environmental dynamical system can be thought of 

as a dynamical system in regard to its defining parameters 
without fixing the values as a physical parameter 
(particularly mechanical parameters), geometric 
parameters, potential economic, chemical, biological 
parameters etc. The matrix defining the linear dynamic 
system has the matrix components which are assumed to be 
real values, and the matrices which interfere in the exposing 
the method are also a real value component. In previous 
papers we assumed that the  mathematical model matrices 
possess complex values which are accounted for as 
particular cases of complex values. Such a hypothesis 
ensures a new analytical method, in the complex domain, on 
dynamical system stability. Out theory on dynamical system 
control stability is used here for specific walking robot 
models dependent on parameters. The critical position of the 
evolution of the walking robot is reminded and analyzed in 
some instances of walking robot legs in kinematic analysis 
[1-11, 13, 22-33].  

A crucial idea arising from every concrete dynamical 
system which is dependent on parameters from the literature 
is separation properties between unstable and stable regions 
in specific free parameter domains [12. 14-16, 21]. Theses 
unstable and stable regions are divided into the free parameter 
domain by a boundary. Separation properties are observed 
through stable and unstable regions as open sets, except for 
the boundary points. This separation creates stability control 
freedom on any stable point neighborhood in the dynamic 
system’s open stable region. We discovered mathematical 
conditions of the stability regions existence for the dynamic 
systems which take their inspiration from the environment, 
using various results from the domain of applied mathematics 
[14, 16, 17-21].  

 
We define the environment mathematical model, analyzing 

 
On Environment’s Mathematical Model and Multi- legged Walking 

Robot Stable Evolution 

Marcel Migdalovici1, Sergiu Cononovici1, Victor Vladareanu1*, Gabriela Vladeanu1, Miahi Stelian 
Munteanu2, Daniela Baran3, Hongbo Wang4, Yongfei Feng4 

1Robotics and Mechatronics Department 
Romanian Academy, Institute of Solid Mechanics, Bucharest, Romania; marcel_migdalovici@yahoo.com  , * 

vladareanuv@gmail.com, 
2Faculty  of Electrical Engineering, Technical University of Cluj-Napoca 

mihai.munteanu@et.utcluj.ro 
3Dynamical Systems, National Institute for Aircraft Research “Elie Carafoli”, Bucharest, Romania; 

dbaran@incas.ro 
4Parallel Robot and Mechatronic System Laboratory, Yanshan University, Qinhuangdao, China 

hongbo_w@ysu.edu.cn, yf_feng@126.com 
 

                                                                                                                                                                                       ISSN  2278-3091 
Volume 8, No.1.1,  2019 

International Journal of Advanced Trends in Computer Science and Engineering 
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse3981.12019.pdf 

https://doi.org/10.30534/ijatcse/2019/3981.12019 
 

 

 



Marcel Migdalovici  et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 8(1.1),  2019,  209 -215 
 

210 
 

 

some condition factors of separation between unstable and 
stable regions in the free parameter domain of the nonlinear 
or linear dynamical systems, naming the QR algorithm used 
on the real matrix which defines the linear dynamic system or 
the “first approximation” of the nonlinear dynamic system, 
using complex domain operations by the matrix “shift of 
origin”. The matrix eigen values dependent on the matrix 
components properties interfere in separation property 
justification. The real matrix components that define the 
linear dynamical system depend on parameters which are 
assumed to be continuously piecewise in the free parameters 
and analyzed for the environment model’s final 
argumentation.   
 
2.  MULTI-LEGGED WALKING ROBOT MODELS 
 

We analyze some walking robot evolution problems by leg 
evolution synchronization in kinematics hypothesis. 
Extending this to the dynamical evolution of the walking 
robot using the above theory is intuitively accepted and is 
extremely attractive.  

First to be studied are the mathematical and physical walking 
robot model are physical models consisting of a platform and 
six similar legs joined at the extremities attached to the robot 
platform and which have a synchronized evolution in the 
vertical plane (figure.1).  

Additionally, in fig. 5 there is another case based and inspired 
on the initial two dimensional evolution technique used for 
performing leg evolution, consisting of the three dimensional 
evolution of each leg of the multi- legged walking robot.  

Each two dimensional leg evolution accounts for a leg 
compounded from two jointed segments, named the knee 
joint, which describes a circular arc route in leg evolution 
with the leg base extremity describing an imposed route on 
the ellipse arc (figure  2). The evolution of the leg base point is 
assumed to have a constant speed component in a horizontal 
direction. The hypothesis imposes the robot’s concrete leg 
evolution, except for evolution in the neighborhood of 
possible critical positions, which is analyzed below.  

 
Figure 1:  Walking robot physical model. 

The physical model and attached mathematical model of the 
robot leg assures the identifiability of the existence of the 
critical position on the knee joint’s circle arc, an idea 
introduced by the authors and also detailed in the following.  

The walking robot leg physical evolution, in two 
dimensions, is described in figure 2.  

A similar physical model is also used for three dimensional 
multi-legged walking robot model leg evolution.  

The points specifying the extremities of the continuous 
domain on the circle arc where the knee joint is moving, in 
two dimensions, have positions where the inferior segment 
of the leg is usually on the ellipse arc. 

 

The physical model used for three dimensional legs 
evolution of the multi-legged walking robot emphasizes also 
possible critical points existence. The critical points for 
three dimensional legs evolution, if they exist, will specify 
the extremities of the continuous domain where the knee 
joint is moving. 

The point denoted by OC is the leg joint extremity attached to 
the robot platform and the segments denoted by OC P and PQ 
have length a, respectively c are the components of the robot 
leg. The point P is the knee joint of the leg and the point Q is 
the leg base point. 

 
Figure 2:  Physical model of walking robot leg. 

The knee joint P describes, in robot leg cyclic movement, 
a circle arc route, and a base point Q of the leg imposes an 
elliptic route on the superior ellipse arc QB QA. 

The circular route is assumed with the radius a and center 
OC whilst the elliptic route is assumed with the semi aces a, 
b and OE .  

The elliptic and respectively circular routes are transverse 
and involve the imposition of a constant speed component of 
the leg base point, in a horizontal direction except for a 
critical position neighborhood.  

The robot leg evolution critical point is point Pc on the circular 
arc and corresponding Qc point on the elliptic arc where the 
“knee joint” directional movement is changed.  
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The orthogonal coordinate system is identified for the 
physical model from fig.2 by the following coordinate values, 
defining the figure points: OC (a, h), OE (a, b1),  P(xP , yP ), 

Q(xQ , yQ ), QA (xA , 0), QB (xB , 0). 

The following conditions are used on the leg mathematical 
model parameters:  

a  b  b1    0; a  c  h 

The critical position of the evolution of the leg “knee joint” 
and in the corresponding leg “base point” position is 
necessary null speed, a vital property used in concrete robot 
leg mathematical model description.  
Points P*

A
 and P*

B
 in figure 2 delimit the maximal and can be 

moved since in this position the segments P*
A

 Q*
A and P*

B
 Q*

B 
are usually on the ellipse arc and the distance to the ellipse arc 
in the neighborhood is a minimum. This separation property 
between the existence regions (implicit stability) and 
inexistence (instability) are emphasized by analysis of the 
knee joint P kinematics evolution from the environment.  

The robot leg mathematical model corresponding to physical 
model from fig. 2 is described by the relations:  

 

A definition of a covering domain for the variables from (1). 

 
Explicit functions deduced from (1) have the form: 
 

 

Let P(xp,yp) be the circle arc point and Q(xQ,yQ) the 
ellipse arc point which corresponds to one position of the 
robot leg evolution. The condition  

is imposed.  

 

 
 

Below is the linear evolution of the variable x between 0 and 
2a. where the constant speed  and initial condition x0 are 
considered: 

 

 

A 
robot leg evolution cycle can begin from the point QB, 
moving on the superior ellipse arc up to point QA , using an 
evolution law on horizontal axis defined by (6), excepting a 
critical points neighborhood.  

The variables covering domain is reminded below. 
 

 
 
The selected explicit functions for the physical models from 
figures 3 and 4, are:  

 

In the first explicit case of a physical model of walking robot 
leg the below relation is assured, where x [xQA , xQB ] : 

 

 
As the knee joint speed is natural of zero value in critical 
positions where the sense of motion is changed, it is necessary 
to also use Cauchy conditions of neighborhood continuity of 
critical points to ensure continuous displacement and speed 
values as functions on time.  
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We next describe specific walking robot leg cases using 
physical models from figures 3 and 4. The walking robot 
physical model is defined with assistance from the 
corresponding robot leg definition.  

Figure 3 shows the physical robot leg model, from which we 
see the pivot point OP of the leg, the mobile joint P of the leg 
that describes a circle arc in the leg’s evolution on cycle and 
the robot leg point Q base positioned in our case on an ellipse 
arc of center O Q and semi axes length a and b . The 
orthogonal system of coordinate axes is similar as for figure 2. 

 
 
Figure.3:  One physical model for walking robot leg 

 
Let OP (a, h), OQ (a, �b1), QA (xA , 0), QB (xB , 0) be the 
points from figs. 3 and 4. A leg base point from fig.3 
evolution cycle is defined by the successive evolution QA , 
Q1, QB , on the horizontal axis followed by the succession 
Q2 , Q3 , QA on the superior ellipse arc. The critical points 
are unidentified on the figure.3 physical model, but they 
exist on the physical model from figure.4. 
 
These two models differ through the value of parameter h , 
in the first instance the value h1 and in the second the value 
h2 > h1 implies the corresponding modification of the 
parameter b1. 
  
The conditions a >b > b1 > 0; a + c > h are consumed, where 
the inferior component length of the robot le is c . The 
physical model from figure.3 is assumed c > a . 

 

Figure 4:  Other physical model of walking robot leg. 
 

Our definition of the critical position in robot leg evolution, is 
the position where point PC on the circular arc and 
corresponding Qc point on the elliptic arc change properties in 
altering the movement direction of the “knee joint”.  

In the critical position of the leg “knee joint” evolution and in 
the corresponding leg “base point” evolution we remark upon 
the necessary null speed of leg “knee joint” and we reiterate 
that this is an important property used to assure concrete 
evolution of the robot leg.  

The critical points Pc and Qc define the maximal domain 
extremities on the circular arc where point P can be moved 
and segment PcQc is usually on the ellipse arc. The sense of 
movement changes on the circle arc in the continuous 
domain extremities of evolution of the “knee joint”. This 
critical point can be generalized into walking robot 
movement where the ellipse arc is substituted by another 
continuous curve or in three dimensional legs evolution.  

The identification analytical method of critical points on the 
circle arc and implicit critical points on the ellipse arc, for a 
concrete physical model from figure 4, is answered by the 
solving of the equation depending on xQ imposed by the 
condition of segment PcQc orthogonal position.  

Figure 5 describes a three dimensional leg evolution 
physical model for multi-legged walking robots, [15]. The 
critical point is necessary to assure the zero value of the leg 
base point speed.  

We state that the walking robot stability (existence) position is 
also maintained in a neighborhood for one such position. 

The leg is compounded from superior component BtQt as 
defined by the extremities points Bt , Qt jointed in pivot 
point Bt attached to the robot body and inferior component 
QtPt with “knee joint” Qt and base point Pt . For   the   length  
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of  Component lengths BtQt and QtPt assume a constant 
value.  

The Pt base point moves between point PI and PF in the 
vertical plane, orthogonal on axis Oy using uniform 
accelerated displacement on the horizontal direction up to 
the median point PM , on the ellipse arc, and symmetric 
displacement assured up to the final point PF  

.

 

  

Figure 5: Physical model of three dimensional walking robot leg. 

The joint point Bt attached to the robot body moves 
simultaneously with a linear route parallel to the axis Ox , 
using uniform displacement between initial point BI up to 
median point BM and symmetric displacement is assured 
between median point BM and final point BF. 

The “knee joint” point Qt trajectory, uniquely identified in the 
vertical plane, is defined by the points Bt, Qt, Pt, in each time 
t, with the definition of the distance between the length of 
segment BtPt dependent on time t , is researched for possible 
critical point identification, which is similar in two 
dimensional cases as described above. The following 
formulas, the geometric data from figure 5 and physical data, 
are used.  

The three dimensional trajectory of the point Qt is 
orthogonally projected on the plane xOz using the projected 
point Qt0 from this plane. The point Qt critical position of, in 
its three dimensional evolution, is identified by a critical 
position on the plane projected trajectory of the point Qt0 

where the directional movement needs to be altered. The 
point Qt0 is orthogonal projection of the point Qt on the side 
QBt QPt , which is parallel with the axis Ox , where the triangles 

QtQBt QPt , Q0 B0 P0 have the sides respectively parallel. The   
uniform   accelerated   displacement   of   the     point donated 
P, on the horizontal line, from the Pi up to middle of the PIPF, 
is described by the relation  

 

The parameter aP is constant acceleration in horizontal 
coordinate displacement of the point denoted P.  

Point Bt uniform displacement on parallel line with axis Ox , 
from the point BI up to middle of the 
segment BI BF , is described by the relation: 

 

 

The parameter vB is a constant speed in point Bt displacement 
on the parallel line with axis Ox . 

The parameter L is introduced for correlating data from the 
three dimensional mathematical walking model. 

The six leg walking robot is considered, so that it is close 

to one evolutionary cycle, such the following relation arises PI 

PF  6 BI BF . This relation is justified by the hypothesis on the 
separation and successive displacement of each leg in cycling 
evolution.  

The required time for simultaneously arrival in the middle of 
the routes BIBF , PIPF , by point Bt respectively Pt , is denoted by 
tM . The following relations are true:  

 
Point Bt, Pt coordinates are identified in function on time as 
below: 

 

In the above relations 0  t  tM , a, b are ellipse semi axes and 
0 < b1  b . Coordinate z is negatively imposed for the ellipse 
centers from the fig. 5 so that zPt 0, b  b1  . The length of 
the segment BtPt  is calculated from: 



Marcel Migdalovici  et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 8(1.1),  2019,  209 -215 
 

214 
 

 

 

The vertical triangle angles BtQtPt are calculated using 
triangle side lengths, by the relations of type: 

 
The values of the angles of the vertical triangle BtQtPt from 
the physical model described on fig.5 allow evaluation of all 
necessary sides or angles from the physical model. The 
critical point where the direction of movement changes to 
projected point Qt0 is searched for in the parameter time in the 
interval [0, tM ).  

The three dimensional legs evolution mathematical model for 
multi-legged walking robot, as explained above, allows 
identification of the possible existence of the critical position 
for knee joint point, calling for a specialized computer 
program, this is planned for the next paper.  

3. CONCLUSION 

In the environmental mathematical characterization and 
application to the walking robots dynamical system stability 
control, the walking robot is considered as a particular case 
of a dynamical (kinematical) system which is dependent 
upon parameters, is conducted.    

The mathematical conditions on the separation between 
unstable and stable regions, in the dynamical system free 
parameter domain, discovered by us, are emphasized, calling 
for algebraic operations in the complex domain which allow 
new results in the stability theory. These separation 
conditions represent the conditions which describe the 
environmental dynamical system.   

The separation properties described in the paper, also 
encountered in numerous other dynamical systems from the 
literature, which are only contemplated without mathematical 
justification, is a crucially important property since it creates 
possibilities for stability control of a dynamical system from 
the environment by optimizing the system evolution using 
compatible criteria in the stability regions of the free 
parameters domain. The research for dynamic systems can be 
performed, with conservations towards the fundamental idea, 
and for kinematics of the walking robots. The stable region 
separation property is described in our cases of walking robot 
leg with the possibility to be extended in alternative cases.   

The critical position of the walking robot is defined in the 
paper and a mathematical method of its identification is 
performed. The study has not exhausted the environment 
mathematical characterization issue and the dynamical 
systems stability control problem, or on kinematical stability 
control. However, this has exposed an interesting 
environmental domain.   
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