
Devarapalli Raghu et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(4), July – August 2021, 2903 –
2907

2903

Treatment of Repeated Letdowns in Coordinated Consistent
Recovery Line Compilation for Mobile Distributed Systems

Devarapalli Raghu 1, Parveen Kumar2

1Research Scholar , Nims University Rajasthan,Jaipur ,India, raghuau@gmail.com
2 Professor, Department of Computer Science & Information Technology

Nims University Rajasthan Jaipur ,India, parveen.kumar@nimsuniversity.org

ABSTRACT

We put forward a least_int_method (least interactive
method) orchestrated CRL-compilation (consistent
recovery line compilation) etiquette for non-
deterministic Mob_DS (Mobile Distributed Systems);
where no inoperable reinstatement-points are recorded.
Recurrent terminations of CRL-compilation procedure
may happen in Mobile_DS due to exhausted battery,
non-voluntary disconnections of Mob_Nodes, or poor
wireless connectivity. Therefore, we put forward that
in the first stage, all pertinent Mob_Nodes will capture
transient reinstatement-point only. Transient
reinstatement-point is stored on the memory of
Mob_Node only. In this case, if some method fails to
capture its reinstatement-point in the first stage, then
Mob_Nodes need to abandon their transient
reinstatement-points only. In this way, we try to abate
the loss of CRL-compilation effort when any method
fails to capture its reinstatement-point in harmonization
with others. We also try to reduce the CRL-
compilation time and intrusion time of methods by
limiting CRL-compilation tree which may be formed
in other etiquettes [2, 9, 10]. We captured the transitive
dependencies during the normal execution by
piggybacking causal-dependency-vectors onto
computation communications.

Key words : Fault Tolerance, Mobile Computing
Systems, Coordinated checkpointing, Rollback
Recovery.

1. INTRODUCTION

A Dist-Syst (Distributed System) is an assortment of
self-regulating entities that cooperate to solve a
problem that cannot be discretely elucidated. A
Mob_DS is a Dist-Syst where some of methods are
running on mobile nodes (Mob_Nodes), whose
location in the network changes with time. The number
of methods that capture reinstatement-points is abated
to 1) avoid awakening of Mob_Nodes in doze mode of

operation, 2) abate thrashing of Mob_Nodes with CRL-
compilation activity, 3) save limited battery life of
Mob_Nodes and low bandwidth of wireless channels.
In least_int_method CRL-compilation etiquettes, some
inoperable reinstatement-points are recorded or
intrusion of methods records place. In this paper, we
put forward a least_int_method orchestrated CRL-
compilation etiquette for non-deterministic Mob_DS,
where no inoperable reinstatement-points are recorded.
An effort has been made to abate the intrusion of
methods and harmonization communication overhead.
We capture the partial transitive dependencies during
the normal execution by piggybacking causal-
dependency-vectors onto computation
communications. Frequent terminations of CRL-
compilation procedure may happen in mobile systems
due to exhausted battery, non-voluntary disconnections
of Mob_Nodes, or poor wireless connectivity.
Therefore, we put forward that in the first stage, all
pertinent Mob_Nodes will capture transient
reinstatement-point only. Transient reinstatement-
point is stored on the memory of Mob_Node only. In
this case, if some method fails to capture
reinstatement-point in the first stage, then Mob_Nodes
need to abandon their transient reinstatement-points
only. In this way, we try to abate the loss of CRL-
compilation effort when any method fails to capture its
reinstatement-point in harmonization with others.

All Communications to and from Mob_Node pass
through its local Mob_Supp_St. The Mob_Supp_St
maintains the dependency information of the
Mob_Nodes which are in its cell. The dependency
information is kept in Boolean vector Ri for method Pi.
The vector has n bits for n methods. When Ri[j] is set
to 1, it represents Pi depends upon Pj. For every Pi, Ri is
initialized to 0 except Ri[i], which is initialized to l.
When a method Pi running on an Mob_Node, say
Mob_Nodep, obtains a communication from a method
Pj, Mob_Nodep's local Mob_Supp_St should set Ri[j] to
1.If Pj has recorded its committed reinstatement-point
after forwarding m, Ri[j] is not updated.

ISSN 2278-3091
Volume 10, No.4, July - August 2021

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse391042021.pdf

https://doi.org/10.30534/ijatcse/2021/391042021

Devarapalli Raghu et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(4), July – August 2021, 2903 – 2907

2904

Suppose there are methods Pi and Pj running on
Mob_Nodes, Mob_Nodei and Mob_Nodej with causal-
dependency-vectors Ri and Rj. The causal-dependency-
vectors of Mob_Nodes, Mob_Nodei and Mob_Nodej
are maintained by their local Mob_Supp_Sts,
Mob_Supp_Sti and Mob_Supp_Stj. Method Pi running
on Mob_Nodei forwards communication m to method
Pj running on Mob_Nodej. The communication is first
sent to Mob_Supp_Sti (local Mob_Supp_St of
Mob_Nodei). Mob_Supp_Sti maintains the
causal_dependency_vector Ri of Mob_Nodei.
Mob_Supp_Sti appends Ri with communication m and
forwards it to Mob_Supp_Stj (local Mob_Supp_St of
Mob_Nodej). Mob_Supp_Stj maintains the
causal_dependency_vector Rj of Mob_Nodej.
Mob_Supp_Stj replaces Rj with bitwise logical OR of
causal-dependency-vectors Ri and Rj and forwards m to
Pj.

 In Figure 1, there are five methods P1, P2, P3, P4, P5
with causal-dependency-vectors R1, R2, R3, R4, R5
initialized to 00001, 00010, 00100, 01000, and 10000
respectively. Initially, every method depends upon
itself. Now method P1 forwards m to P2. P1 appends R1
with m. P2 replaces R2 with the bitwise logical OR of
R1(00001) and R2(00010), which comes out to be
(00011). Now P2 forwards m2 to P3 and appends R2
(00011) with m2. Before receiving m2, the value of R3
at P3 was 00100. After receiving m2, P3 replaces R3
with the bitwise logical OR of R2 (00011) and R3
(00100) and R3 becomes (00111). Now P4 forwards m3
along with R4 (01000) to P5. After receiving m3, R5
becomes (11000).In this case, if P3 starts CRL-
compilation at t1, it will compute the partially
committed least_int_sett[] (minimum set) equivalent
to R3(00111), which comes out to be {P1, P2, P3}. In
this way, partial transitive dependencies are captured
during normal computations.

In orchestrated CRL-compilation, if a single method
fails to capture its reinstatement-point; all the CRL-
compilation effort goes waste, because, each method
has to abandon its partially committed reinstatement-

point [1, 2]. Furthermore, in order to capture the
partially committed reinstatement-point, a Mob_Node
needs to transfer large reinstatement-point data to its
local Mob_Supp_St over wireless channels. Hence, the
loss of CRL-compilation effort may be exceptionally
high due to recurrent terminations of CRL-compilation
etiquettes especially in mobile systems. In Mob_DS,
there remain certain issues like: abrupt disconnection,
exhausted battery power, or failure in wireless
bandwidth. So there remains a good probability that
some Mob_Node may fail to capture its reinstatement-
point in harmonization with others. Therefore, we put
forward that in the first stage, all methods in the
least_int_sett[], capture transient reinstatement-point
only. Transient reinstatement-point is stored on the
memory of Mob_Node only. If some method fails to
capture its reinstatement-point in the first stage, then
other Mob_Nodes need to abandon their transient
reinstatement-points only. The effort of recording an
transient reinstatement-point is insignificant as
compared to the partially committed one. In other
etiquettes [3, 4], all pertinent methods need to abandon
their partially committed reinstatement-points in this
situation. Hence the loss of CRL-compilation effort in
case of an abandon of the CRL-compilation procedure
is dramatically low in the proposed scheme as
compared to other orchestrated CRL-compilation
schemes for Mob_DS [5, 6].

In this second stage, a method converts its transient
reinstatement-point into partially committed one. By
using this scheme, we try to abate the loss of CRL-
compilation effort in case of abandon of CRL-
compilation etiquette in the first stage.

A non-intrusion CRL-compilation etiquette does not
require any method to suspend its underlying
computation. When methods do not suspend their
computation, it is possible for a method to receive a
computation communication from another method,
which is already running in a new CRL-compilation
interval. If this situation is not properly dealt with, it
may result in an inconsistency. During the CRL-
compilation procedure, a method Pi may receive m
from Pj such that Pj has recorded its reinstatement-point
for the current instigation whereas Pi has not. Suppose,
Pi methods m, and it obtains reinstatement-point
request later on, and then it records its reinstatement-
point . In that case, m will become orphan in the
recorded global state. We put forward that only those
communications, which can become orphan, should be
buffered at the forwarder’s end. When a method
records its transient reinstatement-point, it is not
allowed to forward any communication till it obtains
the partially committed reinstatement-point request.
However, in this duration, the method is allowed to
perform its normal computations and receive the
communications. When a method obtains the partially

P1

P2

P3

P41

P51

m.00001

m2.00011

m3.01000

t1

t2

Figure 1. Maintenance of Dependency Vectors

Devarapalli Raghu et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(4), July – August 2021, 2903 – 2907

2905

committed reinstatement-point request, it is established
that every pertinent method has recorded its transient
reinstatement-point . Hence, a communication
generated for forwarding by a method after getting
partially committed reinstatement-point request
cannot become orphan. Hence, a method can forward
the buffered communications after getting the partially
committed reinstatement-point request from the
originator_method.

2. THE PROPOSED ETIQUETTE

First stage of the etiquette: proxy

When a method, say Pi, running on a Mob_Node, say
Mob_Nodei, initiates a CRL-compilation, it forwards a
reinstatement-point instigation request to its local
Mob_Supp_St, which will be the alternative
Mob_Supp_St. The alternative Mob_Supp_St
maintains the causal_dependency_vector of Pi say Ri.
On the basis of Ri, the set of dependent methods of Pi is
formed, say Sleast_int_set. The alternative Mob_Supp_St
broadcasts ckpt (Sleast_int_set) to all Mob_Supp_Sts.
When an Mob_Supp_St receive ckpt (Sleast_int_set)
communication, it checks, if any methods in Sleast_int_set
are in its cell. If so, the Mob_Supp_St forwards
transient reinstatement-point request communication
to them. Any method receiving a transient
reinstatement-point request records a transient
reinstatement-point and forwards a response to its
local Mob_Supp_St. After an Mob_Supp_St received
all response communications from the methods to
which it sent transient reinstatement-point request
communications, it forwards a response to the
alternative Mob_Supp_St. It should be noted that in
the first stage, all methods capture the transient
reinstatement-points. For a method running on a static
host, transient reinstatement-point is equivalent to
partially committed reinstatement-point . But, for an
Mob_Node, transient reinstatement-point is different
from partially committed reinstatement-point . In order
to capture a partially committed reinstatement-point ,
an Mob_Node has to record its local state and has to
transfer it to its local Mob_Supp_St. But, the transient
reinstatement-point is stored on the local disk of the
Mob_Node. It should be noted that the effort of
recording a transient reinstatement-point is very small
as compared to the partially committed one. For a
disconnected Mob_Node that is a member of
least_int_sett[], the Mob_Supp_St that has its
disconnected reinstatement-point , considers its
disconnected reinstatement-point as the required one.
Second Stage of the Etiquette:

After the substitution Mob_Supp_St has received the
response from every Mob_Supp_St, the etiquette enters
the second stage. If the alternative Mob_Supp_St
learns that all relevant methods have recorded their
transient reinstatement-points efficaciously, it asks

them to convert their transient reinstatement-points into
partially committed ones and also forwards the exact
least_int_sett[] along with this request. Alternatively, if
originator Mob_Supp_St comes to know that some
method has miscarried to capture its reinstatement-
point in the first stage, it issues abandon request to all
Mob_Supp_St. In this way the Mob_Nodes need to
abandon only the transient reinstatement-points, and
not the partially committed ones. In this way we try to
reduce the loss of CRL-compilation effort in case of
abandon of etiquette in first stage.
When an Mob_Supp_St obtains the partially
committed reinstatement-point request, it asks all the
method in the least_int_sett[], which are also running
in itself, to convert their transient reinstatement-points
into partially committed ones. When an Mob_Supp_St
learns that all relevant method in its cell have recorded
their partially committed reinstatement-points
successfully, it forwards response to alternative
Mob_Supp_St. If any Mob_Node fails to transfer its
reinstatement-point data to its local Mob_Supp_St,
then the failure response is sent to the alternative
Mob_Supp_St; which in turn, issues the abandon
communication.

Third Stage of the Etiquette:

Finally, when the alternative Mob_Supp_St learns that
all methods in the least_int_sett[] have recorded their
partially committed reinstatement-points successfully,
it issues commit request to all Mob_Supp_Sts. When a
method in the least_int_sett[] gets the commit request,
it converts its partially committed reinstatement-point
into committed one and discards its earlier committed
reinstatement-point , if any.

Massage Handling During CRL-compilation:

When a method records its transient reinstatement-
point, it does not forward any massage till it obtains the
partially committed reinstatement-point request. This
time duration of a method is called its indecision
period. Suppose, Pi forwards m to Pj after recording its
transient reinstatement-point and Pj has not recorded
its transient reinstatement-point at the time of
receiving m. In this case, if Pj records its transient
reinstatement-point after methoding m, then m will
become orphan. Therefore, we do not allow Pi to
forward any massage unless and until every method in
the least_int_sett[] have recorded its transient
reinstatement-point in the first stage. Pi can forward
massages when it obtains the partially committed
reinstatement-point request; because, at this moment
every pertinent method has recorded its transient
reinstatement-point and m cannot become orphan. The
massages to be sent are buffered at forwarders end. In
this duration, a method is allowed to continue its
normal computations and receive massages.

Devarapalli Raghu et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(4), July – August 2021, 2903 – 2907

2906

3. AN EXAMPLE

The recommended Procedure can be better assumed by
the illustration shown in Figure 2. There are six
methods (P0 to P5) denoted by straight lines. Each
method is assumed to have initial committed
reinstatement-points with csn equal to “0”. Cix denotes
the xth reinstatement-points of Pi. Initial causal-
dependency-vectors of P0, P1, P2, P3, P4, P5 are
[000001], [000010] [000100], [001000], [010000], and
[100000], respectively.
P0 forwards m2 to P1 along with its causal-dependency-
vector [000001]. When P1 obtains m2, it computes its
causal-dependency-vector by recording bitwise logical
OR of causal-dependency-vectors of P0 and P1, which
comes out to be [000011]. Similarly, P2 updates its
causal-dependency-vector on receiving m3 and it
comes out to be [000111]. At time t1, P2 initiates
reinstatement-pointing algorithm with its causal-
dependency-vector is [000111]. At time t1, P2 finds
that it is transitively dependent upon P0 and P1.
Therefore, P2 computes the partially-committed
minimum set [Sminset= {P0, P1, P2}]. P2 forwards the
transient reinstatement-point request to P1 and P0 and
records its own transient reinstatement-point C21. For
an Mob_Node the transient reinstatement-point is
stored on the disk of Mob_Node. It should be noted
that Sminset is only a subset of the minimum set. When
P1 records its transient reinstatement-point C11, it finds
that it is dependent upon P3 due to m4, but P3 is not a
member of Sminset; therefore, P1 forwards transient
reinstatement-point request to P3. Consequently, P3
records its transient reinstatement-point C31.

After recording its transient reinstatement-point C21, P2
generates m8 for P3. As P2 has already capturen its
transient reinstatement-point for the current instigation
and it has not received the partially-committed
reinstatement-point request from the initiator; therefore
P2 buffers m8 on its local disk. We define this duration
as the indecision period of a method during which a
method is not allowed to forward any massage. The
massages generated for forwarding are buffered at the
local disk of the forwarder’s method. P2 can forwards
m8 only after getting partially-committed
reinstatement-point request or abort massages from the
initiator method. Similarly, after recording its transient
reinstatement-point P0 buffers m10 for its indecision
period. It should be noted that P1 obtains m10 only after
recording its transient reinstatement-point. Similarly,
P3 obtains m8 only after recording its transient
reinstatement-point C31.A method is allowed to receive
all the massages during its indecision period; for
example, P3 obtains m11. A method is also allowed to
perform its normal computations during its indecision
period.

At time t2, P2 obtains responses to transient
reinstatement-points requests from all method in the
minimum set (not shown in the Figure 3.2) and finds
that they have capturen their transient reinstatement-
points successfully, therefore, P2 issues partially-
committed reinstatement-point request to all methods.
On getting partially-committed reinstatement-point
request, methods in the minimum set [P0, P1, P2, P3]
convert their transient reinstatement-points into
partially-committed ones and forward the response to
initiator method P2; these method also forward the
massages, buffered at their local disks, to the
destination methods For example, P0 forwards m10 to
P1 after getting partially-committed reinstatement-point
request [not shown in the figure]. Similarly, P2
forwards m8 to P3 after getting partially-committed
reinstatement-point request. At time t3, P2 obtains
responses from the method in minimum set [not shown
in the figure] and finds that they have capturen their
partially-committed reinstatement-points successfully,
therefore, P2 issues commit request to all method. A
method in the minimum set converts its partially-
committed reinstatement-point into committed
reinstatement-point and discards its old committed
reinstatement-point if any.

4. CORRECTNESS PROOF

We can show that global state collected by the
proposed protocol will be consistent. We can prove the
result by contradiction. Suppose there is some orphan
message in the recorded global state. We explore

m2.[00000

1]

tt

P

P

P

P

P

Figure 2

Tentative
Checkpoint

Permanent
Checkpoint

Checkpoint/commit
request

 Computation
message

 Transient
checkpoint

P
m7.

m3.[000011
]

m6.[10

C21[00011
1]]

C
11

C

C3

m11

C

C

m4.[00

t

C

C

C

C

 Message buffered
at sender’s end

m1.[01

m

m10
m

Devarapalli Raghu et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(4), July – August 2021, 2903 – 2907

2907

different possibilities with the help of Figure 2
Suppose, P0 forwards m10 after recording its transient
reinstatement-point and P1 obtains m10 before
recording its transient reinstatement-point. This
situation is not possible, because, after recording its
transient reinstatement-point P0 comes into its
indecision period and it can not forward any message
unless and until it obtains the partially-committed
reinstatement-point request. P2 can issue the partially-
committed reinstatement-point request only after
getting confirmed that every concerned method
(including P1) has capturen its transient check point.
Hence P1 can not receive m10 before recording its
transient reinstatement-point C11. Suppose, P5 forwards
m13 to P3 after C50 and P3 gets m13 before C31 (not show
in the Figure 2). In this case, when P3 records its
transient reinstatement-point C31, it will find that P5
dose not belong to Sminset and P3 is dependent upon P5;
therefore, P3 will forward transient reinstatement-point
request to P5 and forward (m13) will also be included in
the global state.

5.CONCLUSION

In this paper, we have put forwarded a minimum
process consistent recovery line compilation etiquette
for non-deterministic Mob_DS, where no inoperable
reinstatement-points are recorded and an effort has
been made to abate the intrusion of methods. We try to
reduce the consistent recovery line compilation time
and intrusion time of methods by limiting snapshot
compilation tree which may be formed in other
etiquettes [2, 9, 10]. We captured the transitive
dependencies during the normal execution by
piggybacking causal-dependency-vectors onto
computation communications. The Z-dependencies are
well taken care of in this etiquette. We also try to
reduce the loss of CRL-compilation effort when any
method fails to capture its reinstatement-point in
harmonization with others.

REFERENCES

1. Chandy K.M. and Lamport L., “Distributed
snapshots : Determining Global State of Distributed
Systems, “ ACM Transaction on Computing Systems,
vol., 3 No. 1, pp 63-75, February, 1985
2. Koo R. and Tueg S., “Checkpointing and Rollback
recovery for Distributed Systems”, IEEE Trans. On
Software Engineering, Vol. 13 no. 1, pp 23-31, January
1987.
3. Elonzahy E.N., Alvisi L., Wang Y.M. and Johnson
D.B., “A survey of Rollback-Recovery protocols in
Message-Passing Systems”, ACM Computing surveys,
vol. 34 no. 3, pp 375-408, 2002.
4. L. Alvisi,“ Understanding the Message Logging
Paradigm for Masking Process Crashes,“ Ph.D. Thesis,

Cornell Univ., Dept. of Computer Science, Jan. 1996.
Available as Technical Report TR-96-1577.

5. Lalit Kumar P. Kumar “A synchronous
ckeckpointing protocol for mobile distributed systems:
probabilistic approach” Int Journal of information and
computer security 2007.
6. Cao, M.Singhal, “Mutable Checkpoints: A New
Checkpointing Approach for Mobile Computing
Systems”, IEEE Transactions on Parallel and
Distributed system, vol.12, Issue 2, Feb., 2001, pages:
157-172, ISSN: 1045-9219.
7. Acharya A. and Badrinath B. R., “Checkpointing
Distributed Applications on Mobile Computers,”
Proceedings of the 3rd International Conference on
Parallel and Distributed Information Systems, pp. 73-
80, September 1994.
8. . M. Singhal and N. Shivaratri, Advanced
Concepts in Operating Systems, New
 York, McGraw Hill, 1994.
9. Cao G. and Singhal M., “On coordinated
checkpointing in Distributed Systems”, IEEE
Transactions on Parallel and Distributed Systems, vol.
9, no.12, pp. 1213-1225, Dec 1998.
10. Cao G. and Singhal M., “On the Impossibility of
Min-process Non-blocking Checkpointing and an
Efficient Checkpointing Algorithm for Mobile
Computing Systems,” Proceedings of International
Conference on Parallel Processing, pp. 37-44, August
1998.
 11. Kumar, P.,” A Low-Cost Hybrid Coordinated
Checkpointing Protocol for Mobile Distributed
Systems”, Mobile Information Systems pp 13-32, Vol.
4, No. 1. ,2007.
 12. Prakash R. and Singhal M., “Low-Cost
Checkpointing and Failure Recovery in Mobile
Computing Systems,” IEEE Transaction On Parallel
and Distributed Systems, vol. 7, no. 10, pp. 1035-1048,
October1996.

