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 
ABSTRACT 
 
Hippocampus is the structure of brain that is mostly affected 
by Alzheimer’s disease at an early stage. Atrophy of 
hippocampus has been found as a predictive feature for 
Alzheimer’s disease diagnosis. To measure the atrophy of 
hippocampus we need to segment it out from surrounding 
structures of brain. Manual segmentation of hippocampus has 
been found standard technique for hippocampus segmentation 
in literature, but is very time consuming and depends on 
particular anatomical information. In this work we have 
proposed an automatic approach to segment hippocampus 
considering texture and active contour from the brain 
Magnetic Resonance Image. After segmentation, features 
based on atrophy and shape of hippocampus has been 
measured. Support vector machine classifier with radial basis 
function kernel has been analyzed with extracted features for 
classification of Alzheimer’s and control subjects. In the 
proposed technique, 200 AD MRI and 200 control MRI have 
been considered from Alzheimer’s Disease Neuroimaging 
Initiative database. The experiment have shown 93% 
accuracy, 0.96 sensitivity and 0.90 specificity with atrophy 
feature and 94% accuracy, 0.96 sensitivity and 0.92 
specificity with shape feature. Further, 0.96 sensitivity, 1 
specificity and 98% accuracy have been obtained with the 
fusion of atrophy and shape feature. 
 
Key words: Alzheimer’s disease, Hippocampus, 
Segmentation, Support Vector Machine. 
 
1. INTRODUCTION 
 
Alzheimer’s disease (AD) is a progressive disease of brain 
that causes atrophy of different parts of brain. This is the main 
cause of dementia in old age people. According to 
Alzheimer’s Association of India more than 4 million people 
have dementia. AD starts slowly but gradually shrinks the 
brain cells and become worse over time. The common early 
sign of AD is difficulty in remembering things or recent 
conversation or recent events. These early signs are often 
ignored as normal sign of aging. There is no cure of AD as it is 
irreversible disease but the progress of the disease can be 
slowed down with fast diagnosis at early stage. Recent 
developments of medical imaging technologies make it 
somewhat possible to diagnose AD by analysing the 

 
 

information obtained from medical images. Magnetic 
Resonance Imaging (MRI) is one of the most commonly used 
medical imaging techniques for AD diagnosis. 
Hippocampus of brain is the structure that is early affected by 
AD. Different features based on hippocampus have been 
found in literature as predictive markers for AD detection. It is 
a challenging task to segment hippocampus from brain MRI 
with accurate accuracy due to its deformed boundary, 
complex shape, interconnected structures of brain and 
variability. There are number of research works on automatic 
hippocampus segmentation have been reported in literature. 
Based on literature automatic hippocampus segmentation 
techniques can categorized as  atlas based method, deformable 
model , classification based and combination of these 
mentioned methods. In atlas based method ([1], [2], [3], [4], 
[5]), an atlas is an image which is selected either randomly or 
by examining different images of the dataset. The region of 
interest (hippocampus) is segmented manually in the atlas and 
is considered as ideal of the dataset for segmentation. Then 
the atlas is registered with the image to be segmented to align 
both the images. After registration the hippocampus region of 
the atlas is transferred to the target image. Atlas based method 
has been further enhanced to multi atlas ([6], [7]) and 
probabilistic atlas ([2], [3]). In multi atlas method, instead of 
single atlas, multiple atlases are used for registration with the 
target image. Segmented structures obtained from multiple 
atlases are then combined to obtain the final segmented 
structure of the target image. There are different label fusion 
techniques that have been used to combine multiple atlases. In 
case of probabilistic atlas method different atlases are 
registered with one another to obtain statistical information 
(shape, texture) of the hippocampus and then obtained 
information has been given as input to other segmentation 
model such as deformable model or classification model for 
final segmentation of hippocampus. The result of atlas based 
technique also depends on registration technique being used. 
A deformable model is one most commonly used techniques 
for hippocampus segmentation ([8], [9], [10]). Deformable 
model depicts a group of techniques that characterizes the 
variability in the shape or texture of an image object by 
delineating the object’s outline. The simplest deformable 
model, widely used for hippocampus segmentation is active 
contour model ([8], [11]). In active contour model an initial 
contour is placed in the region of interest of the image and 
then is deformed in each iteration by internal and external 
energies generating new contours. The internal energy 
controls the deformations made and external energy controls 
the fitting of the contour onto the image object. Active shape 
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model ([9], [12]) is an extension of active contour model. In 
active shape model, constraints that are generated from prior 
knowledge have been used to modify the internal energy, so 
that the deformation is limited to a shape range of the 
segmented object. Active appearance model ([13], [14]) is 
another deformable method that is modelled by modifying 
active shape model. In this model constraints were 
incorporated in external energy to obtain a better fit of the 
contour onto the segmented object. The literature review 
reveals that atlas based method and deformable model have 
been used in combination for hippocampus segmentation ([2], 
[15]). 
Classification based methods for hippocampus segmentation, 
that have been found on literature includes artificial neural 
network, random forest, support vector machine ([16], [17], 
[18]). 
A number of works on AD detection have been reported in 
literature during the last decade. The classifiers that have been 
used for AD detection commonly includes support vector 
machine ([19], [20], [21], [22], [23]), artificial neural network 
(ANN) [24], linear discriminant analysis (LDA) [25], deep 
neural network [26], k nearest neighbor (KNN) [27], whereas 
support vector machine has been found as one of the most 
widely used techniques.  

 
2. DATASET USED 
 
The dataset used in this work has been obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database (adni.loni.usc.edu).The ADNI was launched in 
2003 as a public-private partnership, led by principal 
investigator Michael W. Weiner, MD. The primary goal of 
ADNI has been to test whether serial magnetic resonance 
imaging (MRI), positron emission tomography (PET), 
other biological markers, and clinical and 
neuropsychological assessment can be combined to 
measure the progression of mild cognitive impairment 
(MCI) and early Alzheimer’s disease (AD). Among the 
three views of MRI i.e. axial, coronal and sagittal, the 
coronal view of T1 weighted MRI from ADNI screening 
1.5T database has been considered for experiment. 200 
control MRI and 200 AD MRI of age group 55-85 
containing both male and female patients have been taken 
for experiment. The images considered were already 
pre-processed images for correction of image geometry 
distortion and image intensity non-uniformity by ADNI. 
All the images have been resized to 400×400 pixels.  
 
3. HIPPOCAMPUS SEGMENTATION  
 
Hippocampus of brain is the structure that is responsible for 
formation and storage of memory and is the part early and 
mostly affected by AD. This is the reason that AD affected 
people faces difficulty in remembering things. In diagnosis of 
AD hippocampus plays an important role as atrophy of 
hippocampus is a predictive marker for diagnosis. In this 
work an automatic approach for hippocampus segmentation 
has been proposed. Hippocampus segmentation has been 

performed after pre processing step that includes contrast 
enhancement [28] and skull stripping (Removal of unwanted 
portions like skull, neck etc. from brain). For hippocampus 
segmentation initially one AD image has been selected as 
reference image. We have performed texture analysis using 
standard deviation filtering on the pre processed reference 
image. Due to AD hippocampus of the brain get shrink 
causing black holes in that region. So standard deviation 
filtering gives high values for hippocampus region of brain 
compared to other parts due to high variability of pixel values. 
This is the actual region of selecting an AD image as reference 
image. Although, some other part of brain MRI can show high 
value for standard deviation filtering, we can separate out the 
hippocampus region as the brain has two hippocampus at 
same position on left and right side. If we extract out the 
regions that shares maximum number of common rows and 
also have high value of standard deviation filtering then we 
get the left hippocampus region and right hippocampus 
region. Initially, we have created two rectangular masks, one 
for left hippocampus and one for right hippocampus from the 
reference image. Further we have created two more masks 
each for left and right hippocampus by increasing and 
decreasing the size of the initial mask and name them as large 
mask and small mask respectively. The initial mask is named 
as medium mask. Three types of masks have been created as 
there are variations in brain size. After creation of masks the 
target image to be segmented has been registered with the 
reference image using affine transformation method and then 
transfer the masks to the target image one by one. The mask 
that covers the whole hippocampus region is kept and others 
are discarded. Finally, active contour technique has been used 
on the mask for final segmentation of hippocampus. The step 
wise method of hippocampus segmentation has been 
described in Figure 1.  
 

 
 
 
 
Figure 2 has described the proposed algorithm for mask 
creation. Mask1 and Mask2 are initially created mask. Two 
more masks for each hippocampus have been created by 
increasing and decreasing the size of the initial mask. The 
proposed algorithm for hippocampus segmentation and 
obtained results has been given in Figure 3 and Figure 4 

Figure 1: Step wise Method of Hippocampus Segmentation from 
Brain MRI 



Dulumani Das et  al.,  International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May -  June 2021, 1743 – 1750 

1745 
 

 

respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Proposed Algorithm for Mask Creation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Proposed Algorithm for Hippocampus Segmentation 

 
4. FEATURE EXTRACTION 
 
After hippocampus segmentation atrophy and shape of 
hippocampus have been analysed. For measuring atrophy, 
initially we have calculated number of pixels in the whole 
hippocampus area and then apply active contour on the whole 
hippocampus region to get the actual hippocampus. The  

   
 

   
 

   
 

   
 

Figure 4: Results of Hippocampus Segmentation, 1st column 
shows skull stripped MRI and 2nd and 3rd column shows 

corresponding segmented left and right hippocampus respectively 
 
amount of atrophy or shrinkage has been measured by 
subtracting the number of pixel in actual hippocampus from 
the number of pixel in the whole hippocampus. The difference 
in atrophy of AD hippocampus and normal hippocampus can 
be analysed from the graph depicted in Figure 5. It is clearly 
visible in Figure 5 that the amount of atrophy is very high in 
AD hippocampus than normal hippocampus. The atrophy is 
higher than 300 for AD hippocampus whereas, for normal 
hippocampus it is lower than 300.  
The shape of segmented hippocampus has been analysed 
using local energy based shape histogram (LESH). LESH has 
been found effective for shape analysis in other application 
areas. So we have experimented it for our work. LESH gives 
the description of underlying shape of hippocampus. It gives 
the underlying shape by accumulating local energy of the 
underlying image along several filter orientations. The LESH 
feature works on the basis of local energy model as described 
by [29]. They have given the fact that the features of an image 
are perceived at points of maximum phase congruency. 

Input: Pre-processed AD MRI image I (reference image). 
Output: Masks for left hippocampus and right 

hippocampus of brain. 
 
1. I1= standard deviation filtering (I). 
2. I2= thresholding (I1). (using Otsu’s technique) 
3. Extract 10 largest connected components from I2. 
4. For i=1 to 10 (for each connected component) 
            Find (rows(i), columns(i)). 
5. for i=1:10 
                 for j=1:10 

               if(i==j) 
                       Continue; 
              end 
              if(j<i) 
                       Continue; 
              end 

                                 in=intersect(rows(i), rows(j)); 
                    end 
        end 
6. Extract the two connected components i, j for which 
‘in’ gives maximum number of  values. 
7. Mask1= bounding box (i). (left/right hippocampus) 
8. Mask2= bounding box (j). (left/right hippocampus) 

Input: Pre-processed reference image I, Pre-processed    
target image T and mask obtained from 
algorithm described in figure 2. 

Output: Left hippocampus and Right hippocampus of 
target image T. 

 
1. Select the appropriate mask (maskl, maskr) for T that 

covers the whole hippocampus region. 
2. RT=Affine transformation (T, I). 
3. Lhippo=active contour (RT, maskl). 
4. Rhippo=active contour (RT, maskr). 
5. Lefthippo=RT, Righthippo=RT. 
6. Lefthippo (~Lhippo) =0. 
7. Righthippo (~Rhippo) =0. 
8. Left hippocampus = thresholding (RT). (using Otsu’s 

thresholding) 
9. Right hippocampus=thresholding (RT). (using Otsu’s 

thresholding) 
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According to [30] the phase congruency of a two dimensional 
image is calculated as (1). 

 
E (Z) =

∑ ࢔(ࢆ)࢝ උ(ࢆ)࢔࡭(࢙࢕ࢉ൫࣐ି(ࢆ)࢔࣐ഥ(ࢆ)൯ି|࢔࢏࢙(࣐ି(ࢆ)࢔࣐ഥ(ࢆ))|)ିࢀඏ
∑ ࢔∋ା(ࢆ)࢔࡭

         (1) 
 

Where, w (Z) = weighting of the frequency spread, T= noise 
cancellation factor, An = amplitude of the nth fourier 
component, ࢔࣐= phase angle of the nth fourier component, 
∈=constant value used to avoid division by zero, Z=(x,y) is 
the image location. 
To preserve the phase information filters in symmetric anti 
symmetric pair must be used. For this the segmented image 
has been convolved with a bank of Gabor kernels at each of 
the 16 sub-regions and along 8 different orientations [31]. The 
convolution has been done using the equation (2). At each 
image location, for each scale and orientation, it produces a 
complex value comprising the output of even and odd 
symmetric filter that gives corresponding amplitude and phase 
of that pixel. 

 
(࢔࢕,࢔ࢋ)࢜,࢛ࡳ = (ࢆ)ࡵ ∗  (2)                                                    (ࢆ)࢜,࢛ࢸ
 
Where, z=(x, y) represents the image position, ‘*‘= 
convolution operator, (࢔࢕,࢔ࢋ)࢜,࢛ࡳ= convolution result of the 
Gabor kernel with u orientation and v scale.  ࢜,࢛ࢸ(z) = Gabor 
wavelet kernel calculated as defined by [32]. If ࢔ࢋand ࢔࢕ 
denote the even and odd wavelets at a scale n, the amplitude 
and phase of the transform at a given wavelet scale is given by 
equation (3) and (4) respectively [30] 
 
(ࢆ)࢔࡭ = ඥ(ࢆ ∗ ૛(࢔ࢋ + ࢆ) ∗ ૛(࢔࢕ 																																																						 (3) 
 
(ࢆ)࢔࣐ = ࢆ)	૛࢔ࢇ࢚ࢇ ∗ ࢆ,࢔ࢋ ∗  (4)                                       (ܖܗ

 
The energy or phase congruency E (Z) has been calculated as 
in (1) for each orientation and then summed as a whole. The 
energies at each orientation have been normalized by the 
overall sum and scales of amplitude of individual wavelet 
responses at a particular location [33]. So the phase 
congruency (PC) is calculated as in equation (5). 

 

PC(Z)=
∑ ∑ ࢔(ࢆ)૙࢝ ቔ࢔࡭,૙(ࢆ)(࢙࢕ࢉቀ࢔࣐,૙(ࢆ)ି࣐ഥ(ࢆ)ቁିห࢔࢏࢙(࢔࣐,૙(ࢆ)ି࣐ഥ(ࢆ))ห)ିࢀ૙ቕ૙

∑ ∑ ૙࢔∋ା(ࢆ)૙,࢔࡭
   (5) 

 
Where, 0 denotes the index over orientations. 
This normalized local energy measure or phase congruency 
has been used to describe the underlying shape of 
hippocampus as this energy response varies with respect to the 
underlying shape. A local histogram accumulating the local 
energy along each filter orientation for each sub region of the 
image has been generated. The local histograms for each sub 
region of the image have been concatenated to create a single 
histogram that preserves the relationship between different 
parts of hippocampus. An orientation label map has also been 
generated where each pixel of the image allocated with the 
label of the orientation at which it has largest energy across all 
scales. The local histogram has been generated as in equation 
(6). 

࢈,࢘ࢎ = ࢘࢝∑ × ×ࡱ ࡸ)ࢾ −  (6)                                                           (࢈
 
Where, b = the current bin, L= orientation label map, E= local 
energy, w = Gaussian weighing function centred at region r. 
 .has been calculated as in equation (7) ࢘࢝
 
࢘࢝ = ૚

√૛࣌࣊
൯࢕࢟࢘ି࢟૛ା൫(࢕࢞࢘ି࢞)]ࢋ

૛]/࣌૛                                         (7) 
 
LESH has been generated for 16 sub-regions of the 
hippocampus along 8 different orientation resulting (16×8) 
128 dimensional feature vector. The algorithm for computing 
LESH vector has been described in Figure 6. Figure 7 has 
depicted the LESH vector obtained for AD and control 
subjects. 

 

 
Figure 5: Difference of Atrophy between AD and Normal (CN) 

Hippocampus 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Algorithm for Computation of LESH Vector 
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Input: Segmented image I with a certain pixel location 
z=(x, y) 

Output: LESH vector for I 
1. Convolve the Fourier transform of the image I with a 

bank of Gabor kernels (࢔࢕,࢔ࢋ)࢜,࢛ࡳ using (2) with u 
orientation and v scale. 

2. Calculate the amplitude (ࢆ)࢔࡭ of the transform using 
(3). 

3. Calculate the phase (ࢆ)࢔࣐ of the transform using (4). 
4. The energy E (Z) is calculated using (1). 
5. Calculate phase congruency PC (Z) using (5). 
6. Compute the LESH vector using (6) and (7). 

Figure 7: LESH Vector obtained for AD and Normal 
Hippocampus respectively. 
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5. CLASSIFICATION USING SUPPORT VECTOR 
MACHINE 
 
The features obtained from the section 4 have been fed to the 
Support vector machine for classification. It takes feature 
vector as input and predicts the class of each feature vector. 
The possible classes of this work are AD and control. It creates 
an optimal hyperplane that separates the two classes with the 
largest margin. The equation of hyperplane has been given in 
equation (8). As SVM is supervised classifier we need to train 
the model first, then the trained model can be used to predict 
new data.  

 
.ࢀ࢝ ࢒ + ࢈ = ૙                                                                       (8) 
 
Where, b=real number, w=normal vector to the hyperplane, 
l=feature vector. 

The SVM classifier shows good results when used with 
appropriate kernel, based on data. Here we have used Gaussian 
radial basis function (GRBF) kernel. The Gaussian radial basis 
function kernel has been given in equation (9). 
 
,૚࢒)࢑ (૛࢒ = ૚࢒‖ࢽ−)࢖࢞ࢋ − ࢽ,(૛‖૛࢒ > 0                                    (9) 
 
Where, ߛ is a positive parameter.  

For low value of ߛ, points far away from the probable 
separation line are considered for calculation of separation 
line. On the other hand, in case of high value of  ߛ, the points 
close to the probable separation line are considered. Tuning of 
this parameter has been done using 10-fold cross-validation 
during the training process. The value of these parameters 
varied logarithmically from 1e-5 to 1e5. 

 
6. PERFORMANCE MEASURE  
 
In the present study, after the extraction of features from MRI 
brain images, the feature vectors are fed into the SVM for 
measuring the performance of the classifier. In this present 
study, fusion of atrophy and LESH feature has been 
performed with a view to get better accuracy. The size of the 
dataset used in the present study is 400. The dataset has been 
split into training and testing set using hold out technique. 
75% of feature vectors (300 images) of the dataset have been 
used for training SVM with GRBF kernel and the remaining 
25% (100 images) has been used for testing the classifier. The 
sensitivity, specificity and accuracy of the classifier have 
been calculated as given in equation (10), (11) and (12) 
respectively. 
 
࢚࢟࢏࢜࢏࢚࢏࢙࢔ࢋࡿ = ࡼࢀ

ࡺࡲାࡼࢀ
                                                    (10)  

 

࢚࢟࢏ࢉ࢏ࢌ࢏ࢉࢋ࢖ࡿ = ࡺࢀ
ࡺࢀାࡼࡲ

	                                                  (11) 

࢟ࢉࢇ࢛࢘ࢉࢉ࡭ = ࡺࢀାࡼࢀ
࢔࢕࢏࢚ࢇ࢒࢛࢖࢕࢖	࢒ࢇ࢚࢕ࢀ

		                                        (12) 
 
Where, TP= True positive (AD predicted as AD), TN= 
True negative (Control predicted as control), FP= False 

positive (Control predicted as AD), FN= False negative 
(AD predicted as control). 
The performance of atrophy, LESH and fusion of atrophy and 
LESH feature with SVM-GRBF has been depicted in Figure 8 
and Figure 9. The true positive, true negative, false positive, 
false negative, accuracy, sensitivity and specificity obtained 
with atrophy feature are 48, 45, 5, 2, 93%, 0.96 and 0.90 
respectively. The true positive, true negative, false positive, 
false negative, accuracy, sensitivity and specificity obtained 
with LESH feature are 48, 46, 4, 2, 94%, 0.96 and 0.92 
respectively. The true positive, true negative, false positive, 
false negative, accuracy, sensitivity and specificity obtained 
with fused feature are 48, 50, 0, 2, 98%, 0.96 and 1 
respectively. 
 

    
 

 
 

 
 

 
 

 
 
 

 

(a) (b) 

(c) 

Figure 8: Performance Measure using Confusion Matrix for 
SVM-GRBF with (a) Atrophy, (b) LESH and (c) Fused feature 

Figure 9: ROC Considering Atrophy, LESH and Fused Feature 
for SVM-GRBF 
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 TP TN FP FN Accuracy 
(%) 

Sensitivity Specificity 

ATROPHY OF 
HIPPOCAMPUS 

48 45 5 2 93 0.96 0.90 

SHAPE OF 
HIPPOCAMPUS 

48 46 4 2 94 0.96 0.92 
 

FUSION 48 50 0 2 98 0.96 1 

AUTHOR METHOD DATASET FEATURES ACCURACY 
I. Beheshti et. al, 

(2015)[19] 
SVM-linear   ADNI Gray matter loss 89.65% 

O. B. Ahmed et. al, 
(2015)[20] 

SVM-RBF ADNI , 
Bordeaux-3 

city 

Local features of 
hippocampus and 

posterior cingulated 
cortex 

ADNI: 83.77% 
Bordeaux-3 city: 

78% 

L. Sorensen et. al, 
(2015)[21] 

SVM-RBF ADNI, AIBL, 
Metropolit 

Hippocampal texture ADNI- AUC* : 
0.74 

AIBL- AUC* : 
0.83 

I. Beheshti et. al, 
(2016)[22] 

SVM-linear ADNI Gray matter volume 92.48% 

J. Zhang et. al, 
(2017) [23] 

SVM-linear ADNI Landmark based 
feature 

88.30% 

L. Sorensen et. al, 
(2017) [25] 

LDA ADNI, AIBL Cortical thickness, 
hippocampal shape, 
texture and volume 

62.7% 

D. Baskar et. 
al,(2018)[24] 

Kernel fuzzy 
c-means + 

back 
propagation 

ANN 

ADNI, 
Bordeaux 

3-city 

Texture and shape of 
hippocampus and 
posterior cingulate 

cortex 

97.63% 

M. Amin-Naji et. 
al,(2019)[26] 

Convolution-
al neural 
network 

OASIS - 98.72% 

U. R. Acharya et. 
al,(2019) [27] 

k-NN private Contourlet transform 
features 

94.54% 

K. Shankar et. al, 
(2019)[34] 

Convolution-
al neural 
network 

ADNI Texture feature 96.23% 

H. Elshatoury et. al, 
(2019)[35] 

SVM ADNI Histogram 69.5% 

K. R. Kruthika et. 
al, (2018)[36] 

Multistage 
classifier 

Naive Bayes, 
KNN , SVM 

ADNI Cortical thickness, 
structural volume 

82.3% 

Proposed SVM-GRBF ADNI Atrophy of 
hippocampus 

93%, 
 

Proposed SVM-GRBF ADNI Shape of 
hippocampus(LESH) 

94%, 

Proposed SVM-GRBF ADNI Fusion of Atrophy and 
LESH 

98%, 
 

Table 2: Comparison With Some Existing Techniques 
 

*AUC=Area under the receiver operating characteristics curve 

Table 1: Results obtained for SVM-GRBF 
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The results obtained with SVM-GRBF have been given in 
Table 1.A comparison of the present work with some existing 
works on AD has been given in Table 2. The existing works 
that have been compared with the present work contains 
different methods, dataset and features. Most of the works 
have been performed on ADNI dataset. It is observed from 
Table 1 that most of the works on AD have been performed 
using SVM and ADNI data. Table 1 shows that convolutional 
neural network is a good classifier for AD detection. SVM has 
been used in the present study because of its low 
computational complexity and memory efficiency. In this 
research work, focus has been given to obtain good 
classification accuracy with SVM considering atrophy and 
shape of hippocampus. Size of dataset also influences for 
considering SVM. 
 
7. CONCLUSION 
 
In this work an automatic approach for segmentation of 
hippocampus from brain MRI has been analyzed. The 
hippocampus segmentation has shown good results on 
ADNI data considering 400 T1 weighted coronal MRI. 
Atrophy feature has been analyzed on segmented 
hippocampus. The experiment has shown that the atrophy 
in AD hippocampus is very high compared to control MRI. 
We have also experimented LESH feature for analysis of 
hippocampus shape as it has shown good results in other 
shape oriented application areas. The LESH feature also 
gives the difference in between the shape of hippocampus 
of AD and control MRI due to shrinkage. The obtained 
feature vectors have been fed to the SVM-GRBF classifier. 
The atrophy feature has given 0.96 sensitivity, 0.90 
specificity and 93% accuracy, LESH feature has given 0.96 
sensitivity, 0.92 specificity and 94% accuracy and fusion of 
the atrophy and shape feature has given 0.96 sensitivity, 1 
specificity and 98% accuracy. Further the work can be 
improved with combination of other classifier. 
  
REFERENCES 
 
[1] T. C. Owen, A. A. Howard, W. D. Simon, et al. 

Atlas-based hippocampus segmentation in 
Alzheimer’s disease and mild cognitive impairment, 
Neuroimage , Vol. 27, pp. 979-990, 2005. 

[2] M. Chupin, A. Hammers, E. Bardinet, et al. Fully 
Automatic Segmentation of the Hippocampus and the 
Amygdala from MRI Using Hybrid Prior Knowledge, 
in Proc. Medical Image Computing and 
Computer-Assisted Intervention – MICCAI, Brisbane, 
Australia, 2007, pp. 875-882. 

[3] F. V. D. Lijn, T. D. Heijer, M. M. B. Breteler, et al. 
Hippocampus segmentation in MR images using atlas 
registration,voxel classification, and graph cuts, 
Neuroimage , Vol. 43, pp. 708-720, 2008. 

[4] K. Kwak,  U. Yoon, D-K. Lee, et al. Fully-automated 
approach to hippocampus segmentation using a 
graph-cuts algorithm combined with atlas-based 
segmentation and morphological opening, Magnetic 
Resonance Imaging , Vol. 31, pp. 1190-1196, 2013. 

[5] J. E. Iglesias, J. C. Augustinack, K. Nguyen, et al. A 
computational atlas of the hippocampal formation 
using ex vivo, ultra-high resolution MRI: Application 
to adaptive segmentation of in vivo MRI, Neuroimage , 
Vol. 115, pp. 117-137, 2015. 

[6] P. Aljabar, R. A. Heckemann, A. Hammers, et al. 
Multi-atlas based segmentation of brain images: Atlas 
selection and its effect on accuracy, Neuroimage , 
Vol.46, pp. 726-738,2009. 

[7] H. Wang, J. W. Suh, S. Das, et al. Regression-Based 
Label Fusion for Multi-Atlas Segmentation, in Proc. 
Computer Vision and Pattern Recognition (CVPR) 
conference, Colorado, USA. : Colorado Springs, June 
2011, pp. 1113-1120. 

[8] A. Ghanei, S. H. Zadeh, & P. J. Windha. Segmentation of 
the hippocampus from brain MRI using deformable 
contours, Computerized Medical Imaging and Graphics , 
Vol. 22, pp. 203–216,1998. 

[9] D. Shen, S. Moffat, S. M. Resnick, et al. Measuring Size 
and Shape of the Hippocampus in MR Images Using a 
Deformable Shape Model, NeuroImage , Vol. 15, pp. 
422–434, 2002. 

[10] P. Mesejo, R. Ugolotti, F. D. Cunto, et al. Automatic 
hippocampus localization in histological images 
using Differential Evolution-based deformable 
models, Pattern Recognition Letters , Vol. 34, pp. 
299–307, 2013. 

[11] M. Kass, A. Witkin, & D. Terzopoulos. Snakes: active 
contour models, International Journal of Computer 
Vision , Vol. 1 (4), pp. 321–331,1988. 

[12] T. F. Cootes, C. J. Taylor, D. H. Cooper, et al. Active 
shape models-their training and application, 
Computer Vision and Image Understanding ,Vol. 61 (1), 
pp. 38–59, 1995. 

[13] T. F. Cootes, G. J. Edwards, & C. J. Taylor. Active 
appearance models, IEEE Transactions on Pattern 
Analysis and Machine Intelligence , Vol. 23 (6), pp. 
681–685, 2001. 

[14] S. Hu, P. Coupe, J. C. Pruessner, et al. 
Appearance-based modeling for segmentation of 
hippocampus and amygdala using multi-contrast 
MR imaging, NeuroImage , Vol. 58, pp. 549–559, 2011. 

[15] M. Chupin, E. Gerardin,  R. Cuingnet, et al. Full 
Automatic Hippocampus Segmentation and 
Classification in Alzheimer’s Disease and Mild 
Cognitive Impairment Applied on Data From ADNI, 
Hippocampus , Vol. 19, pp. 579–587,2009. 

[16] S. Powell, V. A. Magnotta, H. Johnson, et al. 
Registration and machine learning-based automated 
segmentation of subcortical and cerebellar brain 
structures, NeuroImage , Vol. 39, pp. 238-247, 2008. 

[17] S. Tangaro, N. Amoroso, M. Boccardi, et al. Automated 
voxel-by-voxel tissue classification for hippocampal 
segmentation: Methods and validation, Physica 
Medica , Vol. 30, pp. 878-887, 2014. 

[18] Y. Chen, B. Shi, Z. Wang, et al. Hippocampus 
segmentation through multi-view ensemble convnets, 
in Proc. 2017 IEEE 14th International Symposium on 
Biomedical Imaging (ISBI 2017), Melbourne, VIC, pp. 
192-196. 



Dulumani Das et  al.,  International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May -  June 2021, 1743 – 1750 

1750 
 

 

[19] I. Beheshti &  H. Demirele. Probability distribution 
function-based classification of structural MRI for 
the detection of Alzheimer's disease, Computers in 
Biology and Medicine , Vol. 64, pp. 208-216, 2015. 

[20] O. B. Ahmed, M. Mizotin, J. Benois-Pineau, et al. 
Alzheimer’s disease diagnosis on structural MR 
images using circular harmonic functions 
descriptors on hippocampus and posterior cingulate 
cortex, Computerized Medical Imaging and Graphics , 
Vol. 44, pp. 13–25, 2015. 

[21] L. Sorensen, C. Igel, N. Liv Hansen, et al. Early 
detection of Alzheimer’s disease using MRI 
hippocampal texture, Human Brain Mapping , Vol. 37, 
pp. 1148–1161, 2015. 

[22] I. Beheshti, H. Demirel, F. Farokhian, et al. Structural 
MRI-based detection of Alzheimer’s disease using 
feature ranking and classification error, Computer 
methods and programs in biomedicine , Vol. 137, pp. 
177–193, 2016. 

[23] J. Zhang, M. Liu, Le An, et al. Alzheimer’s Disease 
Diagnosis Using Landmark-Based Features From 
Longitudinal Structural MR Images, IEEE Journal of 
Biomedical and Health Informatics, Vol. 21, pp. 
1607–1616, 2017. 

[24] D. Baskar, V. S. Jayanthi &  A. N. Jayanthi. An efficient 
classification approach for detection of Alzheimer’s 
disease from biomedical imaging modalities, 
Multimedia Tools and Applications 
(doi:10.1007/s11042-018-6287-8), 2018. 

[25] L. Sorensen, C. Igel, A. Pai, et al. Differential diagnosis 
of mild cognitive impairment and Alzheimer’s 
disease using structural MRI cortical thickness, 
hippocampal shape, hippocampal texture, and 
volumetry, NeuroImage: Clinical , Vol. 13 , pp. 
470–482, 2017. 

[26] M. Amin-Naji, H. Mahdavinataj  & A. Aghagolzadeh 
Alzheimer’s disease diagnosis from structural MRI 
using Siamese convolutional neural network, in Proc. 
4th International Conference on Pattern Recognition 
and Image Analysis (IPRIA), Tehran, Iran, March 2019,  
(p. doi:10.1109/pria.2019.8786031). 

[27] U. R. Acharya, S. L. Fernandes, J. E. WeiKoh, et al. 
Automated Detection of Alzheimer’s Disease Using 
Brain MRI Images– A Study with Various Feature 
Extraction Techniques, Journal of Medical Systems , 
Vol. 43, pp. 302, 2019. 

[28] A. M. Reza. Realization of the Contrast Limited 
Adaptive Histogram Equalization (CLAHE) for 
Real-Time Image Enhancement, Journal of VLSI 
Signal Processing , Vol. 38, pp. 35–44, 2004. 

[29] M. C. Morrone & R. Owens. Feature detection from 
local energy, Pattern Recognition Letters , Vol. 1, pp. 
103–113, 1987. 

[30] P. D. Kovesi. Image features from phase congruency, 
Videre: Journal of Computer Vision Research , MIT 
Press 1, Vol. 3, pp. 1–26, 1999. 

[31] U. Zakir, I. Zafar & A. E. Edirisinghe. Road sign 
detection and recognition by using local energy based 
shape histogram (LESH), International Journal of 
Image Processing , Vol. 4, pp. 566–582, 2011. 

[32] B. Zhang, S. Shan, X. Chen, et al. Histogram of Gabor 
phase pattern  (HGPP): A novel object 
representation approach for face recognition, IEEE 
Transactions on Image Processing , Vol. 16(1), pp. 
57–68, 2007. 

[33] P. D. Kovesi. Phase congruency: A low-level image 
invariant, Psychological Research, Vol. 64, pp. 
136–148, 2000. 

[34] K. Shankar, S. K.  Lakshmanaprabu, A. Khanna, et al. 
Alzheimer detection using Group Grey Wolf 
Optimization based features with convolutional 
classifier, Computers and Electrical Engineering, Vol. 
77, pp. 230-243, 2019. 

[35] H. Elshatoury, E. Avots & G. Anbarjafari. Volumetric 
Histogram-Based Alzheimer’s Disease Detection 
Using Support Vector Machine, Journal of 
Alzheimer’s Disease, DOI 10.3233/JAD-190704, IOS 
Press, 2019. 

[36] K. R. Kruthika, Rajeswari & H. D. Maheshappa. 
Multistage classifier-based approach for Alzheimer's 
disease prediction and retrieval. Informatics in 
Medicine Unlocked, doi.org/10.1016/j.imu.2018.12.003, 
2018. 

[37] T. Prabhakar &  S.  Poonguzhali. A Comparison of 
Classification Methods to Classify the Breast Lesions 
from Ultrasound Images using Texture Feature 
Extraction, International Journal of Advanced Trends 
in Computer Science and Engineering, Vol. 9(5), pp. 
6877-6880, 2020. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


