
Andrew Ngi Ing Hui et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 238 - 245

238

ABSTRACT

Deep neural network (DNN) has been used to solve many

pattern recognition tasks specifically for classification of

images, sounds and texts. This is due to the ability of DNN
model to extract high level representation of features.

However, a deep neural network is built up from a set of

hyperparameters that need to be tuned in order to obtain the

highest performance and at lower computational time. In this

paper, the hyperparameters that are tuned is the combination

of number of hidden layers and the number of neurons in each

layer. Nevertheless, the challenge arises when choosing the

suitable tuning method for this model. The aim of this study is

to evaluate and compare the tuning methods of a conventional

grid search (GS) method with a population-based searching

method, known as genetic algorithm (GA). The comparison is

made based on the performance of DNN model for classifying
MNIST handwritten digits, in terms of the classification

accuracy and the time taken to complete the task. The MNIST

handwritten dataset is divided into 3 sets, 54000 images in

training set, 6000 images in validation set and 10000 images

in testing set. The results show that GA and GS methods

achieved a comparable classification accuracy of 98.23% and

98.27%, respectively. However, GA method took only half of

the time to search for the optimized combination, when

compared to GS method, which is only 4.19 hours compared

to 8.59 hours, for the same search space area.

Key words: Deep Neural Network, Genetic Algorithm, Grid

Search, Hyperparameters optimization

1. INTRODUCTION

Nowadays, artificial intelligence technology has been widely

adopted and used in various areas. Machine learning is one of

an important part in artificial intelligence technology as it able

to perform any specific task by learning the pattern and

inferences automatically. Neural network is one of the most

popular algorithms for machine learning used in various

pattern recognition tasks such as in medical application [1],

Research supported by The Ministry of Education Malaysia under the grant

number FRGS/1/2017/TK04/UKM/02/4.

agriculture [2], power distribution management [3], earth

disaster prediction [4], and face recognition [5].

Early neural network architecture was introduced as early as

in 1940s [6]. The idea of mimicking the neurons activity in the

neural network architecture was ever since been explored and

expanded. In the 1980s, a learning supervised algorithm of

back-propagation in a neural network has sparked excitement

among researches [7]. A back-propagation algorithm allows

learning nonlinear features from multiple hidden layers in a

neural network. However, the conventional neural network

failed when there are more than 3 hidden layers in the network

[8], [9].

A recent algorithm for machine learning, deep learning is an
extension of conventional NN, where the models are more

in-depth and has become a center of attraction [10], [11].

Deep learning network is ought to be powerful because of its

ability to extract high representation features contributed by

vast number of hidden layers in the architecture [12]. It is

important to a build a deep learning neural network model that

can achieve its maximum effectiveness. However, it is not

easy to build one as the model contains a set hyperparameters

that need to be carefully chosen and tuned [13].

Hyperparameters are the parameters’ values set prior of the

learning proses. For an example, for a deep neural network
model, hyperparameters that need be tuned includes the

activation function, loss function, number of neurons for each

hidden layer, number of hidden layers, learning rate and batch

size. The more hyperparameters to be tuned, the more time is

needed to search for an optimized hyperparameters. Although

it was said that tuning the model is more of an art than a

science, but carefully tuned hyperparameters can increase its

accuracy and reduce the computational cost. Hence it is

important to use an efficient method in finding the optimized

model.

Various methods have been performed in tuning the

hyperparameters for an optimized model. The currently found

techniques are exhaustive methods and model-specific

methods [14]. Exhaustive methods search the hyperparameter

space exhaustively. Hence, this kind of method is

computationally expensive. This simplest and most widely

used method is grid search [13]. Another method is using

random search where the hyperparameters use the probability

GA-Deep Neural Network Optimization for Image Classification

Andrew Ngi Ing Hui
1
, Aqilah Baseri Huddin

*1,2
, Mohd Faisal Ibrahim

1,2
,

Fazida Hanim Hashim
1,2

, Salina Abdul Samad
1,2

1Department of Electrical, Electronic and Systems Engineering,
2Centre for Integrated Systems Engineering and Advanced Technologies (Integra),

Universiti Kebangsaan Malaysia,
UKM Bangi, 43600, Selangor, Malaysia.

*Corresponding author: aqilah@ukm.edu.my

 ISSN 2278-3091

Volume 8, No.1.6, 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse3681.62019.pdf

https://doi.org/10.30534/ijatcse/2019/3681.62019

http://www.warse.org/IJATCSE/static/pdf/file/ijatcse3681.62019.pdf

Andrew Ngi Ing Hui et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 238 - 245

239

distribution instead of sampling on a grid. However,

exhaustive method only works well in cases of low

dimensionality [15][16].

Another method is model-specific methods that optimize

hyperparameters for a specific model choice. The work is

more suitable to be applied to a small sample size. The

downside of this method is that only certain model class is

suitable and therefore it cannot be applied in general. It has to

adapt to the best configuration hyperparameters which has

been found today [17]. Besides, this technique does not

produce the desired output [16].

A method has to be implemented in order to reduce the

computational cost of finding the optimized hyperparameters

with larger search space and searching in a more intelligent

manner. Genetic algorithm can be used to search for the

optimized hyperparameters in such manner. Genetic

algorithm is a method for solving optimization problems

based on natural selection, which is the process that drives

biological evolution [18]–[20]. The algorithm repeatedly

modifies population of individual solutions over generations.

This study focuses on the performance of genetic algorithm in

finding the optimized combination of hyperparameters in

image classification. The performance is compared with the

conventional optimizing method, that is grid search method.

Evaluation on the classification’s accuracy and time taken for

the search of an optimized model using GA and grid search

methods are analyzed.

This paper presents the best optimized tuning method to build

a deep neural network, specifically for MNIST handwritten

classification by comparing a simple conventional method,

i.e. grid search with a population based-method, i.e. genetic

algorithm method. The accuracy of the classifier and the time

taken are the measures used for comparison.

In next section, the methodology of the proposed MNIST

optimized-classifier approach are discussed. Section 3

discusses the results and discussions and the findings are

concluded in Section 4.

2. RESEARCH METHODOLOGY

In this study, the model is used to classify the images of

handwritten digits. These images are obtained from the

Modified National Institute of Standard and Technology

(MNIST) database, that is available online, where it contains

60000 training set and 10000 testing set of data [21]. Each

sample image is in grayscale and has the size of 28 x 28

pixels. Images from MNIST are separated to two sets of data:

training set and testing set. The images data from MNIST

database are in 8-bit unsigned integer format and the

grayscale of each image falls in range of 0 to 255. Value 0

indicates the background and 255 indicated the foreground.

The model that is being used in this study is a multilayer

perceptron or a feedforward neural network. A feedforward

neural network contains minimum of 3 layers; one input layer,

one hidden layer and one output layer as shown in Figure 1.

However, the hidden layer may be expanded to have more

than one layer. The neurons in the input layer is directly

connected to the input images. Whereas, the neurons in the

output layer represents the classes, k of a layer, l is defined as

𝑥𝑘
𝑙 = 𝜎𝑙−1(𝑏𝑙,𝑘

𝑙−1 + ∑ 𝑤𝑙,𝑘
𝑙−1𝑛

𝑖=1 𝑥𝑙
𝑙−1) (1)

where 𝜎𝑙−1 is the activation function which in this case is

rectified linear unit (ReLu), 𝑏𝑙,𝑘
𝑙−1 is bias applied, 𝑤𝑙,𝑘

𝑙−1𝑥𝑙
𝑙−1 is

the product of weight and input of previous neuron. For the

output layer, Softmax function will be used in

multi-classification task [22]. Adam optimization will be used

to update the weights of the network in training data.

The model of neural network is built with Python version 3.5

with Keras library that will be run using Tensorflow as

backend. The graphic card used is NVDIA Geforce 840M.

ReLU is used due to its higher efficiency [23]. It is able to

reduce the likelihood of vanishing gradient problem. The loss

function will be using the categorical cross-entropy which it

returns the cross-entropy between an approximating

distribution and a true distribution. This function is normally

used in “one-hot” encoding data.

In this study, the hyperparameters in the deep neural network

to be tuned are the number of hidden layers, Nl and number of

neurons, Nn. Nl will be set from 1 layer to 10 layers; whereas

Nn will be set from 50 neurons to 1000 neurons with

increment of 50 neurons. The combination of number of

hidden layers and hidden nodes is searched using GA and GS

methods.

Figure 1: Multilayer perceptron neural network consists of

input layer, hidden layer and output layer.

Andrew Ngi Ing Hui et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 238 - 245

240

Genetic algorithm or GA is an optimization technique

inspired by the evolutionary process in biological cells. The

principal of GA is based on Darwinian’s theory, where the

selected population is the survival of the fittest [24], [25]. The

processes in GA are illustrated as in Figure 2.

The process starts with generating random population of

chromosomes. Then, the fitness of each chromosome in the

population is evaluated using fitness function, which in this

work is the accuracy of the classification.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

where TP = true positive; TN = true negative; FP = false

positive and FN = false negative.

Then, the chromosomes to be selected as parent to the next

population is made based on Roulette wheel selection. Two

operators are used in GA, crossover and mutation.

In this work, the number of generation set is to 5. On each

generation, the population size is set with 15 chromosomes.

All the population in the particular generation are trained and

scored. At least 40% of the highest score population will be

retained; the lower score population has 10% chance to be

chosen. If there is lacking population number, crossover

process will occur where the new generated population will

inherit the characteristic of chosen population at the previous

step. All the generated population will then undergo 20%

mutation rate. This is to prevent the population from

overfitting. The whole process is repeated until the last

generation and the best hyperparameters can be determined.

Further study is done by increasing the number of hidden

layers to 50 and 1000 neurons for each hidden layer over 100

generations with 30 populations each.

The model is also trained based on the concept of GS to find

the best hyperparameter’s performance. The advantage of

using GS is that, apart from it is simple to execute, it evaluates

the classification performance for all possible combinations of

hyperparameters [16]. The space search is illustrated in Figure

3. However, the downside is that as the number of

hyperparameters increases, the numbers of evaluation

function also increases exponentially. Therefore, it is not

feasible for larger hyperparameters’ space.

For both tuning methods, every combination of

hyperparameters is trained for 10 epochs with batch size of

128. There will be 10% of the training data that is set as

validation data by using the holdout validation method.

3. RESULTS AND DISCUSSION

The experimental work in this paper is divided into two

experiment settings. The first experiment is to use GA method

to find the best combination of number of hidden layers and

number of neurons in each layer. The number of layers to be

searched is range between 1 and 10 layers, and number of

neurons is range between 50 and 1000 neurons, with

increment of 50 neurons. The number of neurons is set to be

the same in each of hidden layer. In addition, the parameter

settings in GA method is further explored. The number of

populations in GA is increased to expand the searching space.

V
ar

ia
b
le

 2

Variable 1

Figure 3: Grid Search Algorithm

Start

Initial Population

Generation

Evaluation

Selection

Crossover

Mutation

Generation > 5 ?

Stop

No

Figure 2: Flowchart of genetic algorithm processes

applied in hyper-parameters optimization

Andrew Ngi Ing Hui et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 238 - 245

241

 In the second experimental work, GS method is used to find

the best combination for network optimization. The searching

space for GS method is similar with GA, where the number of

layers range between 1 and 10 with number of neurons range

between 50 and 1000, with increment of 50 neurons. For both

experimental work, the comparison between performance of

the GS and GA is analyzed in terms of accuracy and time

taken to search for best hyperparameters.

3.1 Genetic algorithm search method

The initial settings for GA method are 5 generations, with the

total of 75 populations. Figure 4 shows the population

distribution of the setting. However, the plots on the diagram

show lesser because there are repetitions of population across

the generations. The classification accuracy using deep neural

network for each hyperparameter combination is recorded in

each generation. Then, the top 40% combination are remained

and been forwarded to populate in the next generation. The

rest combination has 10% chances to be chosen to the next

generation.

The average accuracy for each generation is as shown in

Table 1

Table 1. The average accuracy increases dramatically from

generation 1 to generation 4 then decrease in generation 5.

Generation 1 has the lowest accuracy due to random picked

hyperparameters. The generations onwards generate

population base on the top 6 populations of previous

generation. The decrease of average accuracy in fifth

generation may be due to the occurrence frequency of

mutation. In Table 1, “L” represents the hidden layer numbers

and “N” represents the neurons number. The bolded data is

the hyperparameters that carried forward to the next

generation and generated the rest population base on them. At

the fifth generation, the optimized hyperparameters scored

98.23% with 3 hidden layers with 900 neurons each.

Further experiment using GA method is performed by

increasing the number of hyperparameters, with number of

hidden layers is increased to range between 1 and 50 and

number of neurons is range between 50 and 1000 neurons.

The searching space for GA is expanded by increasing the

number of generation and population. The number of

generations is increased to 100 generations, whereas the

number of populations is increased to 30 populations. Figure 5

shows the population distribution after increasing the

searching space. Figure 6 shows the average accuracy after

100 generations, where the accuracy has achieved 98.5%.

Figure 4: Population Distribution across 5 Generations

Andrew Ngi Ing Hui et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 238 - 245

242

Table 1: Score Achieved by the Population for Every Generation

Figure 5: Population Distribution after Increasing the Search Space

Generation 1 Generation 2 Generation 3 Generation 4 Generation 5

L N Score L N Score L N Score L N Score L N Score

1 50 .9696 1 400 .9809 3 900 .9791 1 400 .9812 2 900 .9810
10 100 .9717 4 300 .9774 1 400 .9824 3 900 .9777 3 900 .9799

1 50 .9717 7 400 .9786 2 800 .9796 3 900 .9820 3 900 .9769

6 1000 .9772 2 800 .9805 3 900 .9807 3 900 .9739 3 900 .9746

4 300 .9794 3 900 .9798 9 800 .9737 2 800 .9811 3 900 .9817

2 150 .9786 8 600 .9769 7 400 .9761 3 900 .9739 1 400 .9804

3 900 .9787 9 900 .9757 8 600 .9781 9 800 .9753 3 900 .9821

9 900 .9764 2 400 .9780 1 400 .9776 3 900 .9795 3 900 .9763

2 800 .9788 3 900 .9826 3 900 .9765 3 900 .9820 3 900 .9823

8 600 .9787 4 300 .9773 8 800 .9788 3 900 .9789 3 900 .9750

1 400 .9798 9 900 .9694 9 800 .9781 3 900 .9794 5 900 .9758

6 100 .9739 9 800 .9795 1 400 9790 1 400 .9799 3 900 .9788

7 400 .9789 2 300 .9766 3 900 .9805 3 900 .9815 3 400 .9806
5 600 .9775 3 550 .9782 3 900 .9812 2 900 .9829 3 900 .9795

4 50 .9697 8 600 .9720 3 900 .9790 3 900 .9826 3 200 .9810

Andrew Ngi Ing Hui et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 238 - 245

243

Figure 6: Average Classification Accuracy after 100 Generations

3.2 Grid search method

The simplest method to search for the best hyperparameters

combination is by using GS method. Basically, gird search

method finds the parameters combinations deterministically,

by laying down a grid of all possible combinations of

hyperparameters. Thus, the advantage of GS is that every

hyperparameters on the grid are trained and scored in order to

determine the best hyperparameters. However, the

disadvantage is its computational cost, especially when the

number of parameters to configure is increased.

In this work, the parameters to be searched is only two, which

are the number of hidden layer and number of hidden nodes.

Thus, it is still feasible to use GS method to find the best

combinations of those two parameters. The number of hidden

layers and number of neurons is set to be the same with the

first setting of GA’s method, which are the number of layers

to be searched is range between 1 and 10 layers, and number

of neurons is range between 50 and 1000 neurons, with

increment of 50 neurons.

Figure 7: Accuracy for GS Method

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

C
V

 A
ve

ra
ge

 S
co

re

Number of nodes

Grid Search Scores

N_layers: 1

N_layers: 2

N_layers: 3

N_layers: 4

N_layers: 5

N_layers: 6

N_layers: 7

N_layers: 8

N_layers: 9

N_layers: 10

Andrew Ngi Ing Hui et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 238 - 245

244

The accuracy of each combination is plotted as shown in

Figure 7. The model with 500 neurons with 2 hidden layers

achieved the highest score 98.27%.; the second highest score

is the model with 650 neurons with 6 hidden layers that scored

98.25%; the next highest score goes to the model with 850

neurons with 5 hidden layers that scored 98.22%. All the top

three scored around the same.

Indeed, the number of neurons and hidden layer numbers

affect the execution time in searching for the most optimized

hyperparameters as shown in Table 2. Increasing the hidden

layers and neurons increases the training time of data. The

figure shows that 2 hidden layers with 500 neurons at every

hidden layer take the least time (<100s) and achieving the

highest accuracy.

Table 2: Comparison of accuracy and estimated time taken
for top 6 best performance

No. of

layers

No. of neurons Accuracy Estimated time

taken (s)

2 500 98.27% 70

6 650 98.25% 191

5 850 98.22% 251

5 750 98.21% 201

3 750 98.20% 142

4 950 98.18% 251

3.3 Overall Performance Comparison of GA vs GS

method

The best performance of MNIST classification using deep

neural network tuned by GA and GS methods are compared.

The best accuracy achieved by GA tuning method is 98.25%,

whereas the best accuracy achieved by GS is 98.27%. The

accuracy achieved by both methods are comparable.

However, the time taken for GA to complete the classification

task is half of the total time taken by GS, with 15098.4s or

4.19 and 30911.85s or 8.59 hours, respectively. The results

are shown as in Table 3.

Table 3:Time taken for GS and GA to obtain optimized model
Method No. of

layers

No. of

neurons

Accuracy Estimated time

taken (s)

Grid search 2 500 98.27% 30911.85

Genetic

algorithm

6 650 98.25% 15098.4

4. CONCLUSION

The optimization of hyperparameters is important in building

up the neural network model. GA is preferable as it uses lesser

time and computation power in searching for the optimized

hyperparameters. Both GA and GS achieve comparable

accuracy where there is only a slight difference between them.

GA technique is smarter when it involves a large search space

of hyperparameters where GS is only suitable when the

hyperparameters search space is small.

Further improvement can be done to increase the accuracy of

the model by using the k-fold cross-validation (k-fold CV)

technique for the validation data instead of holdout method.

K-fold CV method is to divide the training set into k equal

subsets; enables each subset to be used as validation set just

once during training in order to reduce the overfitting

scenario. The drawback of the method is the time taken will

increase by k times for each hyperparameters combination.

Besides, other hyperparameters like the batch size, learning

rate, activation function, epochs and weight initialization can

be tuned as well. In the case where lots of hyperparameters are

involved, GA technique is a better choice.

ACKNOWLEDGEMENT

The author would like to thank The Ministry of Education

Malaysia for funding this paper via research grant

FRGS/1/2017/TK04/UKM/02/4.

REFERENCES

[1] L. Sun, J. Wang, Z. Hu, Y. Xu, and Zhongwei Cui,

“Multi-View Convolutional Neural Networks for

Mammographic Image Classification,” IEEE Access,

vol. 7, pp. 126273–126282, 2019.

https://doi.org/10.1109/ACCESS.2019.2939167

[2] V. R. Bhanuprakash Dudi, “Medicinal Plant

Recognition based on CNN and Machine Learning,”

Int. J. Adv. Trends Comput. Sci. Eng., vol. 8, no. 4, pp.
999–1003, 2019.

httpps://doi.org/10.30534/ijatcse/2019/03842019

 [3] B. S. de Araujo, H. L. S. de Almeida, and F. L. de

Mello, “Computational Intelligence Methods Applied

to the Fraud Detection of Electric Energy

Consumers,” IEEE Lat. Am. Trans., vol. 17, no. 1, pp.

71–77, 2019.

[4] F. H. Hassan and N. A. Azelan, “Comparing

Performance of Machine Learning Algorithms in a

Flood Prediction Model with Real Data Sets,” Int. J.

Adv. Trends Comput. Sci. Eng., vol. 8, no. 1.4, pp.

152–157, 2019.
https://doi.org/10.30534/ijatcse/2019/2381.42019

[5] J. R. B. Del Rosario, “Development of a Face

Recognition System Using Deep Convolutional

Neural Network in a Multi-view Vision

Environment,” Int. J. Adv. Trends Comput. Sci. Eng.,

vol. 8, no. 3, pp. 369–374, 2019.

https://doi.org/10.30534/ijatcse/2019/06832019

[6] J. Schmidhuber, “Deep learning in neural networks:

An overview,” Neural Networks, vol. 61, pp. 85–117,

2015.

[7] G. E. Hinton, “Learning to represent visual input,”
Philos. Trans. R. Soc., vol. 365, pp. 177–184, 2010.

[8] Y. Bengio, “Learning Deep Architectures for AI,”

Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1–127,

Jan. 2009.

[9] D. Yu and L. Deng, “Deep Learning and Its

https://doi.org/10.1109/ACCESS.2019.2939167
https://doi.org/10.30534/ijatcse/2019/03842019
https://doi.org/10.30534/ijatcse/2019/2381.42019
https://doi.org/10.30534/ijatcse/2019/06832019

Andrew Ngi Ing Hui et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 238 - 245

245

Applications to Signal and Information Processing,”

IEEE Signal Process. Mag., vol. 28, no. 1, p. 145–+,

2011.

[10] I. Arel, D. C. Rose, and T. P. Karnowski, “Deep

Machine Learning — A New Frontier in Artificial

Intelligence Research,” no. November, pp. 13–18,
2010.

https://doi.org/10.1109/MCI.2010.938364

[11] J. Patterson and A. Gibson, Deep Learning: A

Practitioner’s Approach, First Edit. O’Reilly Media,

2017.

[12] Y. Bengio, P. Lamblin, D. Popovici, and H.

Larochelle, “Greedy layer-wise training of deep

networks,” Adv. Neural Inf. Process. Syst. 19 Proc.

2006 Conf., vol. 19, p. 153, 2007.

[13] Y. Shevchuk, “Hyperparameter optimization for

Neural Networks,” 2016. .

[14] A. Severyn and A. Moschitti, “Hyperparameter
Optimization with Factorized Multilayer Perceptrons

Nicolas,” Ecml Pkdd, pp. 1–16, 2015.

[15] A. Johnson, “Evaluating Hyperparameter

Optimization Strategies,” 2016. .

[16] J. Bergstra and Y. Bengio, “Random Search for

Hyper-Parameter Optimization,” J. Mach. Learn.

Res., vol. 13, pp. 281–305, 2012.

[17] Y. Bengio, “Practical recommendations for

gradient-based training of deep architectures,” Lect.

Notes Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), pp.
437–478, 2012.

[18] M. Konomi and G. M. Sacha, “Influence of the

learning method in the performance of feedforward

neural networks when the activity of neurons is

modified Highlights :,” pp. 1–11.

[19] F. . H.K. Lam, S.H. Ling and P. K. S. T. .F. Leung,

“Tuning of the Structure and Parameter of Neural

Networks using an Improved Genetic Algorithm,”

2010 Int. Conf. Bus. Econ. Res., no. 1, pp. 110–114,

2010.

[20] H. Sariffuddin and M. F. Ibrahim, “A genetic

algorithm based task scheduling system for logistics
service robots,” Bulletion Electr. Eng. Informatics,

vol. 8, no. 1, pp. 206–213, 2019.

https://doi.org/10.11591/eei.v8i1.1437

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,

“Gradient-based Learning Applied to Document

Recognition,” Proc. IEEE, vol. 86, no. 11, pp.

2278–2323, 1998.

[22] A. S. Walia, “Activation Function and its Type,”

2017. .

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton,

“ImageNet Classification with Deep Convolutional
Neural Networks,” Adv. Neural Inf. Process. Syst.,

pp. 1–9, 2012.

[24] R. Rojas, “Genetic Algorithms,” in Neural Networks -

A Systematic Introduction, 1996, pp. 429–450.

[25] M. Rahul, S. Narinder, and S. Yaduvir, “Genetic

Algorithms: Concepts, Design for Optimization of

Process Controllers,” Comput. Inf. Sci., vol. 4, no. 2,

2011.

https://doi.org/10.5539/cis.v4n2p39

https://doi.org/10.1109/MCI.2010.938364
https://doi.org/10.11591/eei.v8i1.1437
https://doi.org/10.5539/cis.v4n2p39

