
Rohini B. Jadhav et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1275 - 1282

1275

A Software Defect Learning and Analysis Utilizing Regression Method for
Quality Software Development

Rohini B. Jadhav1 , Shashank D. Joshi 2, Umesh G. Thorat3 , Aditi S. Joshi4

1Research Scholar, Bharati Vidyapeeth (Deemed to be University) College of Engineering Pune, India,
rohini.jadhav@outlook.com

2Professor, Bharati Vidyapeeth (Deemed to be University) College of Engineering Pune, India,sdj@live.in
3Solution Architect, Tata Consultancy Services Pune, India,umesh.thorat@tcs.com

4Research Scholar, Pune Institute of Computer Technology Pune, India,aditijoshi14@gmail.com

ABSTRACT
 The program is a complex object consisting of different
units with variable degrees of defects. By predicting the
effectiveness and frequency of program defects,
program managers can make better use of manpower,
cost, and time to obtain better quality assurance. It is
always possible to have a set of defects that affect
designed and predictable units in order to have close
association with the subsidiaries. Most of the current
defect prediction rating mechanism is derived from
learning the previous project data, but it is not sufficient
to predict the defect of the new project because the new
design may contain a different type of parameter. This
paper proposes a Software Defect Learning and
Analysis utilizing Regression Method (SDLA-RM) to
detect defects and plan a better maintenance strategy,
which can support the prediction of a defective or non-
defective software unit prior to deployment in any
project programs. The SDL-RM mechanism extends
Regression Analysis (RAM) to create an effective rule-
based model for accurately classifying program faults.
This approach improves the predictability of software
defects, allowing software development to spend more
time testing components that are expected to contain
errors. The experimental evaluation is carried out across
the NASA-PROMISE repository data sets, that outcome
of the results in comparison with existing classifiers
suggest the effectiveness and practical perspective in the
software development.

Key words: Defect Analysis, Regression Method,
Software Defect Learning, Software Development.

1. INTRODUCTION

In software development it is always challenging to prevent
defects in the applications because the application is too
complex and not able identify any errors or defects. These
defects of the program represent as errors or defects in
program or program operations and focus mainly on
predicting defects that affect the performance of the project
or product. Predicting software failure helps detect, track,
and resolve anomalies in programs, especially important

security systems that can affect safe user retention and age.
Predictability reduces program costs and improves customer
satisfaction [1]. However, there is no technique for
predicting software defects that can solve all defect
problems. Therefore, by predicting effectively and
appropriately the occurrence of program defects, program
project managers can make better use of costs and time to
obtain enhanced quality assurance [2-4]. A diversity of
methods, tools and tools have been proposed to prevent
defects, but they seem insufficient to accurately predict.
More work is still needed to prevent defects in terms of
Defect Prediction (DEF-PR) technology and schemes
utilization. Classifications and predictions [5, 6] can be used
to extract models that describe critical defect data categories
or predict trends in future defects. The classification predicts
specific or distinctive labels and labels in disorder, while the
predictive model predicts functions of continuous value. This
analysis helps us better understand software defect data.
Preventing defects is critical to the quality of the
organization. The main purpose of quality costs is not to
reduce costs but to save costs in appropriate investments.
The joy should not be a waste of time while providing for
deep participation. Instead, it should consider saving the
time, money and resources are need. It can provide many of
the rework it needs when defects appear in the final or post-
delivery period. At each stage of the program life cycle, fault
prevention should be provide to prevent early failure,
corrective action to be taken to eliminate it and avoid
recurrence.
The "Regression analysis methods (RAM)" [7, 8] is a
commonly used statistical technique for studying the linear
relationship between variables. This analytical technique can
be useful for the identification the relation among the various
types of defects, as these are distributed to a wide range of
features. The "Multiple-RAM" are an extension of linear to
RAM that contains one or more predictor variables [9]. It
assigns the interaction variable to be modelled as a linear
function for variables or predictive feature properties as, "F1,
F2, . . . , Fn", and describing a defect as D, which consists of
the attributes as, "D = (x1, x2, . . . , xn)". The training data
set, T, contains data in the form "(D1, C1), (D2, C2), . . . ,

 ISSN 2278-3091
Volume 8, No.4, July – August 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse38842019.pdf

https://doi.org/10.30534/ijatcse/2019/38842019

Rohini B. Jadhav et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1275 - 1282

1276

(D|T|, C|D|)", where, the "Di → are the "n-dimensional training
data", and "Ci → is the related class labels to the defect".
This paper provides an understanding of the software defect
and its analysis using the regression method (SDL-RM) for
defect prediction proficient in software applications. The
main principle in SDL-RM is to build a model of the actual
rule for categorizing software defects accurately utilizing the
repository of "NASA-PROMISE" [10] for the experimental
assessment. Because each organization tries to maintain the
privacy of its data, and it cannot publish data sets that can be
used in its product development for the experiment
evaluation. It is the most common data sets being provided
by the NASA project modules. SDLA-RM applies RAM to
learn an defect-related data sets to create defects knowledge
for utilize in the developing a RAM-based defect-prediction
classifiers to improve defect prediction approaches.
The following paper is organized as, Section 2 discusses the
background works, Section 3 discusses the proposed SDL-
RM approach, Section 4 provides an assessment of the
experiment evaluation using data sets, and Section 5
discusses the paper conclusion.

2. BACKGROUND WORK

Suggestions for preventing software defects are usually
based on tools, technologies, methods, and standards. In the
field of software engineering, it is one of the active research
focus [11]. Since DEF-PR models include a group of
"defect-prone software artefacts" [12], "quality assurance
teams" which efficiently assign inadequate resources to test
and examine software products [13, 14].
Several DEF-PR studies [15-17] have been carried out and
all are based on an ML approach or a statistical approach.
ML algorithms are used in software failure prediction models
for classification and regression [18]. Many studies have
recently used ML techniques to improve the predictability of
defects. Pre-processing techniques are also important in
software DEF-PR. In order to progress the performance of
the ML technique before constructing the DEF-PR model,
the following techniques such as "feature selection" and
"data normalization and noise reduction" able to applied
[19]. Several feature selection techniques are used to extract
important functions for the DEF-PR model. However,
several studies [20] have shown that predictive performance
able to improve by processing techniques, and several
studies have not been applied because they have considered
that traffic techniques may be optional and able to ignore.

2.1 Regression Support for Prediction

Regression techniques being utilized to advance software
quality by utilizing software metrics to predict defect counts
in software modules [6-8]. It can assist developers to
distribute inadequate resources to modules that contain
further defects. The regressive analysis is a method
associated with the outcome of the variable and the
interaction of one or extra threat features or mystifying
variables. The results variable is also identified as reacting or
reliant variables and threat features and confounders are
identified "predictors", or "explanatory" or "self-sufficient

variables". In RA, the relented variable is indicated as "y"
and the self-sufficient variables are indicated as "x".
2.1.1 Correlation Analysis

The process of correlation or association analysis
approximates the "correlation coefficient (CC)" for a sample
data denoted as R. It association value "R ranges between -1
and +1", which enumerate the direction and potency of the
linear relationship among the two variables. Correlation
among two variables is "positive" if the variable is associated
with higher or higher if the variable is correlated with the
shorter level of the erstwhile level.
The value of the CC indicates the direction of the
association. The CC indicates the potential of the association.
For instance, the "correlation of R = 0.9" recommends that
there is a well-built positive connection among the two
variables, and the "correlation of R = -0.2" suggests a weak
or negative relation. Correlation of "zero" proximity does not
allow the existence of a linear connection among two
consistent variables.
It is significant to the reminder that there perhaps two
continuous variables of nonlinear communication, but it will
not be revealed when calculating the CC. Therefore, it is
constantly significant to assess the data cautiously prior to
the CC.

2.1.2 Multiple Regression Analysis

The regressive analysis is widely utilized in techniques that
are constructive for estimating "multiple self-sufficient
variables" [9]. As a consequence, it is especially valuable for
the assessment and adjustment. It can as well utilized to
measure the existence of amendment. In many applications,
there is more than one factor that affects the reaction. So
many regression models describe how one response variable
is Ῥ depending on a number of predictive variables. Multiple
Linear RA is a derivation of the simple linear RA, which is
utilized to evaluate among more than two self-sufficient
variables and one constantly relented variable. The multiple
linear RA equation is defined as follows:

‘P = α + β1X1 + β2X2 + . . . + βvXv (1)

where Ῥ ˗ "is the predicted or expected value of the relented
variable", α ˗ "is the constant or intercept value of Ῥ", β1 to
βv ˗ "are the estimation regression coefficients", and X1 to Xv
˗ "are v distinct self-sufficient or predictor variables".
Each regressive coefficient is a change in relation to the
change in one of the individual self-sufficient variables. In
the case of numerous regressions, β1, for example, Ῥ is a
uniform transform in X1, relative to the entire other self-
sufficient variables, where the outstanding self-sufficient
variables are supposed in the same sense or are observed.
Once again, arithmetical tests able to executed to evaluate
whether every regressive coefficient is substantially
dissimilar from zero.
Multiple regressive analysis is also utilized to determine if
there are conflicts. After multiple linear RA permits to assess
the relations of the self-sufficient variable and the results of
all the other inconsistent constant, it presents a direction to

Rohini B. Jadhav et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1275 - 1282

1277

adjust the potentially confusing variables that are comprised
in the model.
For instance, let's suppose we have a defect factor variable,
which is denoted as X1 and the predicted outcome will be
presented as Ῥ. Utilizing a simple linear regression
estimation we can predict as to the relented defect variable
as, Ῥ = α + β1X1 , where the β1 is the approximated
regression coefficient that calculates the relationship among
the defect factor and the predicted outcome. Similarly, for
more number of depended defect factor, we denote it from X1
to Xn and its estimated regression coefficient as β1 to βn , and
it is estimated in the form of multiple linear regression as Ῥ
= α + β1X1+ . . . + βnXn .The estimation of regression
coefficient, β of a defect quantifies the association between
the defect and the prediction outcome.
Since the variable is recognized as a co-initiator, we utilize a
multiple linear RA to evaluate the relationship defect factor
and the results are adjusted to the confounder. The value of
the defect's coefficient is associated with the defect factor in
determining whether the assessment of the factor among the
factor is statistically important on the explanation of one or
more confusing variables.
Multiple Linear RA is widely utilized in various predictions
of techniques [18]. The popular application is to evaluate the
relationship among numerous predicting variables at the
same time and one, the uninterrupted result. For instance, it
perhaps interesting to see which of the forecasts determines a
relatively large number of candidates, the most important or
the most closely associated results. This is constantly
essential in "statistical analysis", especially in varied fields
that statistical modelling leads to associations.

2.2 Software Defect Prediction Techniques

Defects analysis in early stages [21, 22] reduce time, cost
and resources. Knowledge of the injecting methods and
processes of the defect allows the defect to be avoided. After
this knowledge in practice, the quality has improved. Defects
can be prevented based on the underlying causes of defects.
The analysis can take two appearances, namely "logical
analysis" and "statistical analysis". Logical Analysis is an
exhaustive analysis of human consumption that requires
knowledge, process, development and environmental
expertise. It inspects logical relations among faults and bugs.
Statistical analysis is derived from similar projects or
empirical studies of local written projects.
There are numerous approaches to recognize defects such as
"inspections", "prototypes", "testing" and "validation of
evidence". The "Formal inspection" is the efficient and cost-
effective quality [23, 24] early detection of defects
identification technique. Several demands are clearly
understood through prototype, which helps to overcome
defects. Testing is one of the most effective methods. These
defects [22], which have flown through early identification,
can be detected during testing. Corrective evidence is also a
good way to get out, especially in the coding stage and to
construction is the most efficient and economical method for
creating software.
The most DEF-PR models are founded on ML approaches.
In relenting on what to need to predict, the model-based
models are divided into two categories as, "classification"

and "regression". After the introduction of new ML
techniques, the methods of active or "semi-supervised
learning" have been utilized to better DEF-PR models [15,
25]. Besides ML models few non-statistical models are also
proposed such as "BugCache" [12].
Y. Liu et al. [24] discuss the problem of modelling of
software quality has been studied, which uses the metric
database history from a single software project.
Classification modelling is not only an adequate, strong and
accurate model from a single database. To solve this
problem, the quality of the software classification was
implemented utilizing different databases from different
programs. Previous studies have shown that utilizing
multiple data sets for validation can yield a robust genetic
programming-based model. It shows that the proposed
approach is more efficient and precise for utilizing multiple
data sets.
S. Lessmann et al. [5] it has examined the classification
algorithm. For comparison of software defect forecasts, it has
tested experiments utilizing 10 public domain data utilizing
the 22 classifiers from the NASA metric database storage.
Predictable accuracy Metric-based classification is generally
useful. The results also indicate that the value given for the
specific classification algorithm is not as important as it is
likely. The results showed no significant difference in the top
17 classification criteria.
J. C. Riquelme et al. [19] utilized the promise repository to
acquire the software metric program was utilized and
suggested searching the "Genetic algorithm (GA)" for
searching the rules of the subdivision, which is due to high
probability. The GA implements the difficulty of unbalanced
data effectively, particularly when the unstable set consists
of more unwanted samples than defective illustrations.
B. Turhan et al. [26] utilized to improve the prediction of the
cross-company's defect utilizing the nearest neighbour’s
filter (NN filter). The main idea of the "NN filter" is to
assemble related sources of instances in target cases in order
to prepare the forecasting model. In erstwhile, if we are able
to create a model of forecasting, the cases of selected sources
that have similar data to the target, the model can be
improved predict the target case than the model prepared
from all sources. The NN filter selects 10 sources as near
neighbours for each target-occurrence. Utilizing the NN filter
to estimate the performance of the cross-section defect.
The complexity of the software designing and development
need an efficient plan for DEF-PR. Therefore, to better plan
your maintenance strategy, it is important to predict which
software modules are defective before you deploy your
software project. The initial knowledge of defected software
modules is able to help to plan an effective procedure for
enhancement at a realistic time and cost. This ability to lead
to quality software in addition to superior customer
fulfillment [27]. Software modules are characterized into two
grouping, either "defective" or "non-defective", which
mostly are prediction utilizing a "binary classification
model". We acquire the improvement of these two classes
prediction for suggestions on how to categorize and estimate
the datasets in the next section.

Rohini B. Jadhav et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1275 - 1282

1278

3. PROPOSED SDLA-RM APPROACH

Classification and prediction of faulty methods are designed
to perform accurate fault prediction, which is an essential
problem in all software due to indirect measurements and is
dependent on several metrics. This rule-based classification
method

Figure 1: SDLA-RM system framework

improves efficiency by inheriting methodology multiple-
RAM to improve results and reduce the number and
accuracy of rules. In our learning, we utilized a fault
predictor utilizing the "static code properties" defined by
"McCabe" and "Halstead" [28]. These are "module-based
metrics" and it is the least unit of functionality in a complete
system.
The proposed SDLA-RM reveals rules from past software
defects based on learned multiple RAM associative defects
to generate relevant and irrelevant rules for defect prediction
in software development. The proposed SDLA-RM system
framework is illustrated in Figure 1. The designed system
architecture provides two main modules of learning methods
through RAM and fault prediction utilizing RAM-rules. The
following sections discuss learning and defect prediction
mechanisms.

3.1 Learning through Regression Analysis

Association rules Mining and classification are often utilized
in fault prediction to analyse the relationship between
various attributes by defect type. To establish the rules
needed for fault prediction, RA is utilized along with defect
types and attributes to determine the relationship between
different type defects.
In our framework, we use the ratio partitioning, which is
utilized to estimate the performance of each predictive
model. That is, every data set is primarily divided into two
parts, the predictor is learned from the 60% instance, and the
remaining 40% are tested. Regression-based rules contain
"data structures" and "knowledge acquisition scenarios"

derived from knowledge of human experts. The derived
knowledge is coded into a group of rules. The process of
learning from defect attributes and learning sets through the
regression process is presented in Algorithm-1.
The regression-based learning process consists of two nested
loops. The outer loop chooses the class value and the inner
loop creates the rule until the class is applied. The function
"best_RPattern" returns a combination of terms covering
only the instances of the present class. The learning process
makes use of an effortless term assortment through an
empirical method depend on the probability that an instance
will have a certain classification specified for a few
"attribute-value" pairs.

Method:DEF_PR
Rules(Attrs,Training_set):DEF_PR_Rule_Set
Var RULE: DEF_PR_RULE
RAM_Rules: DEF_PR_Rule_Set
START:

For(“Defect_Class set_of_defect_class_values”) do
{

While(“t: t. Training_set” and “t.class-
Defect_Class”);

{
Rule.Class:=Defect_Class;
Rule.RAPattern :=best_RAPattern
(“Defect_Class”,”Attrs,
Training_Set”,”Constraints”);
Remove(“Training_Set”,”Defect_Class”);
RAM_Rules:=RAMRules.Rule;}

return(RAM_Rules);
}
end

“DEF_PR_Rule_Set” is a set of “DEF_PR_RULE”
“DEF_PR_RULE” is a structure with 2 components:

 Association_Pattern:”DEF_PR_Regression
Patterns”

 Defect_Class: Class value predicted for an instance
that matches regression patterns.

DEF_PR_Regression Patterns is a combination of
“DEF_PR_terms”
DEF_PR_terms are the form of attribute

3.2 Regression Model Based Defect Prediction

Knowledge-based systems that have a large structure of
concepts and rules are now being used in many applications.
Acquiring knowledge of these systems when modern
environments occur is a constant requirement that interaction
between rules increases the complexity of the system. The
regression rule mechanism creates a two-way dependency
between the rules so that the rule creation is checked only in
the context of creating another rule. If the introduction to the
original rule is "correct" for a particular individual, the
individual conclusion will be provided if there is no
dependency. However, if they are "correct", the rule will be
studied and claimed and the original result will be claimed
only if the premises of the institution are valid for the legal

Rohini B. Jadhav et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1275 - 1282

1279

entity. On the contrary, if the premise of the parental rule is
wrong for a specific individual, this can not only call for
conclusions, but if it has a "false false" subordination, it will
also be tested and approved.
This regression rule forms a "binary decision tree" dissimilar
from the "standard decision tree" in that it uses a compound
clause to determine the branch, and this clause does not have
to deal with all cases thoroughly to make decisions at the
internal node. This contrasts with the standard tree where all
decisions are made at the root node. However, the
functionality of the "standard decision tree" remains that
only one decision node is active for each case. Maintenance
is simple because you need to consider the node only and the
previous cases that were under it if there is a defect in
reaching the decision. Extensions to regression rules include
an extremely simple "statistical decision-making" method
that generates a rule that is recursively called on the
remaining data set to generate "if-true" and "if-false" rules as
well as simple and simple rules It is very natural in point.
Defects and predictive analysis are performed utilizing
regression rules generated in the following steps.
 First, the most frequent defect is the diagnosis of the
portion of the data set that takes into account the selected
target defects.
 Second, an assertion is initialized to associate the defect
patterns with the DEF_PR_ Regression Patterns.
 Third, iteratively, each possible attribute value of the
DEF_PR_term permutation is tested with a likely regression
pattern and selects the finest according to the relevant
DEF_PR_term.
 Finally, based on the similarity index of the defect pattern
and the regression pattern, it is determined whether to
determine the predicted defect according to the rule. If it is
not predicted, the process repeats to the third stage and ends
with a defect output prediction otherwise.
The data structure of the DEF_PR_Rule is in a decision tree
structure where each node has rules for the fault class. This
structure is interpreted in the form of conditional rules for
each fault class as,

IF cond1 AND cond2 AND … AND condN are TRUE THEN
the defect conclusion. (2)

Each "Cond” is an attribute condition for the Boolean
evaluation. For instance, a defect, D=1, if it’s depended
attribute “Cond" is also true. Each individual defect node has
accurately two "successor nodes", these "successor nodes"
are associated with its "predecessor node" by an "ELSE" or
"EXCEPT" condition.

3.3 Defect Prediction Analysis

Classification is a process that is utilized to identify models
that define and categorize an unclassified data class or
concept of predicting the wrong object class whose model is
unknown. Definition of proposed defect methodology aims
to define a class of prediction class according to the selected
attributes and restrictions imposed by the learning process.
The difficulty of deriving empirical DEF_PR is utilized by
specifying the set of possible test conditions in the form of
"S" for the entity universe of the entity "E" whose target

predicate is "Q" in the materialized entity "E". The intention
predicate can be conditional the rule set specifies the
evaluation of the test predicate. With the intent of statistical
regression, the emergence of "S" and "Q" is not important. It
should consider "S" as an identifier to select "e" in the
various separations of "E" that require "Q (e)", measure the
assortment of rules by indiscriminate identification.
For example, if a computer program has identified with a set
of faults as E, and the RA based algorithm predicted Q
instances as having faults, and others are as S. But, form the
predicted Q only "x" instances are having faults, and from
the S instance only "y" has faults. So, the C can be as (x+y)
or "Q ∩ S" instances. According to these defined DEF_PR
confusion matrix, a probability of the defect class will be
predicted using RA rules.

4. EXPERIMENTAL EVALUATION

Experiments were performed utilizing the algorithm
implemented in the "WEKA environment" [14] utilizing the
"NASA - Metric Data Program (MDP) Repository". Below
we discuss data sets, evaluation measurements, and analysis
of results.

4.1 Dataset

The data set was taken from the PROMISE repository for a
NASA project [10] consisting of 12 data sets. The data store
shows software metrics, which are attributes of the data set,
and whether a particular data set is "Defective" or "non-
defective". Each data set consists of a number of software
modules (cases), each containing an equivalent number of
defects and diverse "software static code attributes". After
pre-processing, one or more faulty modules are labelled as
faulty. A more thorough explanation of the properties of the
code or the origin of the data set able to found in [29].These
four data sets are "CM1, JM1, KC1 and PC1", contain static
code measurements such as, "Halstead, McCabe, and LOC",
with defines the fault of defected codes. Table 1 presents the
description for each of these data sets.

Table 1: Database Project Description

Project Source

Code
Description

CM1 C NASA spacecraft instrument
KC1 C++ Storage management for receiving/

processing ground data
KC2 C++ Science data processing. No software

overlap with KC1
JM1 C Real-time predictive ground system
PC1 C Flight software for earth orbiting

satellite

Every one data set contains 21 software product metrics,
depending on the "size", "complexity", and "vocabulary" of
the product. The class attribute of each data set is "TRUE",
meaning that the component has one or more defects and
"FALSE" is defective.

Rohini B. Jadhav et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1275 - 1282

1280

4.2 Performance Measures

Performance is measured according to the confusion matrix
given in Table 2, which is utilized by many researchers as in
[29-30]. It shows confusing matrices for two class problems
with positive and negative class values.

The software DEF_PR performance of a proposed plan based
on "accuracy, sensitivity, and specificity" is defined as:

 Accuracy measures the percentage of DEF_PR that are
correctly classified.

ݕܿܽݎݑܿܿܣ			 = 	 ்	ା	்ே

்	ା	ி	ା	்ே	ା	ிே
 (3)

 Sensitivity measures the percentage of positive classified
instances that predicted as positive.

	ݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ = 		 ்

்	ା	ிே
 (4)

 Specificity measures the percentage of positive classified
instances that predicted as negative.

ݕݐ݂݅ܿ݅݅ܿ݁ܵ	 = 	 ்ே

ிା்ே
 (5)

Table 2: Confusion Matrix

4.3 Result Analysis

To compare the results with the best classifier for the
prediction, such as "Naive Bayes", "OneR", "J48", and
"RIDOR" To analyse the improvement of the proposal by
comparing the results of the classification program execution
of the WEKA Tool on the collected datasets. The
comparative performance of the accuracy, specificity and
sensitivity results of the proposed SDLA-RM is shown
Figure 2, 3 and 4, respectively.
The proposed SDLA-RM shows an improvisation in the
Accuracy value in comparison to existing classifier expect
with the CM1 datasets. An average of 10% enhancement in
the accuracy being achieved. In the case of both sensitivity
and specificity measure also it shows an improvisation The
measure of sensitivity and specificity show the efficiency of
the probability of detection of classifiers. The detection of
the SDLA-RM utilizing the regression rules makes to predict
defect accurately and enhance the sensitivity and specificity
of the proposal.

• Accuracy Analysis

Figure 2: Accuracy Comparison

 Sensitivity Analysis

Figure 3: Sensitivity Comparison

 Specificity

Figure 4: Specificity Comparison

40
50
60
70
80
90

100
110

CM1 PC1 KC1 JM1

Accuracy

Naïve Bayes OneR SDLA-RMP Ridor J48

40

60

80

100

120

CM1 PC1 KC1 JM1

Sensitivity

Naïve Bayes OneR SDLA-RMP Ridor J48

40

60

80

100

120

CM1 PC1 KC1 JM1

-

Naïve Bayes OneR SDLA-RMP Ridor J48

Actual Class
Predicted Class

Defective Not Defective

Defective True Negative
(TN)

False Positive
(FP)

Not Defective
False Negative
(FN)

True Positive
(TP)

Rohini B. Jadhav et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1275 - 1282

1281

5. CONCLUSION

Finding and correcting defects makes it easy for developers
to understand the program. In order to improve the efficiency
and excellence of software development, it is able to take
advantage of data mining techniques to analyse and predict a
large number of flawed data in software aggregation. This
paper presents a Software Defect Learning and Analysis
utilizing Regression Method (SDLA-RM). The approach
designed to predict the defects using the learning method and
RAM rule through regression analysis. The learning method
creates rules with two types of exceptions that are easy to
understand and find search rules automatically, so the
designer does not have to actually do so. The rule is a
hierarchy of features that have been enhanced to fit known
design flaws. The empirical analysis shows the improved
performance in the prediction of defects assessed according
to the current classification methods. In future improvement,
SDLA-RM can be considered for the alternative model of
software development to improve defects in non-functional
software. To support the need in real time, it can be used to
predict the run-time defect or as a tool to expand software
quality development.

REFERENCES
[1]. Q.Song, M.Shepperd, M.Cartwright, and C.Mair,

"Software Defect Association Mining and Defect
Correction Effort Prediction", IEEE Transactions
on software engineering, Vol. 32, no. 2, February
2016.

[2]. S.Tantithamthavorn, S. McIntosh, A. Hassan, K.
Matsumoto "An Empirical Comparison of Model
Validation Techniques for Defect Prediction
Models", IEEE Transactions on Software
Engineering, Volume: 43, Issue: 1, 2017.
https://doi.org/10.1109/TSE.2016.2584050

[3]. X.-Yuan Jing, Fei Wu, X. Dong, Baowen Xu "An
Improved SDA Based Defect Prediction
Framework for Both Within-Project and Cross-
Project Class-Imbalance Problems", IEEE
Transactions on Software Engineering, Volume: 43,
Issue: 4, 2017.
https://doi.org/10.1109/TSE.2016.2597849

[4]. R.Jadhav, S.Joshi, U.Thorat, A.Joshi, “A survey on
Software Defect Prediction in Cross Project” In:
Proc of 13th INDIACom-2019,IEEE Conf. 6th
International Conf. on “Computing for Substanable
Global Development”.

[5]. S.Lessmann, B.Baesens, C.Mues, and S. Pietsch.
“Benchmarking classification models for software
defect prediction: A proposed framework and
novel findings”. Software Engineering, IEEE
Transactions, pp. 485-496, 2008.
https://doi.org/10.1109/TSE.2008.35

[6]. Z.Abraham, P.Tan, "A Semi-supervised Framework
for Simultaneous Classification and Regression of
Zero-Inflated Time Series Data with Application
to Precipitation Prediction", In: Proc of IEEE
International Conf. on Data Mining Workshops, pp.
644 - 649, 2009.

https://doi.org/10.1109/ICDMW.2009.80
[7]. G.K.Rajbahadur, S.Wang, Y.Kamei, A.E. Hassan,

"The Impact of Using Regression Models to Build
Defect Classifiers", In: Proc IEEE/ACM 14th
International Conference on Mining Software
Repositories (MSR), pp. 135 - 145, 2017.
https://doi.org/10.1109/MSR.2017.4

[8]. M.Dhiauddin, M.Suffian, S.Ibrahim, "A Prediction
Model for System Testing Defects using
Regression Analysis", International Journal of Soft
Computing And Software Engineering (JSCSE), pp.
2251-7545, Vol.2(7), 2012.
https://doi.org/10.7321/jscse.v2.n7.6

[9]. S. Bibi, G. Tsoumakas, I. Stamelos, I. Vlahvas,
"Software Defect Prediction Using Regression via
Classification", In: Proc of IEEE International Conf.
on Computer Systems and Applications, pp. 330 -
336, 2006.
https://doi.org/10.1109/AICCSA.2006.205110

[10]. Software Defect Dataset, PROMISE Repository for
NASA Projects,
http://promise.site.uottawa.ca/SERepository .

[11]. E.A.Felix, S.P.Lee, "Integrated Approach to
Software Defect Prediction", IEEE Access, Vol. 5,
pp. 21524 - 21547, 2017.
https://doi.org/10.1109/ACCESS.2017.2759180

[12]. F.Rahman, D.Posnett, A.Hindle, E.Barr, P.Devanbu,
"BugCache for inspections: hit or miss?", In: Proc.
for 19th ACM SIGSOFT symposium of software
engineering, pp. 322-331, 2011.
https://doi.org/10.1145/2025113.2025157

[13]. X.Yu, J.Liu, Z.Yang, X.Jia, Q.Ling, S.Ye "Learning
from Imbalanced Data for Predicting the Number
of Software Defects", IEEE 28th International
Symposium on Software Reliability Engineering
(ISSRE), pp. 78 - 89, 2017.
https://doi.org/10.1109/ISSRE.2017.18

[14]. P.Ambardekar, A.Jamthe, M.Chincholkar
"Predicting defect resolution time using cosine
similarity", In: Proc International Conf. on Data and
Software Engineering (ICoDSE), pp. 1 - 6, 2017.
https://doi.org/10.1109/ICODSE.2017.8285884

[15]. O.Okutan, T. Yildiz, "Software defect prediction
using Bayesian networks", Empirical Software
Engineering, pp. 1-28, 2012.
https://doi.org/10.1007/s10664-012-9218-8

[16]. H. Can, X. Jianchun, Z. R. L. Juelong, Y. Quiliang
and X. Liqiang, "A new model for software defect
prediction using Particle Swarm Optimization and
support vector machine", In: Proc. Of 25th Chinese
Control and Decision Conference (CCDC), pp. 4106 -
4110, 2013.
https://doi.org/10.1109/CCDC.2013.6561670

[17]. F.Zhang, Q.Zheng, Y.Zou, A.E. Hassan "Cross-
Project Defect Prediction Using a Connectivity-
Based Unsupervised Classifier", In: Proc of
IEEE/ACM 38th International Conf. on Software
Engineering (ICSE), pp. 309 - 320, 2016
https://doi.org/10.1145/2884781.2884839

[18]. Z. Yan, X. Chen, P. Guo, "Software Defect
Prediction Using Fuzzy Support Vector

Rohini B. Jadhav et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1275 - 1282

1282

Regression", Springer Advances in Neural Networks,
Vol. 6064, pp 17-24, 2010.
https://doi.org/10.1007/978-3-642-13318-3_3

[19]. J.C.Riquelme, R.Ruiz, D.Rodriguez, J.S.A. Ruiz,
"Finding Defective Software Modules by Means of
Data Mining Techniques", IEEE Latin America
Transactions, Vol. 7(3), pp. 377 - 382, 2009.
https://doi.org/10.1109/TLA.2009.5336637

[20]. J. Wang, B. Shen, and Y. Chen, "Compressed C4.5
Models for Software Defect Prediction", In: Proc of
IEEE 12th International Conf. on Quality Software
(QSIC), August, pp. 13-16, 2012.
https://doi.org/10.1109/QSIC.2012.19

[21]. R. Chillarege, I.S. Bhandari, J. Chaar, M.J. Halliday,
D.S. Moebus, B.K. Ray, and M.Y. Wong,
"Orthogonal Defect Classification-A Concept for
In-Process Measurements," IEEE Trans. Software
Eng., vol. 18, no. 11, pp. 943-956, Nov. 1992.
https://doi.org/10.1109/32.177364

[22]. Jon.T "A Comparison of IBM's Orthogonal Defect
Classification to Hewlett Packard's Defect Origins,
Types, and Modes", pg 13-16, Hewlett Packard
company Metrics, 1999.

[23]. R.G.Dromey, "Software Control Quality -
Prevention Verses Cure?” Vol. 11 (3), pp. 197 -
212, 2003.
https://doi.org/10.1023/A:1025162610079

[24]. Y.Liu, T.M.Khoshgoftaar, N.Seliya "Evolutionary
Optimization of Software Quality Modelling with
Multiple Repositories", IEEE Transactions on
Software Engineering Vol. 36(6), pp. 852 - 864, 2010.
https://doi.org/10.1109/TSE.2010.51

[25]. A. Koru and H. Liu, "Building effective defect-
prediction models in practice", IEEE Software, pp.
23-29, 2005.
https://doi.org/10.1109/MS.2005.149

[26]. B.Turhan, AT.Msrl and A.Bener. “Empirical
evaluation of the effects of mixed project data on
learning defect predictors”. Inform. Software Tech.
2013; 55, 1101-18.
https://doi.org/10.1016/j.infsof.2012.10.003

[27]. F.Rahman, S.Khatri, ET.Barr, and P.Devanbu,
"Comparing static bug finders and statistical
prediction", In: Proc. of the 36th ACM International
Conf. on Software Engineering, pp. 424-34. 2014.
https://doi.org/10.1145/2568225.2568269

[28]. M. H. Halstead, "Elements of Software Science",
Elsevier, New York, 1977.

[29]. H.Zhang, X.Zhang, and M.Gu. "Predicting defective
software components from code complexity
measures", In IEEE 13th Pacific Rim International
Symposium on Dependable Computing, pp. 93-96,
2007.
https://doi.org/10.1109/PRDC.2007.28

[30]. N. E. Fenton and S. L. Pfleeger, "Software metrics:
a rigorous and practical approach", PWS
Publishing Co., (1998).

