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ABSTRACT 

 
Deep neural network (DNN) has been used to solve many 

pattern recognition tasks specifically for classification of 

images, sounds and texts. This is due to the ability of DNN 
model to extract high level representation of features. 

However, a deep neural network is built up from a set of 

hyperparameters that need to be tuned in order to obtain the 

highest performance and at lower computational time. In this 

paper, the hyperparameters that are tuned is the combination 

of number of hidden layers and the number of neurons in each 

layer. Nevertheless, the challenge arises when choosing the 

suitable tuning method for this model. The aim of this study is 

to evaluate and compare the tuning methods of a conventional 

grid search (GS) method with a population-based searching 

method, known as genetic algorithm (GA). The comparison is 

made based on the performance of DNN model for classifying 
MNIST handwritten digits, in terms of the classification 

accuracy and the time taken to complete the task. The MNIST 

handwritten dataset is divided into 3 sets, 54000 images in 

training set, 6000 images in validation set and 10000 images 

in testing set. The results show that GA and GS methods 

achieved a comparable classification accuracy of 98.23% and 

98.27%, respectively. However, GA method took only half of 

the time to search for the optimized combination, when 

compared to GS method, which is only 4.19 hours compared 

to 8.59 hours, for the same search space area.   

 
Key words: Deep Neural Network, Genetic Algorithm, Grid 

Search, Hyperparameters optimization 

 

1. INTRODUCTION 

 

Nowadays, artificial intelligence technology has been widely 

adopted and used in various areas. Machine learning is one of 

an important part in artificial intelligence technology as it able 

to perform any specific task by learning the pattern and 

inferences automatically. Neural network is one of the most 

popular algorithms for machine learning used in various 

pattern recognition tasks such as in medical application [1],  
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agriculture [2], power distribution management [3], earth 

disaster prediction [4], and face recognition [5].   

Early neural network architecture was introduced as early as 

in 1940s [6]. The idea of mimicking the neurons activity in the 

neural network architecture was ever since been explored and 

expanded. In the 1980s, a learning supervised algorithm of 

back-propagation in a neural network has sparked excitement 

among researches [7]. A back-propagation algorithm allows 

learning nonlinear features from multiple hidden layers in a 

neural network. However, the conventional neural network 

failed when there are more than 3 hidden layers in the network 

[8], [9].  

A recent algorithm for machine learning, deep learning is an 
extension of conventional NN, where the models are more 

in-depth and has become a center of attraction [10], [11]. 

Deep learning network is ought to be powerful because of its 

ability to extract high representation features contributed by 

vast number of hidden layers in the architecture [12]. It is 

important to a build a deep learning neural network model that 

can achieve its maximum effectiveness. However, it is not 

easy to build one as the model contains a set hyperparameters 

that need to be carefully chosen and tuned [13]. 

Hyperparameters are the parameters’ values set prior of the 

learning proses. For an example, for a deep neural network 
model, hyperparameters that need be tuned includes the 

activation function, loss function, number of neurons for each 

hidden layer, number of hidden layers, learning rate and batch 

size. The more hyperparameters to be tuned, the more time is 

needed to search for an optimized hyperparameters. Although 

it was said that tuning the model is more of an art than a 

science, but carefully tuned hyperparameters can increase its 

accuracy and reduce the computational cost. Hence it is 

important to use an efficient method in finding the optimized 

model.  

Various methods have been performed in tuning the 

hyperparameters for an optimized model. The currently found 

techniques are exhaustive methods and model-specific 

methods [14]. Exhaustive methods search the hyperparameter 

space exhaustively. Hence, this kind of method is 

computationally expensive. This simplest and most widely 

used method is grid search [13]. Another method is using 

random search where the hyperparameters use the probability 
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distribution instead of sampling on a grid. However, 

exhaustive method only works well in cases of low 

dimensionality [15][16]. 

Another method is model-specific methods that optimize 

hyperparameters for a specific model choice. The work is 

more suitable to be applied to a small sample size. The 

downside of this method is that only certain model class is 

suitable and therefore it cannot be applied in general. It has to 

adapt to the best configuration hyperparameters which has 

been found today [17]. Besides, this technique does not 

produce the desired output [16]. 

A method has to be implemented in order to reduce the 

computational cost of finding the optimized hyperparameters 

with larger search space and searching in a more intelligent 

manner. Genetic algorithm can be used to search for the 

optimized hyperparameters in such manner. Genetic 

algorithm is a method for solving optimization problems 

based on natural selection, which is the process that drives 

biological evolution [18]–[20]. The algorithm repeatedly 

modifies population of individual solutions over generations.  

This study focuses on the performance of genetic algorithm in 

finding the optimized combination of hyperparameters in 

image classification. The performance is compared with the 

conventional optimizing method, that is grid search method. 

Evaluation on the classification’s accuracy and time taken for 

the search of an optimized model using GA and grid search 

methods are analyzed.  

This paper presents the best optimized tuning method to build 

a deep neural network, specifically for MNIST handwritten 

classification by comparing a simple conventional method, 

i.e. grid search with a population based-method, i.e. genetic 

algorithm method. The accuracy of the classifier and the time 

taken are the measures used for comparison. 

In next section, the methodology of the proposed MNIST 

optimized-classifier approach are discussed. Section 3 

discusses the results and discussions and the findings are 

concluded in Section 4.  

2. RESEARCH METHODOLOGY 

 

In this study, the model is used to classify the images of 

handwritten digits. These images are obtained from the 

Modified National Institute of Standard and Technology 

(MNIST) database, that is available online, where it contains 

60000 training set and 10000 testing set of data [21]. Each 

sample image is in grayscale and has the size of 28 x 28 

pixels. Images from MNIST are separated to two sets of data: 

training set and testing set. The images data from MNIST 

database are in 8-bit unsigned integer format and the 

grayscale of each image falls in range of 0 to 255. Value 0 

indicates the background and 255 indicated the foreground.  

The model that is being used in this study is a multilayer 

perceptron or a feedforward neural network. A feedforward 

neural network contains minimum of 3 layers; one input layer, 

one hidden layer and one output layer as shown in Figure 1.  

 

However, the hidden layer may be expanded to have more 

than one layer. The neurons in the input layer is directly 

connected to the input images. Whereas, the neurons in the 

output layer represents the classes, k of a layer, l is defined as  

𝑥𝑘
𝑙 = 𝜎𝑙−1(𝑏𝑙,𝑘

𝑙−1 + ∑ 𝑤𝑙,𝑘
𝑙−1𝑛

𝑖=1 𝑥𝑙
𝑙−1)                (1) 

where 𝜎𝑙−1  is the activation function which in this case is 

rectified linear unit (ReLu), 𝑏𝑙,𝑘
𝑙−1 is bias applied, 𝑤𝑙,𝑘

𝑙−1𝑥𝑙
𝑙−1 is 

the product of weight and input of previous neuron. For the 

output layer, Softmax function will be used in 

multi-classification task [22]. Adam optimization will be used 

to update the weights of the network in training data.  

The model of neural network is built with Python version 3.5 

with Keras library that will be run using Tensorflow as 

backend. The graphic card used is NVDIA Geforce 840M. 

ReLU is used due to its higher efficiency [23]. It is able to 

reduce the likelihood of vanishing gradient problem. The loss 

function will be using the categorical cross-entropy which it 

returns the cross-entropy between an approximating 

distribution and a true distribution. This function is normally 

used in “one-hot” encoding data. 

In this study, the hyperparameters in the deep neural network 

to be tuned are the number of hidden layers, Nl and number of 

neurons, Nn. Nl will be set from 1 layer to 10 layers; whereas 

Nn will be set from 50 neurons to 1000 neurons with 

increment of 50 neurons. The combination of number of 

hidden layers and hidden nodes is searched using GA and GS 

methods.  

Figure 1: Multilayer perceptron neural network consists of 

input layer, hidden layer and output layer. 
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Genetic algorithm or GA is an optimization technique 

inspired by the evolutionary process in biological cells. The 

principal of GA is based on Darwinian’s theory, where the 

selected population is the survival of the fittest [24], [25]. The 

processes in GA are illustrated as in Figure 2. 

The process starts with generating random population of 

chromosomes. Then, the fitness of each chromosome in the 

population is evaluated using fitness function, which in this 

work is the accuracy of the classification.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

where TP = true positive; TN = true negative; FP = false 

positive and FN = false negative. 

Then, the chromosomes to be selected as parent to the next 

population is made based on Roulette wheel selection. Two 

operators are used in GA, crossover and mutation.  

In this work, the number of generation set is to 5. On each 

generation, the population size is set with 15 chromosomes. 

All the population in the particular generation are trained and 

scored. At least 40% of the highest score population will be 

retained; the lower score population has 10% chance to be 

chosen. If there is lacking population number, crossover 

process will occur where the new generated population will 

inherit the characteristic of chosen population at the previous 

step. All the generated population will then undergo 20% 

mutation rate. This is to prevent the population from 

overfitting. The whole process is repeated until the last 

generation and the best hyperparameters can be determined. 

Further study is done by increasing the number of hidden 

layers to 50 and 1000 neurons for each hidden layer over 100 

generations with 30 populations each. 

The model is also trained based on the concept of GS to find 

the best hyperparameter’s performance. The advantage of 

using GS is that, apart from it is simple to execute, it evaluates 

the classification performance for all possible combinations of 

hyperparameters [16]. The space search is illustrated in Figure 

3.   However, the downside is that as the number of 

hyperparameters increases, the numbers of evaluation 

function also increases exponentially. Therefore, it is not 

feasible for larger hyperparameters’ space.  

For both tuning methods, every combination of 

hyperparameters is trained for 10 epochs with batch size of 

128. There will be 10% of the training data that is set as 

validation data by using the holdout validation method.  

3.  RESULTS AND DISCUSSION 

The experimental work in this paper is divided into two 

experiment settings. The first experiment is to use GA method 

to find the best combination of number of hidden layers and 

number of neurons in each layer. The number of layers to be 

searched is range between 1 and 10 layers, and number of 

neurons is range between 50 and 1000 neurons, with 

increment of 50 neurons. The number of neurons is set to be 

the same in each of hidden layer. In addition, the parameter 

settings in GA method is further explored. The number of 

populations in GA is increased to expand the searching space. 
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Figure 3: Grid Search Algorithm 
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Figure 2: Flowchart of genetic algorithm processes 

applied in hyper-parameters optimization 
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 In the second experimental work, GS method is used to find 

the best combination for network optimization. The searching 

space for GS method is similar with GA, where the number of 

layers range between 1 and 10 with number of neurons range 

between 50 and 1000, with increment of 50 neurons. For both 

experimental work, the comparison between performance of 

the GS and GA is analyzed in terms of accuracy and time 

taken to search for best hyperparameters. 

3.1 Genetic algorithm search method 

The initial settings for GA method are 5 generations, with the 

total of 75 populations. Figure 4 shows the population 

distribution of the setting. However, the plots on the diagram 

show lesser because there are repetitions of population across 

the generations. The classification accuracy using deep neural 

network for each hyperparameter combination is recorded in 

each generation. Then, the top 40% combination are remained 

and been forwarded to populate in the next generation. The 

rest combination has 10% chances to be chosen to the next 

generation.  

The average accuracy for each generation is as shown in 

Table 1 

 

 

 

 

 

 

Table 1. The average accuracy increases dramatically from 

generation 1 to generation 4 then decrease in generation 5. 

Generation 1 has the lowest accuracy due to random picked 

hyperparameters. The generations onwards generate 

population base on the top 6 populations of previous 

generation. The decrease of average accuracy in fifth 

generation may be due to the occurrence frequency of 

mutation. In Table 1, “L” represents the hidden layer numbers 

and “N” represents the neurons number. The bolded data is 

the hyperparameters that carried forward to the next 

generation and generated the rest population base on them. At 

the fifth generation, the optimized hyperparameters scored 

98.23% with 3 hidden layers with 900 neurons each. 

Further experiment using GA method is performed by 

increasing the number of hyperparameters, with number of 

hidden layers is increased to range between 1 and 50 and 

number of neurons is range between 50 and 1000 neurons.  

The searching space for GA is expanded by increasing the 

number of generation and population. The number of 

generations is increased to 100 generations, whereas the 

number of populations is increased to 30 populations. Figure 5 

shows the population distribution after increasing the 

searching space. Figure 6 shows the average accuracy after 

100 generations, where the accuracy has achieved 98.5%. 

 

Figure 4: Population Distribution across 5 Generations 
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Table 1: Score Achieved by the Population for Every Generation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Population Distribution after Increasing the Search Space 

Generation 1 Generation 2 Generation 3 Generation 4 Generation 5 

L N Score L N Score L N Score L N Score L N Score 

1 50 .9696 1 400 .9809 3 900 .9791 1 400 .9812 2 900 .9810 
10 100 .9717 4 300 .9774 1 400 .9824 3 900 .9777 3 900 .9799 

1 50 .9717 7 400 .9786 2 800 .9796 3 900 .9820 3 900 .9769 

6 1000 .9772 2 800 .9805 3 900 .9807 3 900 .9739 3 900 .9746 

4 300 .9794 3 900 .9798 9 800 .9737 2 800 .9811 3 900 .9817 

2 150 .9786 8 600 .9769 7 400 .9761 3 900 .9739 1 400 .9804 

3 900 .9787 9 900 .9757 8 600 .9781 9 800 .9753 3 900 .9821 

9 900 .9764 2 400 .9780 1 400 .9776 3 900 .9795 3 900 .9763 

2 800 .9788 3 900 .9826 3 900 .9765 3 900 .9820 3 900 .9823 

8 600 .9787 4 300 .9773 8 800 .9788 3 900 .9789 3 900 .9750 

1 400 .9798 9 900 .9694 9 800 .9781 3 900 .9794 5 900 .9758 

6 100 .9739 9 800 .9795 1 400 9790 1 400 .9799 3 900 .9788 

7 400 .9789 2 300 .9766 3 900 .9805 3 900 .9815 3 400 .9806 
5 600 .9775 3 550 .9782 3 900 .9812 2 900 .9829 3 900 .9795 

4 50 .9697 8 600 .9720 3 900 .9790 3 900 .9826 3 200 .9810 
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Figure 6: Average Classification Accuracy after 100 Generations 

3.2 Grid search method 

The simplest method to search for the best hyperparameters 

combination is by using GS method. Basically, gird search 

method finds the parameters combinations deterministically, 

by laying down a grid of all possible combinations of 

hyperparameters. Thus, the advantage of GS is that every 

hyperparameters on the grid are trained and scored in order to 

determine the best hyperparameters. However, the 

disadvantage is its computational cost, especially when the 

number of parameters to configure is increased.  

In this work, the parameters to be searched is only two, which 

are the number of hidden layer and number of hidden nodes. 

Thus, it is still feasible to use GS method to find the best 

combinations of those two parameters. The number of hidden 

layers and number of neurons is set to be the same with the 

first setting of GA’s method, which are the number of layers 

to be searched is range between 1 and 10 layers, and number 

of neurons is range between 50 and 1000 neurons, with 

increment of 50 neurons.  

Figure 7: Accuracy for GS Method
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The accuracy of each combination is plotted as shown in 

Figure 7. The model with 500 neurons with 2 hidden layers 

achieved the highest score 98.27%.; the second highest score 

is the model with 650 neurons with 6 hidden layers that scored 

98.25%; the next highest score goes to the model with 850 

neurons with 5 hidden layers that scored 98.22%. All the top 

three scored around the same.  

Indeed, the number of neurons and hidden layer numbers 

affect the execution time in searching for the most optimized 

hyperparameters as shown in Table 2. Increasing the hidden 

layers and neurons increases the training time of data. The 

figure shows that 2 hidden layers with 500 neurons at every 

hidden layer take the least time (<100s) and achieving the 

highest accuracy. 

Table 2: Comparison of accuracy and estimated time taken 
for top 6 best performance 

 
No. of 

layers 

No. of neurons Accuracy Estimated time 

taken (s) 

2 500 98.27% 70 

6 650 98.25% 191 

5 850 98.22% 251 

5 750 98.21% 201 

3 750 98.20% 142 

4 950 98.18% 251 

 

3.3 Overall Performance Comparison of GA vs GS 

method 

The best performance of MNIST classification using deep 

neural network tuned by GA and GS methods are compared. 

The best accuracy achieved by GA tuning method is 98.25%, 

whereas the best accuracy achieved by GS is 98.27%. The 

accuracy achieved by both methods are comparable. 

However, the time taken for GA to complete the classification 

task is half of the total time taken by GS, with 15098.4s or 

4.19 and 30911.85s or 8.59 hours, respectively. The results 

are shown as in Table 3.  

Table 3:Time taken for GS and GA to obtain optimized model 
Method No. of 

layers 

No. of 

neurons 

Accuracy Estimated time 

taken (s) 

Grid search 2 500 98.27% 30911.85 

Genetic 

algorithm 

6 650 98.25% 15098.4 

 

4. CONCLUSION 

The optimization of hyperparameters is important in building 

up the neural network model. GA is preferable as it uses lesser 

time and computation power in searching for the optimized 

hyperparameters. Both GA and GS achieve comparable 

accuracy where there is only a slight difference between them. 

GA technique is smarter when it involves a large search space 

of hyperparameters where GS is only suitable when the 

hyperparameters search space is small. 

Further improvement can be done to increase the accuracy of 

the model by using the k-fold cross-validation (k-fold CV) 

technique for the validation data instead of holdout method. 

K-fold CV method is to divide the training set into k equal 

subsets; enables each subset to be used as validation set just 

once during training in order to reduce the overfitting 

scenario. The drawback of the method is the time taken will 

increase by k times for each hyperparameters combination. 

Besides, other hyperparameters like the batch size, learning 

rate, activation function, epochs and weight initialization can 

be tuned as well. In the case where lots of hyperparameters are 

involved, GA technique is a better choice. 
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