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ABSTRACT 
 The program is a complex object consisting of different 
units with variable degrees of defects. By predicting the 
effectiveness and frequency of program defects, 
program managers can make better use of manpower, 
cost, and time to obtain better quality assurance.  It is 
always possible to have a set of defects that affect 
designed and predictable units in order to have close 
association with the subsidiaries. Most of the current 
defect prediction rating mechanism is derived from 
learning the previous project data, but it is not sufficient 
to predict the defect of the new project because the new 
design may contain a different type of parameter. This 
paper proposes a Software Defect Learning and 
Analysis utilizing Regression Method (SDLA-RM) to 
detect defects and plan a better maintenance strategy, 
which can support the prediction of a defective or non-
defective software unit prior to deployment in any 
project programs.  The SDL-RM mechanism extends 
Regression Analysis (RAM) to create an effective rule-
based model for accurately classifying program faults. 
This approach improves the predictability of software 
defects, allowing software development to spend more 
time testing components that are expected to contain 
errors. The experimental evaluation is carried out across 
the NASA-PROMISE repository data sets, that outcome 
of the results in comparison with existing classifiers 
suggest the effectiveness and practical perspective in the 
software development. 

Key words: Defect Analysis, Regression Method, 
Software Defect Learning, Software Development. 

1. INTRODUCTION 

In software development it is always challenging to prevent 
defects in the applications because the application is too 
complex and not able identify any errors or defects. These 
defects of the program represent as errors or defects in 
program or program operations and focus mainly on 
predicting defects that affect the performance of the project 
or product. Predicting software failure helps detect, track, 
and resolve anomalies in programs, especially important 

security systems that can affect safe user retention and age. 
Predictability reduces program costs and improves customer 
satisfaction [1]. However, there is no technique for 
predicting software defects that can solve all defect 
problems. Therefore, by predicting effectively and 
appropriately the occurrence of program defects, program 
project managers can make better use of costs and time to 
obtain enhanced quality assurance [2-4]. A diversity of 
methods, tools and tools have been proposed to prevent 
defects, but they seem insufficient to accurately predict. 
More work is still needed to prevent defects in terms of 
Defect Prediction (DEF-PR) technology and schemes 
utilization. Classifications and predictions [5, 6] can be used 
to extract models that describe critical defect data categories 
or predict trends in future defects. The classification predicts 
specific or distinctive labels and labels in disorder, while the 
predictive model predicts functions of continuous value. This 
analysis helps us better understand software defect data. 
Preventing defects is critical to the quality of the 
organization. The main purpose of quality costs is not to 
reduce costs but to save costs in appropriate investments. 
The joy should not be a waste of time while providing for 
deep participation. Instead, it should consider saving the 
time, money and resources are need. It can provide many of 
the rework it needs when defects appear in the final or post-
delivery period. At each stage of the program life cycle, fault 
prevention should be provide to prevent early failure, 
corrective action to be taken to eliminate it and avoid 
recurrence. 
The "Regression analysis methods (RAM)" [7, 8] is a 
commonly used statistical technique for studying the linear 
relationship between variables. This analytical technique can 
be useful for the identification the relation among the various 
types of defects, as these are distributed to a wide range of 
features. The "Multiple-RAM" are an extension of linear to 
RAM that contains one or more predictor variables [9]. It 
assigns the interaction variable to be modelled as a linear 
function for variables or predictive feature properties as, "F1, 
F2, . . . , Fn", and describing a defect as D, which consists of 
the attributes as,  "D = (x1, x2,  . . . , xn)".  The training data 
set, T, contains data in the form "(D1, C1), (D2, C2), . . . , 
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(D|T|, C|D|)", where, the "Di → are the "n-dimensional training 
data", and "Ci → is the related class labels to the defect".  
This paper provides an understanding of the software defect 
and its analysis using the regression method (SDL-RM) for 
defect prediction proficient in software applications. The 
main principle in SDL-RM is to build a model of the actual 
rule for categorizing software defects accurately utilizing the 
repository of "NASA-PROMISE" [10] for the experimental 
assessment. Because each organization tries to maintain the 
privacy of its data, and it cannot publish data sets that can be 
used in its product development for the experiment 
evaluation. It is the most common data sets being provided 
by the NASA project modules. SDLA-RM applies RAM to 
learn an defect-related data sets to create defects knowledge 
for utilize in the developing a RAM-based defect-prediction 
classifiers to improve defect prediction approaches.  
The following paper is organized as, Section 2 discusses the 
background works, Section 3 discusses the proposed SDL-
RM approach, Section 4 provides an assessment of the 
experiment evaluation using data sets, and Section 5 
discusses the paper conclusion. 

 
2. BACKGROUND WORK 

 
Suggestions for preventing software defects are usually 
based on tools, technologies, methods, and standards. In the 
field of software engineering, it is one of the active research 
focus [11]. Since DEF-PR models include a group of 
"defect-prone software artefacts" [12], "quality assurance 
teams" which efficiently assign inadequate resources to test 
and examine software products [13, 14]. 
Several DEF-PR studies [15-17] have been carried out and 
all are based on an ML approach or a statistical approach. 
ML algorithms are used in software failure prediction models 
for classification and regression [18]. Many studies have 
recently used ML techniques to improve the predictability of 
defects. Pre-processing techniques are also important in 
software DEF-PR. In order to progress the performance of 
the ML technique before constructing the DEF-PR model, 
the following techniques such as "feature selection" and 
"data normalization and noise reduction" able to applied 
[19]. Several feature selection techniques are used to extract 
important functions for the DEF-PR model. However, 
several studies [20] have shown that predictive performance 
able to improve by processing techniques, and several 
studies have not been applied because they have considered 
that traffic techniques may be optional and able to ignore. 

 
2.1  Regression Support for Prediction 

 
Regression techniques being utilized to advance software 
quality by utilizing software metrics to predict defect counts 
in software modules [6-8]. It can assist developers to 
distribute inadequate resources to modules that contain 
further defects. The regressive analysis is a method 
associated with the outcome of the variable and the 
interaction of one or extra threat features or mystifying 
variables. The results variable is also identified as reacting or 
reliant variables and threat features and confounders are 
identified "predictors", or "explanatory" or "self-sufficient 

variables". In RA, the relented variable is indicated as "y" 
and the self-sufficient variables are indicated as "x". 
2.1.1 Correlation Analysis  

 
The process of correlation or association analysis 
approximates the "correlation coefficient (CC)" for a sample 
data denoted as R. It association value "R ranges between -1 
and +1", which enumerate the direction and potency of the 
linear relationship among the two variables. Correlation 
among two variables is "positive" if the variable is associated 
with higher or higher if the variable is correlated with the 
shorter level of the erstwhile level. 
The value of the CC indicates the direction of the 
association. The CC indicates the potential of the association. 
For instance, the "correlation of R = 0.9" recommends that 
there is a well-built positive connection among the two 
variables, and the "correlation of R = -0.2" suggests a weak 
or negative relation. Correlation of "zero" proximity does not 
allow the existence of a linear connection among two 
consistent variables. 
It is significant to the reminder that there perhaps two 
continuous variables of nonlinear communication, but it will 
not be revealed when calculating the CC. Therefore, it is 
constantly significant to assess the data cautiously prior to 
the CC. 

 
2.1.2 Multiple Regression Analysis 

 
The regressive analysis is widely utilized in techniques that 
are constructive for estimating "multiple self-sufficient 
variables" [9]. As a consequence, it is especially valuable for 
the assessment and adjustment. It can as well utilized to 
measure the existence of amendment. In many applications, 
there is more than one factor that affects the reaction. So 
many regression models describe how one response variable 
is Ῥ depending on a number of predictive variables. Multiple 
Linear RA is a derivation of the simple linear RA, which is 
utilized to evaluate among more than two self-sufficient 
variables and one constantly relented variable. The multiple 
linear RA equation is defined as follows: 

 
‘P = α + β1X1 + β2X2 +  . . . + βvXv                     (1) 

 
where Ῥ ˗ "is the predicted or expected value of the relented 
variable", α ˗ "is the constant or intercept value of Ῥ", β1 to 
βv  ˗ "are the estimation regression coefficients", and X1 to Xv  
˗ "are v distinct self-sufficient or predictor variables". 
Each regressive coefficient is a change in relation to the 
change in one of the individual self-sufficient variables. In 
the case of numerous regressions, β1, for example, Ῥ is a 
uniform transform in X1, relative to the entire other self-
sufficient variables, where the outstanding self-sufficient 
variables are supposed in the same sense or are observed. 
Once again, arithmetical tests able to executed to evaluate 
whether every regressive coefficient is substantially 
dissimilar from zero. 
Multiple regressive analysis is also utilized to determine if 
there are conflicts. After multiple linear RA permits to assess 
the relations of the self-sufficient variable and the results of 
all the other inconsistent constant, it presents a direction to 
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adjust the potentially confusing variables that are comprised 
in the model. 
For instance, let's suppose we have a defect factor variable, 
which is denoted as X1 and the predicted outcome will be 
presented as Ῥ. Utilizing a simple linear regression 
estimation we can predict as to the relented defect variable 
as, Ῥ = α + β1X1 , where the β1 is the approximated 
regression coefficient that calculates the relationship among 
the defect factor and the predicted outcome. Similarly, for 
more number of depended defect factor, we denote it from X1 
to Xn  and its estimated regression coefficient as β1 to βn , and 
it is estimated in the form of multiple linear regression as Ῥ 
= α + β1X1+ . . . + βnXn .The estimation of regression 
coefficient, β of a defect quantifies the association between 
the defect and the prediction outcome.  
Since the variable is recognized as a co-initiator, we utilize a 
multiple linear RA to evaluate the relationship defect factor 
and the results are adjusted to the confounder. The value of 
the defect's coefficient is associated with the defect factor in 
determining whether the assessment of the factor among the 
factor is statistically important on the explanation of one or 
more confusing variables. 
Multiple Linear RA is widely utilized in various predictions 
of techniques [18]. The popular application is to evaluate the 
relationship among numerous predicting variables at the 
same time and one, the uninterrupted result. For instance, it 
perhaps interesting to see which of the forecasts determines a 
relatively large number of candidates, the most important or 
the most closely associated results. This is constantly 
essential in "statistical analysis", especially in varied fields 
that statistical modelling leads to associations. 

 
2.2 Software Defect Prediction Techniques 

 
Defects analysis in early stages [21, 22] reduce time, cost 
and resources. Knowledge of the injecting methods and 
processes of the defect allows the defect to be avoided. After 
this knowledge in practice, the quality has improved. Defects 
can be prevented based on the underlying causes of defects. 
The analysis can take two appearances, namely "logical 
analysis" and "statistical analysis". Logical Analysis is an 
exhaustive analysis of human consumption that requires 
knowledge, process, development and environmental 
expertise. It inspects logical relations among faults and bugs. 
Statistical analysis is derived from similar projects or 
empirical studies of local written projects. 
There are numerous approaches to recognize defects such as 
"inspections", "prototypes", "testing" and "validation of 
evidence". The "Formal inspection" is the efficient and cost-
effective quality [23, 24] early detection of defects 
identification technique. Several demands are clearly 
understood through prototype, which helps to overcome 
defects. Testing is one of the most effective methods. These 
defects [22], which have flown through early identification, 
can be detected during testing. Corrective evidence is also a 
good way to get out, especially in the coding stage and to 
construction is the most efficient and economical method for 
creating software. 
The most DEF-PR models are founded on ML approaches. 
In relenting on what to need to predict, the model-based 
models are divided into two categories as, "classification" 

and "regression". After the introduction of new ML 
techniques, the methods of active or "semi-supervised 
learning" have been utilized to better DEF-PR models [15, 
25]. Besides ML models few non-statistical models are also 
proposed such as "BugCache" [12]. 
Y. Liu et al. [24] discuss the problem of modelling of 
software quality has been studied, which uses the metric 
database history from a single software project. 
Classification modelling is not only an adequate, strong and 
accurate model from a single database. To solve this 
problem, the quality of the software classification was 
implemented utilizing different databases from different 
programs. Previous studies have shown that utilizing 
multiple data sets for validation can yield a robust genetic 
programming-based model. It shows that the proposed 
approach is more efficient and precise for utilizing multiple 
data sets. 
S. Lessmann et al. [5] it has examined the classification 
algorithm. For comparison of software defect forecasts, it has 
tested experiments utilizing 10 public domain data utilizing 
the 22 classifiers from the NASA metric database storage. 
Predictable accuracy Metric-based classification is generally 
useful. The results also indicate that the value given for the 
specific classification algorithm is not as important as it is 
likely. The results showed no significant difference in the top 
17 classification criteria.   
J. C. Riquelme et al. [19] utilized the promise repository to 
acquire the software metric program was utilized and 
suggested searching the "Genetic algorithm (GA)" for 
searching the rules of the subdivision, which is due to high 
probability. The GA implements the difficulty of unbalanced 
data effectively, particularly when the unstable set consists 
of more unwanted samples than defective illustrations. 
B. Turhan et al. [26] utilized to improve the prediction of the 
cross-company's defect utilizing the nearest neighbour’s 
filter (NN filter). The main idea of the "NN filter" is to 
assemble related sources of instances in target cases in order 
to prepare the forecasting model. In erstwhile, if we are able 
to create a model of forecasting, the cases of selected sources 
that have similar data to the target, the model can be 
improved predict the target case than the model prepared 
from all sources. The NN filter selects 10 sources as near 
neighbours for each target-occurrence. Utilizing the NN filter 
to estimate the performance of the cross-section defect. 
The complexity of the software designing and development 
need an efficient plan for DEF-PR. Therefore, to better plan 
your maintenance strategy, it is important to predict which 
software modules are defective before you deploy your 
software project. The initial knowledge of defected software 
modules is able to help to plan an effective procedure for 
enhancement at a realistic time and cost. This ability to lead 
to quality software in addition to superior customer 
fulfillment [27]. Software modules are characterized into two 
grouping, either "defective" or "non-defective", which 
mostly are prediction utilizing a "binary classification 
model". We acquire the improvement of these two classes 
prediction for suggestions on how to categorize and estimate 
the datasets in the next section. 
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3. PROPOSED SDLA-RM APPROACH  
 
Classification and prediction of faulty methods are designed 
to perform accurate fault prediction, which is an essential 
problem in all software due to indirect measurements and is 
dependent on several metrics. This rule-based classification 
method  

 
 
Figure 1: SDLA-RM system framework 
 

improves efficiency by inheriting methodology multiple-
RAM to improve results and reduce the number and 
accuracy of rules. In our learning, we utilized a fault 
predictor utilizing the "static code properties" defined by 
"McCabe" and "Halstead" [28]. These are "module-based 
metrics" and it is the least unit of functionality in a complete 
system. 
The proposed SDLA-RM reveals rules from past software 
defects based on learned multiple RAM associative defects 
to generate relevant and irrelevant rules for defect prediction 
in software development. The proposed SDLA-RM system 
framework is illustrated in Figure 1. The designed system 
architecture provides two main modules of learning methods 
through RAM and fault prediction utilizing RAM-rules. The 
following sections discuss learning and defect prediction 
mechanisms. 

 
3.1 Learning through Regression Analysis 
 
Association rules Mining and classification are often utilized 
in fault prediction to analyse the relationship between 
various attributes by defect type. To establish the rules 
needed for fault prediction, RA is utilized along with defect 
types and attributes to determine the relationship between 
different type defects. 
In our framework, we use the ratio partitioning, which is 
utilized to estimate the performance of each predictive 
model. That is, every data set is primarily divided into two 
parts, the predictor is learned from the 60% instance, and the 
remaining 40% are tested. Regression-based rules contain 
"data structures" and "knowledge acquisition scenarios" 

derived from knowledge of human experts. The derived 
knowledge is coded into a group of rules. The process of 
learning from defect attributes and learning sets through the 
regression process is presented in Algorithm-1. 
The regression-based learning process consists of two nested 
loops. The outer loop chooses the class value and the inner 
loop creates the rule until the class is applied. The function 
"best_RPattern" returns a combination of terms covering 
only the instances of the present class. The learning process 
makes use of an effortless term assortment through an 
empirical method depend on the probability that an instance 
will have a certain classification specified for a few 
"attribute-value" pairs. 

 
Method:DEF_PR 
Rules(Attrs,Training_set):DEF_PR_Rule_Set 
Var RULE: DEF_PR_RULE 
RAM_Rules: DEF_PR_Rule_Set 
START: 

For(“Defect_Class set_of_defect_class_values”) do 
{ 

While(“t: t. Training_set” and “t.class-
Defect_Class”); 

{ 
Rule.Class:=Defect_Class; 
Rule.RAPattern :=best_RAPattern 
(“Defect_Class”,”Attrs, 
Training_Set”,”Constraints”); 
Remove(“Training_Set”,”Defect_Class”); 
RAM_Rules:=RAMRules.Rule;} 

return(RAM_Rules); 
} 
end 

 
“DEF_PR_Rule_Set” is a set of  “DEF_PR_RULE” 
“DEF_PR_RULE” is a structure with 2 components: 

 Association_Pattern:”DEF_PR_Regression 
Patterns”  

 Defect_Class: Class value predicted for an instance 
that matches regression patterns. 
 

DEF_PR_Regression Patterns is a combination of 
“DEF_PR_terms” 
DEF_PR_terms are the form of attribute 

 
3.2   Regression Model Based Defect Prediction 

 
Knowledge-based systems that have a large structure of 
concepts and rules are now being used in many applications. 
Acquiring knowledge of these systems when modern 
environments occur is a constant requirement that interaction 
between rules increases the complexity of the system. The 
regression rule mechanism creates a two-way dependency 
between the rules so that the rule creation is checked only in 
the context of creating another rule. If the introduction to the 
original rule is "correct" for a particular individual, the 
individual conclusion will be provided if there is no 
dependency. However, if they are "correct", the rule will be 
studied and claimed and the original result will be claimed 
only if the premises of the institution are valid for the legal 
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entity. On the contrary, if the premise of the parental rule is 
wrong for a specific individual, this can not only call for 
conclusions, but if it has a "false false" subordination, it will 
also be tested and approved. 
This regression rule forms a "binary decision tree" dissimilar 
from the "standard decision tree" in that it uses a compound 
clause to determine the branch, and this clause does not have 
to deal with all cases thoroughly to make decisions at the 
internal node. This contrasts with the standard tree where all 
decisions are made at the root node. However, the 
functionality of the "standard decision tree" remains that 
only one decision node is active for each case. Maintenance 
is simple because you need to consider the node only and the 
previous cases that were under it if there is a defect in 
reaching the decision. Extensions to regression rules include 
an extremely simple "statistical decision-making" method 
that generates a rule that is recursively called on the 
remaining data set to generate "if-true" and "if-false" rules as 
well as simple and simple rules It is very natural in point.  
Defects and predictive analysis are performed utilizing 
regression rules generated in the following steps. 
 First, the most frequent defect is the diagnosis of the 
portion of the data set that takes into account the selected 
target defects. 
 Second, an assertion is initialized to associate the defect 
patterns with the DEF_PR_ Regression Patterns.  
 Third, iteratively, each possible attribute value of the 
DEF_PR_term permutation is tested with a likely regression 
pattern and selects the finest according to the relevant 
DEF_PR_term. 
 Finally, based on the similarity index of the defect pattern 
and the regression pattern, it is determined whether to 
determine the predicted defect according to the rule. If it is 
not predicted, the process repeats to the third stage and ends 
with a defect output prediction otherwise. 
The data structure of the DEF_PR_Rule is in a decision tree 
structure where each node has rules for the fault class. This 
structure is interpreted in the form of conditional rules for 
each fault class as, 

 
IF cond1 AND cond2 AND … AND condN  are TRUE THEN 
the defect conclusion.                                                          (2)     

 
Each "Cond” is an attribute condition for the Boolean 
evaluation. For instance, a defect, D=1, if it’s depended 
attribute “Cond" is also true. Each individual defect node has 
accurately two "successor nodes", these "successor nodes" 
are associated with its "predecessor node" by an "ELSE" or 
"EXCEPT" condition.  

 
3.3 Defect Prediction Analysis 

 
Classification is a process that is utilized to identify models 
that define and categorize an unclassified data class or 
concept of predicting the wrong object class whose model is 
unknown. Definition of proposed defect methodology aims 
to define a class of prediction class according to the selected 
attributes and restrictions imposed by the learning process. 
The difficulty of deriving empirical DEF_PR is utilized by 
specifying the set of possible test conditions in the form of 
"S" for the entity universe of the entity "E" whose target 

predicate is "Q" in the materialized entity "E". The intention 
predicate can be conditional the rule set specifies the 
evaluation of the test predicate. With the intent of statistical 
regression, the emergence of "S" and "Q" is not important. It 
should consider "S" as an identifier to select "e" in the 
various separations of "E" that require "Q (e)", measure the 
assortment of rules by indiscriminate identification. 
For example, if a computer program has identified with a set 
of faults as E, and the RA based algorithm predicted Q 
instances as having faults, and others are as S. But, form the 
predicted Q only "x" instances are having faults, and from 
the S instance only "y" has faults. So, the C can be as (x+y) 
or "Q ∩ S" instances. According to these defined DEF_PR 
confusion matrix, a probability of the defect class will be 
predicted using RA rules. 

 
4. EXPERIMENTAL EVALUATION 

 
Experiments were performed utilizing the algorithm 
implemented in the "WEKA environment" [14] utilizing the 
"NASA - Metric Data Program (MDP) Repository". Below 
we discuss data sets, evaluation measurements, and analysis 
of results. 

 
4.1 Dataset 
 
The data set was taken from the PROMISE repository for a 
NASA project [10] consisting of 12 data sets. The data store 
shows software metrics, which are attributes of the data set, 
and whether a particular data set is "Defective" or "non-
defective". Each data set consists of a number of software 
modules (cases), each containing an equivalent number of 
defects and diverse "software static code attributes". After 
pre-processing, one or more faulty modules are labelled as 
faulty. A more thorough explanation of the properties of the 
code or the origin of the data set able to found in [29].These 
four data sets are "CM1, JM1, KC1 and PC1", contain static 
code measurements such as, "Halstead, McCabe, and LOC", 
with defines the fault of defected codes. Table 1 presents the 
description for each of these data sets.  

Table 1: Database Project Description 
 
Project Source 

Code 
Description 

CM1 C NASA spacecraft instrument 
KC1 C++ Storage management for receiving/ 

processing ground data 
KC2 C++ Science data processing. No software 

overlap with KC1 
JM1 C Real-time predictive ground system 
PC1 C Flight software for earth orbiting 

satellite 
 
Every one data set contains 21 software product metrics, 
depending on the "size", "complexity", and "vocabulary" of 
the product. The class attribute of each data set is "TRUE", 
meaning that the component has one or more defects and 
"FALSE" is defective. 
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4.2 Performance Measures 
 
Performance is measured according to the confusion matrix 
given in Table 2, which is utilized by many researchers as in 
[29-30]. It shows confusing matrices for two class problems 
with positive and negative class values. 
 
The software DEF_PR performance of a proposed plan based 
on "accuracy, sensitivity, and specificity" is defined as: 

 
 Accuracy measures the percentage of DEF_PR that are 
correctly classified. 

 
ݕܿܽݎݑܿܿܣ			 = 	 ்	ା	்ே

்	ା	ி	ା	்ே	ା	ிே
                                         (3) 

 
 Sensitivity measures the percentage of positive classified 
instances that predicted as positive. 

 
	ݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ = 		 ்

்	ା	ிே
                                                  (4) 

 
 Specificity measures the percentage of positive classified 
instances that predicted as negative. 

 
ݕݐ݂݅ܿ݅݅ܿ݁ܵ	 = 	 ்ே

ிା்ே
                                                    (5)      

 

 
Table 2: Confusion Matrix 

 
 

4.3 Result Analysis 
 

To compare the results with the best classifier for the 
prediction, such as "Naive Bayes", "OneR", "J48", and 
"RIDOR" To analyse the improvement of the proposal by 
comparing the results of the classification program execution 
of the WEKA Tool on the collected datasets. The 
comparative performance of the accuracy, specificity and 
sensitivity results of the proposed SDLA-RM is shown 
Figure 2, 3 and 4, respectively. 
The proposed SDLA-RM shows an improvisation in the 
Accuracy value in comparison to existing classifier expect 
with the CM1 datasets. An average of 10% enhancement in 
the accuracy being achieved. In the case of both sensitivity 
and specificity measure also it shows an improvisation The 
measure of sensitivity and specificity show the efficiency of 
the probability of detection of classifiers. The detection of 
the SDLA-RM utilizing the regression rules makes to predict 
defect accurately and enhance the sensitivity and specificity 
of the proposal. 

 

 
• Accuracy Analysis 

 

 
 

Figure 2: Accuracy Comparison 
 

 Sensitivity Analysis 
 

 
 

Figure 3: Sensitivity Comparison 
 
 

 Specificity 
 

 
 

Figure 4: Specificity Comparison 
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5. CONCLUSION 

 
Finding and correcting defects makes it easy for developers 
to understand the program. In order to improve the efficiency 
and excellence of software development, it is able to take 
advantage of data mining techniques to analyse and predict a 
large number of flawed data in software aggregation. This 
paper presents a Software Defect Learning and Analysis 
utilizing Regression Method (SDLA-RM). The approach 
designed to predict the defects using the learning method and 
RAM rule through regression analysis. The learning method 
creates rules with two types of exceptions that are easy to 
understand and find search rules automatically, so the 
designer does not have to actually do so. The rule is a 
hierarchy of features that have been enhanced to fit known 
design flaws. The empirical analysis shows the improved 
performance in the prediction of defects assessed according 
to the current classification methods. In future improvement, 
SDLA-RM can be considered for the alternative model of 
software development to improve defects in non-functional 
software. To support the need in real time, it can be used to 
predict the run-time defect or as a tool to expand software 
quality development. 
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