
Cheng-Yuan Ho et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 241 – 246

241


ABSTRACT

Mobile IP solves the primary problem of routing IP packets to
mobile nodes. However, when using TCP Vegas over a mobile
network, Vegas responds to a handoff by invoking a
congestion control algorithm, thereby resulting in a degraded
end-to-end performance in a mobile network. Furthermore, in
Mobile IP handoffs, packets could be lost during movement
detection and registration. These packet losses result in long
communication pause, and successive timeouts. Accordingly,
to reduce packet losses and timeout interval, we propose
Mobility-Vegas, which uses Layer 2 trigger to detect
handoffs, decreases the source’s sending rate to reduce packet
loss, and halts the retransmission timer to avoid increasing
timeout interval. The proposed mechanism maintains
end-to-end semantics, and operates under the existing
network infrastructure. Mobility-Vegas presents a simple
modification in the two end sides of a connection. Simulation
result demonstrates that Mobility-Vegas features higher
performance than Vegas in Mobile IP networks.

Key words : TCP, TCP Vegas, Mobile IP network,
Handoffs, Transmission Control Protocol.

1. INTRODUCTION

Handoffs occur when the MN (mobile node) moves from its
present location to a new network. If it moves from home
network to the foreign network or from a foreign network to
another foreign network, the MN must register its new
location through the Registration Request and Registration
Reply. However, if the MN moves from foreign network to its
home network, the MN must deregister via the Home Agent.
The communication will halt until the MN completes
switching its point of attachment to a new IP subnetwork and

The work is supported by the Ministry of Science and Technology of Taiwan,

the Improve AI Data Center Network Performance - Mitigate TCP Incast
Problem by Dynamically Setting Threshold Values Project, under Grant no.
MOST 108-2221-E-468-010 -, and partially supported by Asia University,
Harnessing the Public Transportation System for Public Health Promotion Using
Big Data Analytics of Passengers' Behavior Project, under Grant no.
107-ASIA-UNAIR-09.

registering its new location. The duration time between the
MN losses the signal advertisement from an AR (access
router) and completes the registration is called handoff
duration.

MIP (Mobile IP) was originally designed to have the widest
possible applicability without any assumptions about the
underlying L2 (Layer 2) over which they would operate. This
approach has the advantage of facilitating a clean separation
between L2 and L3 (Layer 3) of the protocol stack; however, it
results in the following built-in source delays:

(1) The MN may only communicate with a directly
connected AR. This implies that a MN may only begin the
registration process after an L2 handoff to a new AR is
completed.

(2) The registration process takes some nonzero time to
complete as the registration requests run through the network
from the MN to the home agent. During this period, the MN is
not able to receive IP packets.

The built-in source delay [1] degrades the handoff
performance of MIP [7]. However, as it is well known, the
built-in source delay can be reduced with information called
an L2 trigger [1] which is sent from L2 to L3 to inform L3 of
the occurrence of detailed events involved in the L2 handoff
sequencing. One possible event is the completion of
relocating a MN’s L2 connectivity from an old AR to a new
AR (L2 post-trigger). Another possible event is early
notification of an upcoming change in the L2 connectivity of
the MN (L2 pre-trigger).

In this paper, we focus on the performance of TCP Vegas
during Mobile IP handoffs. We propose a modification of
TCP Vegas, called Mobility-Vegas. Mobility-Vegas could
detect the movement of a MN early by L2 trigger before
handoffs, and then manage source’s sending rate to prevent
packet losses during handoffs, and finally set RTO
(Retransmission Timeout) value in order to immediately
resume the communication after handoffs. In addition,
Mobility-Vegas is simple with very little overhead because

Improving Performance of TCP-Vegas for Mobile IP Handoffs

Cheng-Yuan Ho1, I-Hsuan Chiu2
1Department of Computer Science and Information Engineering, Asia University, Taichung City, Taiwan,

tommyho@asia.edu.tw
2Department of Civil Engineering, National Chiao Tung University, Hsinchu City, Taiwan,

sherry52168@g2.nctu.edu.tw

 ISSN 2278-3091
Volume 9, No.1, January – February 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse36912020.pdf

https://doi.org/10.30534/ijatcse/2020/36912020

Cheng-Yuan Ho et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 241 – 246

242

only one bit is added in TCP option, and a small modification
in the end side is made. This facilitates incremental
deployment in today’s Internet. Our intensive simulation
shows that Mobility-Vegas significantly improves the overall
TCP Vegas throughput in mobile environment.

The rest of this paper is organized as follows. Section 2
introduces TCP Vegas and Retransmission Timer. Related
work is described in Section 3. We characterize motivation
and Mobility-Vegas in section 4. Section 5 presents the
simulation results and Section 6 summarizes this paper.

2. TCP VEGAS AND RETRANSMISSION TIMER

2.1 TCP Vegas

TCP Vegas [5] uses the difference in the expected and actual
flow rates to estimate the available bandwidth in the network.
When the network is not congested, the actual flow rate would
be close to the expected flow rate. On the other hand, if the
actual rate is much smaller than the expected rate, it indicates
that buffer in the network is filling up and the network is
approaching congestion. This difference in flow rates can be
calculated as Diff = Expected - Actual, where Expected and
Actual are the expected and actual rates, respectively.

(i) Congestion Avoidance
In its congestion-avoidance phase, Vegas uses two threshold
values, α and β (whose default values are 1 and 3,
respectively), to control the adjustment of the congestion
window size at the source host. Let d denote the minimum
observed packet round-trip time (also known as BaseRTT), D
denotes the actual RTT (round-trip time), and W denotes the
size of the congestion window size, then Expected = W/d and
Actual = W/D. In addition, W is measured in segments as is
normally done in any TCP version. The estimated backlog of
packets in the network queues can then be computed as

For every RTT, the congestion-avoidance algorithm adjusts W
as follows:

Conceptually, Vegas tries to keep at least α packets but no
more than β packets queued in the network. Thus, when
there is only one Vegas connection, W converges to a point
that lies between window+α and window+β where window
is the maximum window size without considering the
queuing in the network.

(ii) Slow Start
Like Reno, Vegas uses a slow-start mechanism that allows a
connection to quickly ramp up to the available bandwidth.
However, unlike Reno, to ensure that the sending rate will not
increase too fast to congest the network during the slow start,
Vegas doubles its congestion window size only every other
RTT, and calculates the difference between the flow rates
(Diff) and Δ given in (1) in every other RTT. When Δ > γ
(whose default is 1), Vegas leaves the slow-start phase,
decreases its congestion window size by 1/8 and enters the
congestion-avoidance phase.

(iii) Retransmission
As in Reno, a triple-duplicate ACK always results in packet
retransmission. However, in order to retransmit the lost
packets quickly, Vegas extends Reno’s fast retransmission
strategy. Vegas measures the RTT for every packet sent based
on fine-grained clock values. Using the fine-grained RTT
measurements, a timeout period for each packet is computed.
When a duplicate ACK is received, Vegas will check whether
the timeout period of the oldest unacknowledgement packet is
expired. If so, the packet is retransmitted. This modification
leads to packet retransmission after just one or two duplicate
ACKs. When a non-duplicate ACK that is the first or second
ACK after a fast retransmission is received, Vegas will again
check for the expiration of the timer and may retransmit
another packet. Note that, packet retransmission due to an
expired fine-grained timer is conditioned on received certain
ACKs.

After a packet retransmission was triggered by a duplicate
ACK and the ACK of the lost packet is received, the
congestion window size will be reduced to alleviate the
network congestion. There are two cases for Vegas to set the
W. If the lost packet has been transmitted just once, the W will
be three fourth of the previous congestion window size.
Otherwise, it is taken as a sign for a more serious congestion,
and one half of the previous congestion window size will be
set into W. Notably, in case of multiple packet losses occurred
during one RTT that trigger more than one fast
retransmission, the congestion window will be reduced only
for the first retransmission.

If a loss episode is severe enough that no ACKs are received to
trigger fast retransmit algorithm, eventually, the losses will be
identified by Reno-style coarse-grained timeout. When this
occurs, the slow start threshold will be set to one half of W,
and then the W will be reset to two, and finally the connection
will restart from slow start.

2.2 Retransmission Timer

TCP provides connection-oriented and reliable services
between two hosts that are responsible in ensuring the transfer

Cheng-Yuan Ho et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 241 – 246

243

of datagrams from source to the respective destination. TCP
sends the data in variable length of segments. The sender will
stop the transmission after all the bytes in the window has
been sent. Eventually, a timeout will pass and the missing
segment will be retransmitted. The RTO value depends on the
RTT that can be defined as a measured elapsed time between
sending a window data octets with a particular sequence
number and receiving an acknowledgement [2]. Also, TCP is
tuned to perform well in traditional wireline fixed networks
where packet losses occur mostly because of congestion [3].
However, in the mobile network, packet losses usually occur
due to a handoff rather than congestion.

During the handoff, an unsuccessful segment received at the
destination will retransmitted. The sender assumes that the
segment was lost after the timeout expired. There are two
types of RTO. One is specified in [2], and the other has been
proposed by Jacobson in his paper [6]. Both of the standard
RTO and Jacobson’s RTO are using an exponential timeout
backoff. This is because the exponential timeout backoff can
avoid the traffic loaded with the unsuccessful transmission.
However, the timeout value increases twice for each
retransmission of the same segment and this may delay the
retransmission. Therefore, the successive TCP timeouts then
increase the TCP timeout interval such that, even after Mobile
IP handoff has completed, TCP will not immediately resume
the communication. In other words, in Mobile IP, a MN may
inevitably have long handoff delay resulting in a long
communication pause at the sender. For the TCP protocol,
this service disruption is perceived as an indication of
congestion that requires a TCP exponential backoff and
slow-start.

3. RELATED WORK

J. W. Kwon et al. proposed two schemes, TCP-MD
(Movement Detection) and TCP-R (Registration) in [8].
TCP-MD can detect the movement of a MN early on, whereas
TCP-R can force the source to freeze data transmission during
registration. However, only using TCP-MD or TCP-R is not
enough to improve the performance of TCP. FxRTO (Fixed
RTO) [9] is proposed to decrease the pauses in
communication. The FxRTO allows many segments to be
transmitted even during the handoff; however, the increase of
segments sent may affect the dropping or losing. Another
disadvantage is that the FxRTO of a sender may not suit for
various environments.

K. Omae et al. proposed an MN extension [10] employing a
buffering function to improve the handoff performance.
Before L2 handoff, the MN extension sets pre-buffer timer
and then buffers the ACKs during the pre-buffer time. After
the MN completes its L2 and L3 handoffs, it sends all buffered
ACKs to the CN to resume the communication. This way

could reduce the source’s sending rate and packet loss during
handoffs, but it is difficult to set the value of the pre-buffer
timer. It is because the pre-buffer time should be longer than
RTT and the total of the pre-buffer time, L2 and L3 handoffs
should be shorter than sender’s retransmission timer. In
addition, in traditional handoff mechanism, the time for L2
handoff is about 180 ms, and for L3 handoff is about 3
seconds.

Demo-Vegas [4] is proposed to improve the performance of
Vegas after a Mobile IP handoff. Although, after handoffs,
Demo-Vegas is able to detect the movement of both a sender
and a receiver based on their COAs, and re-measure the
BaseRTT if necessary, Demo-Vegas could not reduce packet
loss and TCP timeout interval during handoffs.

4. MOBILITY-VEGAS

4.1 Motivation

TCP Vegas is a rate based mechanism, it adjusts the
congestion window based on the current congestion window
size, BaseRTT, and newly measured RTT. Vegas can
successfully avoid the congestion in the network, so there are
implementations of Vegas in some operating systems such as
Linux and NetBSD. However, during and after handoffs,
Vegas has some problems. As a result, on a Mobile IP
network, Vegas may not utilize the bandwidth efficiently. We
propose a variant of TCP Vegas, Mobility-Vegas, to solve this
issue. Our method does not influence the original scheme on
the wired network.

4.2 The Scheme of Mobility-Vegas

In order to propose a widely applicable solution that achieves
better handoff performance over all L2 technologies, we make
two assumptions related to the L2 trigger:

(1) The MN can acquire an L2 pre-trigger and L2
post-trigger over all access technologies.

(2) However, these cannot include a new AR IP address
identifier as a parameter of the L2 trigger over all access
technologies.

Based on these assumptions, the key idea of Mobility-Vegas is
described as follows. Mobility-Vegas uses one bit in TCP
option as the IWH (I Will Handoff) flag. Figures 1 and 2 show
the operation of the receiver and the sender respectively. First,
we see the timing diagram of the receiver handoff (Figure 1).
After receiving L2 pre-trigger signal (and before L2 and L3
handoffs), the receiver will mark the IWH flag of ACKs in
order to tell the sender. Then the sender will halt the
retransmission timer and send one packet per RTT until
receiving receiver’s binding update, which includes the new

Cheng-Yuan Ho et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 241 – 246

244

COA (Care of Address). After that, the sender immediately
resumes the communication. The reason of halting the
retransmission timer is to avoid unnecessary exponential
backoff and retransmitted packets, and it is good for
performance when sending one packet per RTT because this
may reduce the handoff latency, decrease the probability of
packet loss and increase the throughput.

Similarly, the sender will mark the IWH flag of data packets
when it gets L2 pre-trigger signal. While the receiver receives
these packets, it knows the sender will handoff later, so it will
buffer the ACKs. The sender halts the retransmission timer
during L2 and L3 handoffs. It is because the sender cannot
receiver any ACK in this period. After handoffs, the sender
immediately transmits data packets to the receiver. Then, the
receiver sends the buffered and new ACKs to the sender. All
of the above are shown in the Fig. 2.

Figure 1: Timing diagram of the proposed receiver handoff.

Figure 2: Timing diagram of the proposed sender handoff.

Next, in order to understand Mobility-Vegas more clearly, a
step-by-step procedure for handoff is given below.

1. When the L2 decides to initiate L2 handoff, it sends an L2
pre-trigger to L3.

2. L3 sends the message “L2 handoff will initiate” to the
transport layer when the L2 pre-trigger is received.

3. While that message is received, the transport layer marks
the IWH flag of the packets for transmission.

4. If this procedure is running in a sender, it will halt the
retransmission timer.

5. When the L2 handoff is completed, L2 sends an L2
post-trigger to L3.

6. L3 sends a router solicitation to the new AR and receives
the router advertisement via L2 when the L2 post-trigger is
received.

7. When a router advertisement from the new AR is received,
L3 sends the Registration Request to the new AR and waits
the Registration Reply.

8. L3 changes the default router to a new AR and sends the
signal to the transport layer.

9. When the signal is received, the communication will be
resumed.

Since the space is limited, we omit the pseudo codes in this
section. The proposed scheme can improve the performance
of TCP Vegas in the traditional Mobile IP networks based on
the simulation result in the following section.

5. PERFORMANCE EVALUATION
5.1 The Simulation Environment

Figure 3: A simple topology for simulations.

Cheng-Yuan Ho et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 241 – 246

245

The simulation experiments are conducted using the ns2 [11],
version 2.35. A simulation network topology is shown in Fig.
3, where CN and MN represent end hosts. CN and MN are the
two end sides which execute Vegas, Demo-Vegas or
Mobility-Vegas. The application service in our simulation is
FTP. The receiver sends an ACK for every data packet
received. For the convenience of presentation, we assume that
all window sizes are measured in number of fixed-size
packets, which are 1000 bytes. Router, OAR, NAR1 and
NAR2 represent four finite-buffer gateways. The buffer size
in each gateway is set to 10 packets. For the constant-load
experiment, drop-tail gateways with FIFO service are
assumed. The bandwidth is 20 Mbps for all wired links. The
propagation delay is 22 ms from CN to the router, 2 ms from
the router to an AR (OAR, NAR1, or NAR2), respectively.
From an AR to the MN, the bandwidth is 10 Mbps and
wireless transmission delay is a multiple of 1 ms which
includes both packet transmission delay and the propagation
delay. The former may account the layer 2 retransmission due
to unsuccessful frame delivery, while the later can be ignored
because the propagation delay is much smaller comparing
with the packet transmission delay. In addition, this is a two
dimensional plane in topology. The distance of radio coverage
for the agent is 90 meters. The positions of OAR, NAR1, and
NAR2 are (200, 300), (350, 300), and (500, 300),
respectively.

5.2 Numerical Result

5.2.1 A fixed sender and a mobile receiver

In this simulation, CN is the sender and MN is the receiver.
The BaseRTT is about 50 ms if the packet is transmitted
successfully at the first time. The MN moves with a speed of
10 m/s from (150, 275) to (350, 275) at the 10th second, then
moves to (550, 275) at the 35th second. It starts to come back
(350, 275) at the 60th second, then return to (150, 275) at the
85th second. When the MN is in the foreign network, the
datagrams are routed from CN to OAR, tunneled from OAR
to NAR, and NAR de-tunnels these datagrams to the MN. The
ACKs are routed directly from MN to CN through the NAR.
The average throughput of Vegas, Demo-Vegas, and
Mobility-Vegas are shown in Fig. 4, where we can observe
that Mobility-Vegas outperforms the others during and after
handoffs. It is because the average throughput of Vegas is
about 5.55 Mbps, and the average throughput of
Mobility-Vegas is 1.5 times as great as that of TCP Vegas,
and 1.2 times as high as that of Demo-Vegas. In other words,
the average throughput of Mobility-Vegas (about 8.26 Mbps)
is the highest among these three Vegas versions.

Figure 5 shows the throughput of TCP Vegas, Demo-Vegas,
and Mobility-Vegas. From this Figure, we could see the
handoff time of Mobility-Vegas is decreased by about half

from 7 (or 8) seconds, which is the handoff time of TCP Vegas
or Demo-Vegas, to 3 (or 4) seconds. Moreover, the
throughput of Mobility-Vegas is not 0 during handoffs. For
example, the handoff time of our proposed mechanism is from
the 21.3th second to the 24.9th second, and the average
throughput is about 200 Kbps during this period; on the other
hand, the TCP Vegas’ handoff time is from the 21.3th second
to the 28.5th second, and during this time interval, it
retransmits the packets which may be lost after the timeout
expired. The percentages of dropping or losing packets of
three TCP versions during handoffs are illustrated in Table 1.
Mobility-Vegas’ percentage of dropping or losing packets is
3.2%, which means there are about 2 packet losses during
handoffs. It is the lowest value compared to that of TCP Vegas
and Demo-Vegas. In addition, the percentage of TCP Vegas is
5 times as much as that of Mobility-Vegas.

Figure 4: Average throughputs.

Figure 5: The throughput of TCP Vegas, Demo-Vegas, and

Mobility-Vegas.

Table 1: Total number of packets drop or loss during handoffs
Version Packet Drop/Loss (%)

TCP Vegas 16.1%
Demo-Vegas 16.1%

Mobility-Vegas 3.2%

Cheng-Yuan Ho et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 241 – 246

246

5.2.2 A fixed receiver and a mobile sender

In this simulation, we investigate the performance of three
Vegas versions when the sender is a mobile node and the
receiver is fixed. Basically, the sender sends packets through
the NAR1 or NAR2 (if NAR1 or NAR2 allows) to the
receiver, then the receiver sends the ACKs through the OAR
and NAR back to the sender with a triangular routing path
when the sender is in a foreign network. The average
throughput of Mobility-Vegas is about 8.5 Mbps, which is
about 1.46 times as great as that of TCP Vegas, and 1.16 times
as high as that of Demo-Vegas. In other words, the average
throughput of Mobility-Vegas is the highest among these
three Vegas versions. Moreover, the percentage of dropping
or losing packets and throughput of three schemes are similar
to those in the first simulation results.

Due to the limited space, we only show the results of
configuration with a fixed node and a mobile node.
Furthermore, the diagrams of configuration with two mobile
nodes are just like that with one fixed node and one mobile
node. From simulation results, we could observe that the
performance of Mobility-Vegas is much better than Vegas
when one side is fixed and the other side is mobile. It is
because Mobility-Vegas could halt retransmission timer,
decrease the sending rate, and resume the communication in
time. Thus, when both end sides are mobile, the throughput of
Mobility-Vegas will be still better than Vegas.

6. CONCLUSION

We propose and evaluate a new variant of TCP Vegas, called
Mobility-Vegas, to improve the performance during Layer 2
and Layer 3 handoffs. In this work, we achieve a significantly
higher throughput comparing with TCP Vegas and
Demo-Vegas on a Mobile IP network. Mobility-Vegas could
detect handoffs by using Layer 2 trigger, reduce packet loss
during handoffs, and immediately resume the communication
when Mobile IP handoff has completed. From the simulation
and numerical result, it shows that Mobility-Vegas is more
suitable than Vegas on a Mobile IP network. In addition,
Mobility-Vegas will still work well when the IPv4
environment changes to IPv6. Furthermore, the ‘IWH’ bit
setting propagates past the NAT mechanism that enables
mobile IP, to the remote host, forcing that host to do
corresponding steps. The proposed scheme is simple and can
be easily implemented on existing operating systems. We will
focus on its coexistence with same or other TCP
implementations and its performance with high speed
movement in our future work.

REFERENCES
1. K. El-Malki, P. R. Calhoun, T. Hiller, J. Kempf, P. J.

McCann, A. Singh, H. Soliman, and S. Thalanany. Low
Latency Handoffs in Mobile IPv4,
draft-ietfmobileip-lowlatency-handoffs-v4-09.txt, June
2004.

2. J. Postel. Transmission Control Protocol Specification,
IETF RFC 793, September 1981.
https://doi.org/10.17487/rfc0793

3. M. Allman, V. Paxson, and W. Stevens. TCP
Congestion Control, IETF RFC 2581, April 1999.
https://doi.org/10.17487/rfc2581

4. C.-Y. Ho, Y.-C. Chan, and Y.-C. Chen. An Efficient
Mechanism of TCP-Vegas on Mobile IP Networks, in
8th Proc. of the IEEE Global Internet Symposium in
conjunction with IEEE INFOCOM, March 2005.

5. L. Brakmo and L. Peterson. TCP Vegas: End-to-End
Congestion Avoidance on a Global Internet, IEEE J.
Sel. Areas Commun., Vol. 13, No. 8, pp. 1465-1480,
October 1995.
https://doi.org/10.1109/49.464716

6. V. Jacobson. Congestion Avoidance and Control, in
Proc. of ACM SIGCOMM’88, Stanford, August 1988.
https://doi.org/10.1145/52324.52356

7. H. Soliman, C. Castelluccia, K. Malki, and L. Bellier.
Hierarchical Mobile IPv6 mobility management
(HMIPv6), draft-ietf-mipshop-hmipv6-04.txt,
December 2004.
https://doi.org/10.17487/rfc4140

8. J. W. Kwon, H. D. Park, and Y. Z. Cho. An Efficient
TCP Mechanism for Mobile IP Handoffs,
TENCON’01, Vol. 1, pp. 278-281, August 2001.

9. Y. Mohamed, N. Fisal, and A. Mohd. Performance of
TCP on Mobile IP Network During Handoffs, in Proc.
of SCOReD 2002, pp. 390-393, July 2002.

10. K. Omae, T. Ikeda, M. Inoue, I. Okajima, and N. Umeda.
Mobile Node Extension Employing Buffering
Function to Improve Handoff Performance, in Proc.
of WPMC’2002, Vol. 1, pp. 62-66, October 2002.

11. NS2. http://www.isi.edu/nsnam/ns/

