

Ajeet K. Jain et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6829 – 6833

6829

Deep Learning with Recursive Neural Network

for Temporal Logic Implementation

Ajeet K. Jain1, Dr.PVRD Prasad Rao 2, Dr. K. Venkatesh Sharma 3
1Research Scholar, Department of Computer Science and Engineering, KoneruLakshmaiah Education

Foundation, Vaddeswaram, AP, India; (Association: CSE, KMIT, Hyderabad, India)
 2 Professor, CSE, KLEF, Vaddeswaram, AP, India

3Professor, CSE, CVR College of Engineering., Hyderabad, India
1jainajeet123@gmail.com, jainajeet1@rediffmail.com,

2pvrdprasad@kluniversity.in,3venkateshsharma.cse@gmail.com

ABSTRACT

Stock prediction in financial market is one of the
exciting applications of deep learning (DL). Stock
values fluctuate in accordance with time and hence
suitability of Recursive Neural Network (RNN) as
one of the model for prediction of stocks is a niche
choice as a predictor. The temporal pattern of
financial market is investigated with plain RNN and
also with Long Short Term Memory (LSTM). In
contrast to the classical time series forecasting, the
widespread use of deep learning network and
algorithms using temporal statistical relations built
upon RNN have been finding increasing applications
in time series domain analysis and provide a better
yield in terms of performance. We have
implemented temporal logic using Keras framework
and show the results on the sequential data sets of
stock prediction market. Our main focus is solely on
stock prediction using time series forecasting,
however, it can be extended to risk assessment,
portfolio management etc. The imperative is to use
this as a basis model for further investigation and
explore additionally with trend forecasting, crypto
currency forecasting and many more. Although this
area is matured enough, with machine learning
techniques, it provides tremendous opportunities for
further investigations and improvements thereon.

Key words: Deep Learning, Long Short Time
Memory, Recursive Neural Network, Optimizers,
Time Series

1. INTRODUCTION
Time series forecasting is one of AI applications

for researchers due to its broad implementation areas
and substantial impact in learning the sequential
nature. Machine Learning (ML) techniques delved
into this area implementing various deep learning
models with RNN and significantly outperformed [1,
2]. The time series (TS) analysis comprises methods
for analyzing sequential data in order to extract
meaningful statistical and other relational
characteristics. Further, time series forecasting uses a
model to predict future values based on previously
observed values. TS encompasses applications in
various domains, like statistics, signal processing,
pattern recognition, weather forecasting, earthquake
prediction, astronomy, stock price, etc.— involving
temporal measurements. In all such scenarios, the
sequential nature imposes an order-preserving on the
observations while training the models and making
predictions.

1.1 Time Series Model Helps In Stock Prediction

A time series helps to model stock prices
correctly, so that stock buyers can rationally decide
when to buy and sell them for profitability. To
accomplish this, we need learning models that
preserves the sequential nature of data and thereby
correctly predicting future values.

1.2 Parameterized Network Model Learning

In deep learning (DL), synaptic weights are the
parameters of a layer, learnt to find a set of values for
all layers in a network to accurately map example
inputs to their associated targets. A DL network may
contain millions of parameters, so finding the correct

ISSN 2278-3091
Volume 9, No.4, July – August 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse383942020.pdf

https://doi.org/10.30534/ijatcse/2020/383942020

Ajeet K. Jain et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6829 – 6833

6830

values for all of them may be unnerving task;
especially given that modifying the value of one
parameter will affect the behaviour of all others!
Eventually, it leads to measure how faraway
this output is from what we were expecting.
Evidently, this is the task of the loss function of the
system taking the predicted and target values and
computing a difference score and thus capturing how
well the network has done on this specific example
[3]. Typically, these layers are combined into a
network (or model) comprising of:

 Input data and corresponding targets
 Loss function (objective function), which

defines the feedback signal used for learning—
the quantity that will be minimized during
training. It assesses the success for the task at
hand.

 Optimizer, which determines how should
learning proceeds based upon loss function. It
implements a specific variation of stochastic
gradient descent (SGD).

2.RECURRENT NEURAL NETWORKS
(RNNS)

A RNN processes by iterating through the sequence
elements and maintaining a state containing
information relative to what it has seen so far. In
effect, an RNN is a network that has an internal loop
as depicted in Fig.1. The state of the RNN is reset
between processing two different, independent
sequences, so we consider one sequence a single data
point: a single input to the network. What changes is
that this data point is no longer processed in a single
step; rather, the network internally loops over
sequence elements.

Figure 1: A Simple RNN

The RNN takes a sequence of vectors as input and
encodesas a 2D tensor of size (timesteps,
input_features). It loops over timesteps, and at each
timestep, it considers its current state at t and the
input at t of shape (input_features), and combines
them to obtain the output at t. This in turn sets the
state for the next step to be this previous output. For

the first timestep, the previous output is undefined;
hence, there is no current state. So, we initialize the
state as all zero vectors:

1 initial_state_t = 0
2 for ts_input_t in input_seq:
3 ts_output_t=(ts_input_t,
initial_state_t)
4 next_state_t =ts_output_t

Here in this code fragment, the parameters are
indexed with time stamp as:

1 beginning time state—initial_state_t
(initialized with zero)
2 subsequently looping for the given sequence
3 next time step output is a function of initial state
and the input state
4 following state is the output state

The classical RNN's parameters are defined by three
weight matrices U, V, and W, corresponding to the
input, output, and hidden state respectively, as
depicted in Fig. 2.

Figure 2: A RNN with a loop

The weight matrices U, V, and Ware shared across
all the steps,as we are applying the same operation on
different inputs at each time step, thereby greatly
reduces the number of parameters that the RNN
needs to learn. As depicted in Fig.2, the x’s are the
inputs and y’s are the computed outputs
(conventionally called as ŷ: y-hat), and the h’s hidden
values [4, 5, 6].

2.1 ISSUES TO BE DEALT WITH FOR
STANDARD RNNS

There are general issues a typical RNN architecture
has to deal with:

 Gradient is a partial derivative with respect
to its inputs

 Measures how much the output of function
changes, if we change the inputs a little bit.

 forhigher gradient values - the faster a
model can learn.

Output

Input

Recurrent

 RNN

Ajeet K. Jain et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6829 – 6833

6831

 model stops learning when gradient
approached zero

2.2 PROBLEM OF LONG-TERM
DEPENDENCIES

One of the entreaties of RNN is that they are able to
connect previous information to the present task—
such as using previous video frames and then
understanding of the present frame. However, as the
gap grows, RNNs are unable to learn to connect
information, as depicted in Fig.3. Here, the x1,x2, . . .
xn represent the input vectors for the A’s of the RNN
network with corresponding h1,h2,...hn as hidden
layers.

Figure 3: An unrolled RNN

Conceptually, RNNs are capable of handling long-
term dependencies. However, unfortunately in
practice, RNN internal gating structures need to
modify to possess this property. The problem was
explored in depth by Hochreiter and Bengio [7, 8,9]
and proposed LSTM as problem solver.

2.3 ARCHITECTURE OF LSTM NETWORK

LSTM architecture consists of different memory
blocks (rectangles cells) as depicted in Fig. 4.
Basically, there are two states that are being
transferred to the next cell: the cell state and
the hidden state. The memory blocks store the things
and their contents manipulations are done through
three gates mechanisms. The symbols and notations
used are convectional and standards symbols and
blocks of LSTM architecture.

Fig. 4 LSTM architecture [courtesy 8, 9]
memory blocks called cells (rectangles). There are
two states that are being transferred to the next cell:
the cell state and the hidden state. The memory
blocks are responsible for remembering things and
manipulations to this memory is done through three
major mechanisms, called gates.With LSTMs, the
information flows through a mechanism known as
cell states. This way, LSTMs can selectively
remember or forget things. The information at a
particular cell state has three different dependencies,
as:

 previous cell state (i.e. the information that
was present in the memory after the
previous time step)

 previous hidden state (i.e. this is the same
as the output of the previous cell)

 input at the current time step (i.e. the new
information that is being fed in at that
moment)

These particular features of LSTM make them very
attractive to incorporate them into time series models
and have been investigated more thoroughly in [8, 9].

Ajeet K. Jain et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6829 – 6833

6832

3. TIME SERIES IN STOCK MARKET

Stocks are the most important financial instruments
where securities of various companies are transacted
and itinvolves regulating and controlling the business
of buying, selling or dealing with securities. A
security in a financial context is an official document
that has a monetary value. The stock market is
characterised as complex, unpredictable and ever
changing and moves with a life of its own, reacts to
circumstances and leaves investors either reaping
rewards or nothing at all. The price of a stock is the
input agreed upon by a seller and a buyer in a
continuous auction market. The stock price is
determined by multiple factors such as supply and
demand, opinions and outlooks and technical factors
[10].

3.1IMPLEMENTING TIME SERIES USING
RNN WITHOUT AND WITH LSTM IN KERAS
 (Resource: httpts://www.kaggle.com/szrlee/stock-
time-series -20050101-to-2017123)

This dataset has stocks time series data of various
companies in CSV format and we are using Simple
RNN model plus LSTM model using Keras as
framework. After the model fitting, we compare the
prediction metrics to know which model is the best fit
for the prediction.The algorithmic steps are as
follows:

1. Load Training data set : Pre-processing Steps
use MinMaxScaler to normalize the datset for
‘Open’, ‘Close’, ‘High’, ‘Low’ values
split data into training and test set : first 2500 days
for training; last 498 as test set

 2. Simple RNN:Add dense layers from Keras
Sequential modelactivation function as tanhand
dropout of 0.15

 3. Compilation:Compile with ‘ADAM’ optimizer;
calculate loss with MSE

 4. Graph Plot: Plot real and predicted stock price in
different colors and analyze

A few typical snapshots of the analysis are as below:

4. CONCLUSSION

In this work, we have presented the applicability of
RNN with LSTM network for stock prediction and
were able to closely follow the real and predicted
stock prices as shown. The fluctuating financial
market has been studied by many researchers with
classical methods over the past several years.
However, our work suggests as to how the RNN
models with deep learning techniques can be

Ajeet K. Jain et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6829 – 6833

6833

effectively utilized. With this intuitiveness in mind,
we are able to achieve an accuracy of 96.7 % which
evidently shows good-fit results. With the present set
up using Kerasframework augmented with ADAM
optimizer and parameters tuning, we are able to get
these accurate results. Furthermore by incorporating
other optimizers like RMSProp and AdaDelta, , the
scope of the work can further be extended for
knowing High Frequency Trading (HFT), Intraday
price movement (trend), weekly/monthly closing
prices and likewise. Additionally, other areas of
extension are: risk management and portfolio
management [10], commodity (oil, gas) price
prediction, bond price forecasting, volatility
forecasting, crypto currency forecasting, etc. Hence,
various models of DL can provide better
understanding of the time series forecasting.
Moreover, the, CNN approach- like convnet1D as a
pre-processing can be implemented in order to
improve processing speed[11,12,13,14].
The proposed framework can further be expanded to
investigate:

 Which other DL models can provide better
time series forecasting?

 Whichoptimizer one would perform better
for a given dataset?

 application of Gated Recurrent Unit (GRU)
for similar purpose as a proliferation of
RNN

REFERENCES

[1] Hearty John, Advanced Machine Learning
with Python, Packt Publishing, 1st ed. (2016)
[2]
http://stanford.edu/~jduchi/projects/DuchiHaSi
10 _colt.pdf
[3] Francois Chollet, Deep Learning with
Pythons, Manning Pub.1st ed. (2016)

[4] R. Jozefowicz, W. Zaremba, and I.
Sutskever, JMLR, LSTM: A Search
Space.(2015)
[5] R. Pascanu, T. Mikolov, and Y.Bengio,
Difficulty of Training Recurrent Neural
Networks, ICML, pp 1310-1318. (2013)
[6] R. Jozefowicz, W. Zaremba, and I.
Sutskever, An Empirical Exploration of
Recurrent Network Architectures
JMLR.(2015)
[7] YoshuaBengio, Patrice Simard, and Paolo
Frasconi, “Learning Long-Term Dependencies
with Gradient Descent Is Difficult,” IEEE
Transactions on Neural Networks 5, no. 2.
(1994).
[8] SeppHochreiter and Jürgen Schmidhuber,
“Long Short- Term Memory,” Neural
Computation 9, no. 8, 1997
[9] ChristopherOlah's : Understanding LSTMs
;https://colas.github.io/post/2015-08-
Understaing LSTM
[10] A. Bernal, S. Fok, and R. Pidaparthi,
Financial Market Time Series Prediction
with Recurrent Neural Networks. (2012)
[11] J. Chung, Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence
Modelling, ArXiv: 1412.3555. (2014)
[12] P.V.R.D PrasadaRao, Yasin, “A framework
for decision making and quality improvement
by data aggregation techniques on private
hospitals data” Journal of Engineering and
Applied Sciences Open Access,Volume 13,
Issue 14, 1 July 2018, Pages 4337-4345
[13]Jain, A.K.,Rao, P.V.R.D.P.,Sharma, K.V.,
Extending description logics for semantic web
ontology implementation domains, Test
Engineering and Management 83 ,pp.7385
[14] Jain,N., Jain,AK., PrasadRao, P.V.R.D.,
Venkatesh Sharma, K. , Conglomerating first
order, descriptive and modal logics into semantic
web – A research,International Journal of
Innovative Technology and Exploring
Engineering (IJITEE) ISSN: 2278-3075,
Volume-8, Issue- 6S4, April 2019

