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ABSTRACT 
 
In this study, a Takagi-Sugeno-Kang based intuitionistic 
fuzzy logic system is proposed for the prediction of global 
carbon dioxide emission for the first time. The intuitionistic 
fuzzy logic system is an integration of artificial neural 
network learning and intuitionistic fuzzy logic reasoning. 
The gradient descent back propagation is applied in the 
optimization of the parameters of the proposed model. The 
model is evaluated based on some performance metrics. 
Results of evaluation revealed that the intuitionistic fuzzy 
logic system outperforms other existing models in the 
literature in terms of prediction accuracy. 
 
Key words: Carbon dioxide emissions, gradient descent 
backpropagation, hesitation index, intuitionistic fuzzy set.  

 
1. INTRODUCTION 
 
Climate pollution from carbon dioxide (CO2) has been an 
important and challenging task globally. The forecasting of 
CO2 emission has attracted researches in many fields in recent 
times. According to [1], CO2 emission has affected countries 
in diverse ways including health, agriculture, economics, 
climate and tourism. Naturally, there should be a balance 
between the CO2 emitted from animals and other sources and 
the CO2 utilized by plants during photosynthesis, this balance 
has been distorted by human activities. Reference [2] pointed 
out that this imbalance is due to greenhouse effect (global 
warming, melting of polar ice sheet, rise in sea level and 
coastal inundation, and damage to agriculture and natural 
ecosystem). Many human activities have also resulted in an 
increasing emission of global greenhouse gas (GHG), largely 
by burning fossil fuels to generate electricity, heat and cool 
buildings, and power vehicles—as well as by clearing forests 
[3]. According to [3], carbon dioxide, methane, nitrous oxide, 
and fluorinated gases are the major greenhouse gases that 
people have added to the atmosphere. Appropriate methods 
have to be formulated in order to predict the amount of 
emission of these gases into the atmosphere. In this study, the 
prediction of CO2 emission is considered because according to 

 
 

[4], CO2 constitute a significant percentage of atmospheric air 
pollution. 
Many methods have been adopted in the literature for the 
prediction of CO2 emission and many have studied the 
relationship of CO2 with other economic indicators. For 
instance, [1] proposed an artificial neural network approach 
for the estimation of CO2 emission. The author used four input 
variables namely global oil, natural gas, coal and primary 
energy consumption to predict CO2 emission. Reference [2] 
adopted the autoregressive integrated moving average 
(ARIMA) models to forecast yearly CO2 prediction in 
Bangladesh. Different parametric models of ARIMA were 
constructed and different metrics were adopted to evaluate 
each ARIMA model. Reference [5] proposed a swarm 
intelligence methodology for the forecast of global CO2 
emission. Reference [6] employed bee algorithm and artificial 
neural network to forecast world CO2 emission. Reference [7] 
presented a comparison evaluation of neural network learning 
algorithms for the CO2 emission prediction in Malaysia for 
the period 1980-2009. The comparison was made between 
Levenberg-Marquardt and gradient descent backpropagation 
algorithms for learning the parameters of neural network. 
Results of findings revealed that Levenberg-Marquardt 
algorithms showed better performance compared to gradient 
descent in CO2 emission prediction. Reference [8] proposed 
methods for forecasting CO2 emission based on machine 
learning methods. The authors exploited the strengths of 
random forest and support vector machines in their analysis. 
Results revealed that support vector-based method produced 
better forecasting results. Reference [9] predicted CO2 
emission in all provinces in China using K-means cluster 
based logistic model. The K-means cluster analysis method 
was able to split the CO2 emissions into five types while the 
logistic model forecasted the CO2 emissions. Analysis of 
results revealed that the CO2 emission of China was 
continuously increasing. Reference [10] forecasted medium- 
and long-term CO2 emissions for provincial power grid using 
life cycle assessment and gray methods. The proposed method 
in [10] was found to exhibit good results in terms of prediction 
accuracy. Reference [11] predicted global CO2 emission using 
two artificial neural network models namely neural network 
auto-regressive with exogenous input model and the 
evolutionary product unit neural network model (EPUNN). 
The authors in [11] adopted the same input and output 
variables as those reported in [5]. Reference [11] concluded 
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that the evolutionary approach provided more stable result in 
the test data than the multilayer neural network. Reference 
[12] forecasted CO2 emission using neural network. The 
authors adopted solid fuel, oil, natural gas, electricity 
consumption, gross domestic product and resident population 
obtained from the national and provincial Italian statistics as 
their input indicators. The authors in [12] concluded that oil 
and natural gas contributed immensely to CO2 emission. 
Reference [13] proposed a hybrid model involving fuzzy 
linear regression and back propagation network for global 
CO2 concentration prediction. The authors concluded that the 
forecasting accuracy of the hybrid approach was better than 
other models in the literature. Reference [14] applied genetic 
algorithm to forecast global CO2 emission. The global energy 
consumption dataset from 1980 to 2010 was adopted for the 
analysis. The authors pointed out that genetic algorithm 
model exhibited good performance as the predicted values 
were in good agreement with the observed data. Reference 
[15] considered two input indicators namely energy 
consumption and economic growth to predict CO2 emission 
in G20 countries using adaptive neuro fuzzy inference system 
(ANFIS). The authors in [15] revealed that ANFIS provided 
efficient CO2 emission prediction based on the two input 
indicators. However, ANFIS is a traditional type-1 fuzzy 
system and may not handle some indifference in the set 
definition as it is only defined by membership function with 
implicit assertion that non-membership function values are 
complementary to membership function values. This may not 
always be the case in real world applications. The global CO2 
is highly uncertain [13] and applying type-1 fuzzy logic 
defined by only the membership functions may not be very 
suitable.  
 
This work seeks to forecast global CO2 emission by utilizing 
the intuitionistic fuzzy logic system (IFLS) which 
incorporates separate specifications for the membership and 
non-membership functions and enables hesitation. According 
to [16], intuitionistic fuzzy set (IFS) provides an efficient 
means of expressing a fuzzy set where available information 
is insufficient to define an imprecise concept using the 
traditional fuzzy sets. In the same vein, [17] pointed out that 
using IFS provides a more natural form of decision making 
where more than two answers are involved compared to 
traditional FLS. This work adopts the same dataset as 
presented in [11]. The global CO2 is collected from 1980 to 
2010 and includes inputs such as global oil, natural gas, coal 
and primary energy consumption. The contributions of this 
work are as follows: 1) the use of IFLS with membership and 
non-membership function to predict global CO2 emission for 
the first time. 2) The IFLS enables hesitation which is often 
neglected when analyzing global CO2 emission prediction. It 
is believed that with the independently defined membership 
and non-membership functions of IFS, the IFLS becomes a 
more powerful modelling tool compared to the traditional 
type-1 FLS and the prediction is more accurate and closer to 
human reasoning than the type-1 FLS.  
 

To the best knowledge of the authors, this is the first work that 
employs IFLS for the prediction of global CO2 emission.  
The rest of the paper is organized as follows: In Section 2, a 
brief description of IFS is given. Section 3 describes the 
parameter update rule using gradient descent 
backpropagation learning algorithm. In Section 4, the 
evaluation of the proposed model is carried out and the 
conclusion is drawn in Section 5.  
 
2. INTUITIONISTIC FUZZY SET 
 
Fuzzy set, (FS), introduced by [18] is an extension of the 
binary set that has value 0 or 1. In real life problems (data) 
where some forms of uncertainty and fuzziness are 
encountered, binary set may not be appropriate in such cases. 
The use of FS is an alternative means of addressing the 
problems of uncertainty in many real-world problems and can 
provide better solutions. For FS however, the membership 
function for each element has values in a closed interval [0,1] 
and these values may not express the concept of “neither this 
nor that” otherwise known as neutrality or lack of knowledge. 
In other words, traditional FS does not incorporate hesitation 
degree. According to [19], the sum of membership and 
non-membership degree of element may be less than one, 
implying an extra degree of neutrality (hesitation). In such 
cases, the traditional FS may not suffice. Intuitionistic fuzzy 
set (IFS) [20] is the extended version of the traditional fuzzy 
set [18] and constitutes a fuzzy set with membership and 
non-membership functions. An interesting part about IFS is 
that it enables hesitation such that the addition of the 
membership and non-membership functions of IFS is not 
always complementary (an assertion implicit in traditional 
fuzzy set). Shown in Figure 1 is the plot of IFS. For instance, 
input value 4 will be  = [0.77, 0.20]. 

 
Figure 1: Intuitionistic Fuzzy Set [21] 

Definition 1: Given a finite universal set, , a subset  with 

element, , is specified as    = 

{ } with some hesitation 

index ( ) such that  [20]. 

where the function: 
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   such that for every ,  

 and this represents the membership 
function degrees of IFS. 
and the function: 

  such that for every ,  

 and this represents the non-membership 
function degrees of IFS.  
Obviously, for IFS, . For 

every element, there is the  such that  = 1 – 

( ) which implies that 0 

. This measures the degree of hesitancy of 

the element  to the IFS  
According to [20], when the membership and 
non-membership functions add up to 1, the traditional fuzzy 
set is recovered. In this case, the non-membership function is 
a complement to the membership function which is a special 
case of IFS. 
i.e. for traditional FS, 

 ,  

then . In 

essence, FS is a special case of IFS when  = 0. 
 
Recently, the intuitionistic fuzzy inference has been 
extensively researched and applied in many problem domains 
such as multicriteria decision making, system identification 
and prediction, clustering, time series forecasting with 
promising results. For instance, [16] proposed an 
intuitionistic fuzzy inference system for predicting ozone (air 
pollutant) time series in Pardubice micro-region. The same 
authors in [22] also proposed a Takagi-Sugeno-type 
intuitionistic fuzzy inference system (IFIS) for regression 
problems. In their paper, different optimization algorithms 
namely gradient descent, Kaczmarz algorithm, Kalman filter 
and Moore-Penrose pseudo-inverse were adopted for the 
tuning of the model free parameters. Results reveal that 
Kalman filter and Moore-Penrose pseudo-inverse were more 
suitable for the optimization of the consequent parameters of 
the IFIS. Reference [23] also applied IFS with incomplete 
certain information on weights for multicriteria decision 
making. The authors pointed out that using IFS provides 
appropriate fuzzy decision-making procedure and satisfies a 
situation with incomplete certain information. Reference [24] 
applied IFS to model uncertainty in some regression 
problems. Also, [25] applied IFLS to solve a gas compression 
system (GCS) time series dataset with accuracy that matches 
that of traditional interval type-2 FLS. Reference [26] 
proposed an IFS for time series analysis in plant monitoring 
and diagnosis. Intuitionistic FS has also been applied for 
bankruptcy forecasting [27]. A system that adopts IFS in the 
rule base is known as IFLS. The IFLS consist of the 
intuitionistic - fuzzifier, rule base, inference engine and 
defuzzifier. 
 

During training of the model, the external inputs are passed 
into the IFLS to obtain membership and non-membership 
function values of the inputs. The input-output relationships 
are expressed as intuitionistic fuzzy IF…THEN rules 
represented as: 

 : IF  is  and … and  is  THEN  = 

 +                (1) 
The generic rule can be formulated for membership and 
non-membership functions respectively as follows:  

 : IF  is  and … and  is   THEN  = 

+                (2) 

 : IF  is  and … and  is   THEN  = 

 +                (3) 

where ’s are IFS, ’s are inputs, ’s are outputs of each 

rule,  is the weight and  is the bias (the weight and bias 
are consequent parameters). 
Using a t-norm, in this case, product t-norm, the inference 
engine combines these rules and produces a mapping from the 
type-1 intuitionistic fuzzy input sets to a type-1 intuitionistic 
fuzzy output set. For a TSK IFLS, the output of each rule is 
computed directly because of the functional dependencies of 
output variable on input variables and requires no 
defuzzification [22].  
According to [27], the final output of a TSK-type IFLS is 
defined as follows:    
y = (1 - )  +          
                      (4) 

where:  =                (5) 

and  =                  (6) 

and and  are normalized firing signals for 
membership and non-membership functions respectively and 

 is the user defined parameter that determines the 
magnitude of the non-membership function. It is obvious that 
if  is 1, the output is formed from only the non-membership 
function and if it is 0, then only the membership function 
contributes to the final output. 
 
 
3.  PARAMETER UPDATE RULE 
 
In this study, the popular gradient descent (GD) back 
propagation algorithm is used to tune the parameters of IFLS. 
The GD searches through the solution space to find a function 
that has the lowest possible cost. The cost function for a single 
output is defined as: 

α - y)2            (7) 
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where α is the actual output and y is the model prediction. 
The generic parameter update rule using GD is as follows: 

 ik(t + 1) = ik(t) -            (8)

 where is the learning rate (step size) that must be 
carefully chosen to enhance stability of the learning model as 
a large value may lead to instability, and small values may 
lead to a slow learning process. The parameter  is the 
generic parameter to be tuned. The learning rate and 
IF-indices used in this work are not adjusted. The consequent 
parameters include the weights and biases   with the 
update rule: 

 =  -          (9) 

and  =  -           (10)               

respectively. The derivative in (7) is computed as in (9) and 
(10) for the weights, 

 =  

=        (11) 

 =  

*        

                      (12) 
while the derivative in (8) is computed as (11) and (12) 
respectively for the biases.  

  =      

=         (13) 

      =  

*         

                      (14) 
The Gaussian function are used in the definition of the 
membership and non-membership functions of the IFLS. 
Mathematically, the Gaussian membership function is 
defined as follows: 

 ( ) = exp           (15) 

which is modified as (14) and (15) to reflect membership and 
non-membership functions of IFS respectively. 

( ) = exp       

                      (16) 
( ) =  - ( )       (17) 

     
where  and  are intuitionistic fuzzy index of center 
and variance respectively. 

The antecedent parameters are the centre ( ) and standard 

deviation ( which are updated in the same manner as the 
weight and bias.  

 =  -   (18) 

and  =  -          (19) 

where the derivative in (16) is calculated as follows: 

 =  

*        (20) 

 
and the derivative in (17) is computed as follows: 

 =   

                       (21) 
Due to space constraint, the individual derivatives are omitted 
here.  

 

4.  MODEL EVALUATION 
In order to evaluate the proposed model, three performance 
criteria are adopted. These include the root mean squared 
error (RMSE) and mean absolute error (MAE) which are 
defined as follows: 

  RMSE = 2         (22) 

MAE =            (23) 

where  is the actual measurement and  is the predicted 
output of IFLS. The dataset for the analysis is obtained from 
[11] and depicted in Table 1. The data consists of oil 
consumption, natural gas (NG) consumption, coal 
consumption and primary energy (PE) consumption. The data 
values are normalized to lie within a small range of [0,1]. The 
data is split into training set (1980 - 2003) and testing set 
(2004 - 2010).  
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Table 1: Actual values of global energy consumption and CO2 emission per year 

 
Year Oil 

Consumption 
(Mtoe) 

NG 
Consumption 
(Mtoe) 

Coal 
Consumption 
(Mtoe) 

PE 
Consumption 
(Mtoe) 

 
CO2 

Emission 
(Mt) 

1980 2972.2 1296.9 1806.4 6624 19322.4 
1981 2863 1309.5 1820.6 6577.5 19073.2 
1982 2770.7 1312.5 1846.9 6548.4 18900.7 
1983 2748.3 1329 1897.7 6638.2 19072.1 
1984 2810.1 1440 1983.2 6960.2 19861 
1985 2804.7 1488.3 2056 7137.5 20246.7 
1986 2894.1 1503.6 2089.2 7307.5 20688.3 
1987 2946.8 1579.6 2169 7555.7 21344.5 
1988 3038.8 1654.9 2231.7 7833.5 22052.2 
1989 3093 1729.2 2251.2 8001.7 22470.2 
1990 3148.6 1769.5 2220.3 8108.7 22613.2 
1991 3148.2 1807.5 2196.4 8156 22606.5 
1992 3184.8 1817.9 2174.6 8187.6 22656.7 
1993 3158 1853.9 2187.6 8257.5 22710.6 
1994 3218.7 1865.4 2201.9 8357.6 22980.3 
1995 3271.3 1927 2256.2 8577.9 23501.7 
1996 3344.9 2020.5 2292.2 8809.5 24089.8 
1997 3432.2 2016.8 2301.8 8911.6 24387.1 
      
1998 3455.4 2050.3 2300.2 8986.6 24530.5 
1999 3526 2098.4 2316 9151.4 24922.7 
2000 3571.6 2176.2 2399.7 9382.4 25576.9 
2001 3597.2 2216.6 2412.4 9465.6 25800.8 
2002 3632.3 2275.6 2476.7 9651.8 26301.3 
2003 3707.4 2353.1 2677.3 9997.8 27508.7 
2004 3858.7 2431.8 2858.4 10482 28875.2 
2005 3908.5 2511.2 3012.9 10800.9 29826.1 
2006 3945.3 2565.6 3164.5 11087.8 30667.6 
2007 4007.3 2661.3 3305.6 11398.4 31641.2 
2008 3996.5 2731.4 3341.7 11535.8 31915.9 
2009 3908.7 2661.4 3305.6 11363.2 31338.8 
2010 4028.1 2858.1 3555.8 12002.4 33158.4 

 
Mtoe = Million tonne oil equivalent 
Mt = Million tonne 
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Figure 2: Actual and predicted output of global CO2 emission using IFLS 

 
 
 

Table 2: Comparison of IFLS prediction with other models in the literature. 
Actual 
CO2 
emissio
n 

PSO 
prediction 
[5] 

PSO error 
[5] 

MLP 
predictio
n [11] 

 MLP 
error 
[11] 

EPUNN 
predictio
n 
[11] 

EPUNN 
error 
[11] 

Proposed 
model 
predictio
n 

Proposed 
model 
error 

19322.4 20953 1630.6 20940 1617.6 19324.5 2.1 19229 93.4 
19073.2 20084 1010.8 20031 957.8 19061.5 11.7 19075 1.8 
18900.7 19354 453.3 19268 367.3 18858.4 42.3 18952 51.3 
19072.1 19177 104.9 19083 10.9 19018.6 53.5 19106 33.9 

19861 19665 196 19593 268 19837.9 23.1 19880 19 
20246.7 19623 623.7 19548 698.7 20210.7 36 20282 35.3 
20688.3 20331 357.3 20290 398.3 20694.6 6.3 20657 31.3 
21344.5 20750 594.5 20728 616.5 21360.7 16.2 21307 37.5 
22052.2 21484 568.2 21498 554.2 22089.4 37.2 21988 64.2 
22470.2 21918 552.2 21954 516.2 22515.1 44.9 22413 57.2 
22613.2 22364 249.2 22422 191.2 22668.7 55.5 22619 5.8 
22606.5 22360 246.5 22419 187.5 22656.8 50.3 22672 65.5 
22656.7 22655 1.7 22728 71.3 22710.4 53.7 22723 66.3 
22710.6 22439 271.6 22502 208.6 22753.9 43.3 22785 74.4 
22980.3 22927 53.3 23016 35.7 23030.4 50.1 23005 24.7 
23501.7 23351 150.7 23462 39.7 23545.6 43.9 23468 33.7 
24089.8 23946 143.8 24090 0.2 24116.5 26.7 24031 58.8 
24387.1 24654 266.9 24837 449.9 24412.3 25.2 24322 65.1 
24530.5 24842 311.5 25037 506.5 24545.5 15 24511 19.5 
24922.7 25417 494.3 25644 721.3 24917.9 4.8 24954 31.3 
25576.9 25789 212.1 26038 461.1 25553.1 23.8 25577 0.1 
25800.8 25998 197.2 26260 459.2 25762 38.8 25856 55.2 
26301.3 26285 16.3 26564 262.7 26244.1 57.2 26378 76.7 
27508.7 26900 608.7 27216 292.7 27412.2 96.5 27426 82.7 
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28875.2 28145 730.2 28539 336.2 29038.9 163.7 28896 20.8 
29826.1 28556 1270.1 28976 850.1 29941.6 115.5 29828 1.9 
30667.6 28860 1807.6 29300 1367.6 30729.5 61.9 30617 50.6 
31641.2 29373 2268.2 29847 1794.2 31630.7 10.5 31649 7.8 
31915.9 29284 2631.9 29751 2164.9 31877.7 38.2 32001 85.1 
31338.8 28557 2781.8 28978 2360.8 31335.1 3.7 31221 117.8 
33158.4 29545 3613.4 30031 3127.4 32997.8 160.6 33198 39.6 

Total 
error   24419   21894   1412.2   1408.3 

 
 
 

Table 3: Comparison of IFLS prediction with Kavoosi et al. [14] 
Year 2004 2005 2006 2007 2008 2009 2010 Average 
Actual data 28875.

2 
29826.
1 

30667.
6 

31641.
2 

31915.
9 

31338.
8 

33158.
4 

      -- 

GA- 
CO2exponentia

l 

28033.
8 
 

29481.
9 

30217.
8 

30859.
0 

31630.
7 

31728.
3 

31980.
5 

     -- 

Relative 
error (%) 

-2.914 -1.154 -1.467 -2.472 -0.893 1.243 -3.552 1.956 

GA- 
CO2linear 

27586.
2 

29624.
2 

30530.
8 

31324.
7 

32233.
9 

32171.
0 

31317.
7 

 

Relative 
error (%) 

-4.464 -0.677 -0.446 -1.000 0.996 2.655 -5.551 2.256 

Proposed 
model 

28896 29828 30617 31649 32001 31221 33198  

Relative 
error (%) 

0.072 0.006 -0.165 0.025 0.267 -0.376 0.119 0.147 
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Figure 2 shows the actual and predicted values of global CO2 
emissions using IFLS. Tables 2 and 3 show the prediction 
accuracy of IFLS for comparison against other models in the 
literature. As shown in the table 2 and Figure 2, IFLS predict 
CO2 emission as closely as possible to the actual values. This 
demonstrates an acceptable performance as depicted in the 
smallest absolute error. Closely following the prediction of 
IFLS is the EPUNN model, an evolutionary approach. Table 3 
shows the comparison of IFLS prediction with the test set in 
[14] utilizing genetic algorithm. The relative error of IFLS is 
the lowest compared to the error in the linear and exponential 
genetic algorithm models in [14].  

 

Table 4: Comparison of IFLs with other models in terms of  
Performance metrics 

 

 
Table 4 shows the performance of IFLS with other models in 
terms of RMSE and MAE metrics. As shown in the table 4, 
IFLS exhibits superior performance compared to other 
models in the literature. This is an indication that IFLS can be 
considered as a suitable candidate for global CO2 emission 
prediction. 
 

5.  CONCLUSION 
The prediction of CO2 has been a hot topic in recent years as a 
result of global warming. It is therefore important to develop 
accurate models for predicting CO2 emission for effective 
management and control of air pollution. This study has 
presented the prediction of global CO2 emission problem 
using IFLS. As discussed above, IFLS is constructed using 
both membership and non-membership functions such that 
the sum of the two terms are not complementary. This allows 
IFLS some flexibility and the capacity to provide accurate 
CO2 estimate better than other models in the literature. As 
demonstrated through experimental analysis, the outputs of 

IFLS are as close as possible to the actual global CO2 emission 
values.  
 
In the future, we intend to utilize a higher order intuitionistic 
fuzzy logic system namely; interval type-2 intuitionistic fuzzy 
logic system for the prediction of global carbon dioxide and to 
adapt the parameters with different learning algorithms such 
as particle swarm optimization, extended Kalman filter and 
Simulated annealing.  
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