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ABSTRACT 
 
In this article an algorithm has been developed to digitally 
compress an image using two-dimensional Haar wavelets, 
reduce its size, determine the recovery coefficients, and 
display a higher quality image of the processed image than 
the original image. It is known that one of the main 
problems of image compression is to find and apply an 
effective method that allows you to present each type of 
pixel (dot) in a compact form. To overcome this problem, 
a two-dimensional Haar wavelet modification was used, 
and as a result, the image was compressed to make the 
processed image more qualitative than the existing image. 
 
Key words: Two-dimensional Haar wavelet conversion, 
one-dimensional Haar wavelet conversion, image digital 
processing, Haar's rapid conversion algorithm, discrete 
signal. 
 
1. INTRODUCTION 
 
Currently, two-dimensional Haar wavelets are used in the 
restoration, brightening, compression of images obtained 
from medical devices, in image recognition, in the analysis 
of various images in nature (color of the eye, radiography 
of the kidneys, satellite images of clouds or planets, etc. 
possible) is used in the study of the properties of vortex 
fields and in other cases [2]. One of the main 
disadvantages of images is the lack of pixel count (low 
image quality) compared to the medical apparatus, and as 
a result, there are various difficulties in making the 
necessary diagnoses on X-ray images. In order to 
overcome these problems, the two-dimensional Haar 
wavelet conversion method was used [9,10]. 
Two-dimensional Haar wavelet modification is obtained 
by applying one-dimensional Haar wavelet modification, 
i.e., two-dimensional modification is performed by 
processing rows and columns of the image into a one-
dimensional modification [1]. As a result of Haar wavelet 
modification of two-dimensional signals, the floating 
points of the signals are broken, resulting in small errors. 
Reducing this error depends on the approximation level of 
the signal[14]. 

A new DWT-Hungarian method of watermarking a color 
image was proposed in [15], and a new digital image 
processing algorithm was considered in [16]. 
 
2. ONE DIMENSIONAL HAAR`S FAST CHANGE 

ALGORITHM 
 
Depending on the classes of signals, continuous and 
discrete wavelet modification methods are used to process 
them. Haar’s one-dimensional wavelet rapid change is the 
simplest and basis for wavelet change [3,4,7]. Get

),...,,( 21 nffff  one - dimensional discrete signal. As a 
result of discrete wavelet modification, the processed 
signal is divided into two pieces of equal size [5]. One is 
the average value view na  or approximation of the signal, 

and the other is the different value view nd or detail of the 
signal [7]. 
They are represented in the following form, 

2/,...,3,2,1,
2

212 Nnffa nn
n 


 

(1) 

 
here Znaa n  },{ -formula for determining the average 
values. 
If the signal has a different value, 

2/,...,3,2,1,
2

212 Nnffd nn
n 


  (2) 

 
here ),...,,( 2/21 Ni dddd   -formula for determining 
different values[8]. 
These values generate two new signals Znaa n  },{ : 
one to restore the original signal and the other to restore 
the first  signal Zndd n  },{ , indeed [6]. 

nnn daf 12  
nnn daf 2   (3) 

 
If we look at the example of the rapid change wavelet 
sound signals (Figure 1) 
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Figure 1: Processing of sound signals using  one-dimensional 

Haar wavelet, a) initial signal b) compressed signal. 
 
To understand how the Haar Quick Change works, let’s 
look at the following simple example [3]. Let`s suppose 
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When applying one-dimensional XO along the first line, 
the approximation coefficients are based on (1). 
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and the difference coefficients are based on (2) 
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I the massive can be applied to other rows by the same 
modification. By placing the approximation coefficients of 
each row in the first two columns and the difference 
coefficients corresponding to the next two columns, we 
obtain the following results [8,11]. 
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In a given ratio, the approximation coefficients and the 
difference coefficients are separated by a dot on each line. 
If we apply  one-dimensional XO to the column of the 
array generated in the next step, we have the resulting 
array of the first level. 
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So we have the following arrays, 
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Each massive  shown in the example above has a size 
(number of rows/2) - (number of columns/2) and 
respectively they are called A, H, V, and D, [13]. 
A (approximation area) is the area that contains 
information about the global properties of the image. 
Deleting the spectral coefficients from this area results in 
the greatest distortion of the original image. H (horizontal 
area) contains information about the vertical lines hidden 
in the image. Removing the spectral coefficients from this 
area removes the horizontal details in the original image.V 
(vertical area) contains information about the horizontal 
lines hidden in the image. Removing the spectral 
coefficients from this area eliminates the vertical details in 
the original image. D (diagonal area) contains information 
about the diagonal details hidden in the image. Removal of 
spectral coefficients from this field results in minimal 
distortions in the original image. Thus, the Quick Haar 
Transformation (QHT) is applied to arrays where the 
number of rows and columns in the image array is 2.
 Includes division into QHT'2. The number of 
computational operations, on the other hand, is less 
compared to the Haar modification (XM '). To split an 
image, you first need to apply a one-dimensional QHT to 
each line that represents the pixel value.  One-dimensional 
QHT is  applied to each column. 
 
3. CHANGING  TWO-DIMENSIONAL HAAR 

WAVELET 
 
For example, 22  given massive of three-dimensional 
monochrome images, 
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it can be expressed as a function of two variables
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Let the equality be fulfilled, here 
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The parameter s entered here is placed vertically and by 
substituting (3) into (2) we obtain the index i of the 
massivexi,j [8]. 
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Here  
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For each I step (5) is similar to equation (3) and the first 
step of a one-dimensional QHT is performed [7]. We, we 
have a different form of equation for 

n2 ..., 1,2, = i),(tzi  (see formula 2) 
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Now we replace (6) with (4) and form the following 
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for  j j  and j  the expressions are constant and are 

similar to (3). One-dimensional QHT can be applied to it. 
By doing this, we get the following, 
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here  
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Considering the given equations, we get the following, 
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As a result, the functions are divided into the following 
functions [4], 
 

),()(),()( ,1,1,1,1 stst injninjn   and 
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Thus, the first phase of  two-dimensional XM is continued 
by applying the first phase of one-dimensional QHT to 
each line of the image and then applying the first phase of  
one-dimensional QHT to each line of the masive . 
The above (8) is  two-dimensional Haar wavelet equation, 
which requires finding a large number of coefficients. The 
use of a long chain of coefficients and signal values allows 
to improve the quality of signal recovery.Filtering of 
signals is performed using two types of filters, high 
frequency (HF) and low frequency (LF), as shown in 
Figure 1. As a result, the image is divided into four parts: 
LFLF, LFHF, HFHF and HF. As you know, because the 
image is two-dimensional, filtering pixel values is done 
first by columns, then by rows. During the filtering 
process, the pixel color values are multiplied by the Haar 
wavelet coefficients and are the sum of the result. Thus, 
this conversion process continues until the last pixel of the 
image is etched. 

 

Figure 2: 1st and 2nd degree fragmentation scheme of images in 
two-dimensional Haar wavelet. 

Suppose we were given an X-ray of the head. C ++ 
Builder and Matlab programs based on the model shown 
in (8) were used to improve the quality of the stain in that 
image [11,12]. The following results were obtained after 
Level 1 fragmentation and Level 2 fragmentation (Figure 
3, Figure 4). 

 

Figure 3: 1st degree fragmentation in  two-dimensional Haar 
wavelet. 
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Figure 4: Level 2 fragmentation in  two-dimensional Haar 
wavelet. 

 
Coefficients of recovery after 1st degree fragmentation as 
a result of digital processing of X-ray image of the head 
(Table 1) 
Table 1:Coefficients of recovery of the 1st level decomposition 
№-odd 
numbers 

)(sj -

Image 
recovery 

coefficients 
(OQ) 

№-
couple 
numbers 

)(sj - 

Imagerecovery 
coefficients 

(FQ) 

1. 0 2. 0 

3. 0 4. 0 

5. 0 6. 0 

7. 509 8. 507,5 

9. 507,5 10. 492,5 

11. 307 12. 187 

13. 0 14. 0 

15. 437,25 16. 479,75 

17. 493,75 18. 536,25 

19. 669,5 20. 824,75 

21. 976 22. 212,5 

23. 700 24. 720,75 

25. 1016 26. 1006,25 

 

Coefficients of recovery after 2nd degree fragmentation as 
a result of digital processing of the radiographic image of 
the head (Table 2) 

 
 

Table 2: Coefficients of recovery of the 2nd level decomposition 
№-odd 
numbers 

)(sj -

Image 
recovery 

coefficients 
(OQ) 

№- 
couple 
numbers 
 

)(sj - 

Image 
recovery 

coefficients 
(FQ) 

1. 0 2. 0 

3. 0 4. 0 

5. 0 6. 0 

7. 277,5 8. 225,5 

9. 229 10. 102 

11. 109 12. 507 

13. 0 14. 0 

15. 524,25 16. 533 

17. 489,75 18. 457,75 

19. 614,75 20. 639,5 

21. 690 22. 971,5 

23. 1016 24. 1020 

25. 4,75 26. 24,25 

 

4. CONCLUSION 

As a result of digital processing of two-dimensional Haar 
wavelet conversion, an algorithm was developed based on 
1st-degree and 2nd-degree compression of images, 
improving the quality of the compressed image and 
determining its recovery coefficients. As a result, the 
compressed image is made brighter than the existing 
image. The amount of these coefficients was 159048 after 
the 1st degree fragmentation and 159330 after the 2nd 
degree fragmentation. The large amount of these 
coefficients give some positive results in image recovery. 
This developed algorithm can also be widely used in 
determining the number of spots in a subsequent image. 
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