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 
ABSTRACT 
 
Wind energy is a promising alternative for renewable source 
of energy pursued world-wide to reduce carbon emissions for 
a green future. The prediction of wind speed is a challenging 
subject and plays an instrumental role in development of wind 
power systems (particularly grid connected renewable energy 
systems where predicting wind speed facilitates manipulation 
of the load on the grid). Modern machine learning techniques 
including neural networks have been widely utilized for this 
purpose. Literature indicates availability of several models for 
estimation of the wind speed one hour ahead and the hourly 
wind speed data profile one day ahead. This paper considers 
the prediction of wind energy as a univariate time series 
(UVT) prediction problem and employs major prediction 
algorithms including the K-Nearest Neighbors (kNN), 
Random Forest (RF), Support Vector Regression (SVR), 
Holt-Winter and ARIMA method. Forecasting a univariate 
time series depends only on past wind speed data values, 
rather than use of external data attributes like wind direction 
or weather forecast for prediction algorithm. In the present 
study (as a case-study), 13 years of hourly average wind speed 
data (of the period 1970-1982) of Yanbu, Saudi Arabia has 
been utilized to evaluate the performance of selected 
algorithms. Yanbu is an industrial city that plays a major role 
in the economy of Saudi Arabia. The findings showed that 
SVR, RF and ARIMA methods exhibit a better forecasting 
performance in relation to four evaluation parameters of Mean 
Absolute Percentage Error(MAPE),Symmetric Mean 
Absolute Percentage Error (sMAPE),Mean Absolute Error 
(MAE) and Mean Absolute Scaled Error (MASE).  
 
Key words: Artificial Intelligence, Forecasting, Modeling, 
Neural networks, Wind speed, Wind power systems.  
 
1. INTRODUCTION 
 

Wind power, which is non-depletive, non-polluting, 
environmentally sustainable, economically competitive and 
socially beneficial, seems to have become the inevitable 
source of electricity generation in the world from renewable 
energy sources. Nevertheless, because of the nonlinear 
properties of wind speed across different times and across 
 

 

different sites, precise information about dynamics of wind in 
the wind farm is very critical to handle various operations of 
wind energy conversion systems (WECS) for preload sharing, 
power system management, energy trading, and maintenance 
scheduling of the wind turbines. A wind power forecast or 
prediction corresponds to an estimate of the expected power 
generation from one or more wind turbines (clustered into a 
wind farm). Based on power system operation requirements, 
long-term (1–7 days) wind speed predictions[1][2]are 
essential for maintenance scheduling of the wind turbines, 
while short-term and medium-term wind speed forecasts are 
essential to increase the efficiency of wind energy generation 
systems[3] and to facilitate the integration of wind energy into 
utility grid[4][5]. 
 
The wind power forecasting is divided into four types 
depending on the information available and the time 
requirements of power system operations[6][7]. The time 
scales for very short-term forecasts vary from few seconds to 
30 min, whereas short-term forecasts used for preload 
sharing, system management and maintenance schedules, 
requires the prediction time scale of 30 min to 6 hours. 
Medium-term (6–24 h) wind speed forecasts address the issue 
of power system management, energy trading and scheduling, 
whereas the long-term (1–7 days) forecasts are essential for  
maintenance scheduling and resource planning of the wind 
turbines [8][9]. 

 
Forecasting future values of observed time series is a crucial 
requirement in all science and engineering fields including 
finance, economics, industrial applications and business 
intelligence. Furthermore, with the rapid growth of big data, 
time-series forecasting algorithms need to analyze 
ever-increasing massive data sets, covering different domains 
including wind power generation. 

 
The primary aim of this article is to employ four major 
machine learning algorithms in order to predict the short-term 
wind speed, using a univariate time series (UVT) method. 
Forecasting a univariate time series depends only on past 
wind speed data values, rather than use of external data 
attributes like wind direction or weather forecast for 
prediction algorithm. This study conducts the evaluation of 
the algorithms considering the accuracy, training time, and 
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forecasting time. This method is useful in the wind energy 
systems specifically for preload sharing, system management 
and maintenance schedules. 

 
This paper employs four major prediction algorithms 
including the K-Nearest Neighbors (k-NN), Random Forest 
(RF), Support Vector Regression (SVR), Holt-Winter Method 
to address the problem of short-term wind speed forecasting 
using univariate time series. One step ahead forecasting is 
estimated by determining optimal parameters for each 
algorithm.  Four evaluation metrics, Mean Absolute Error 
(MAE), Mean Absolute Percentage Error(MAPE),Symmetric 
Mean Absolute Percentage Error (sMAPE) and Mean 
absolute percentage error (MAPE) are used to calculate the 
performance accuracy of the wind speed forecasting. The 
prediction time and time taken for training in each approach 
are also discussed. 

 
Subsequently, this paper is organized as follows: Section 3 
discusses the wind speed forecasting problem. Section 4 
summarizes the time series forecasting algorithms used in this 
paper, which are derived from the machine learning 
approaches. Details of data set used are provided in the 
Section 5 followed by discussion of results in Section 6 and 
finally Conclusion with recommendations (Section 7). 
 
2.LITERATURE REVIEW 
 
There has been extensive research on developing efficient 
methods of wind forecasting. According to the literature, there 
are two mainstream methods that are used for wind speed 
forecasting [10].The first method called the Physical approach 
utilizes the manufacturer’s power curve to propose an 
estimation of the wind power output, with details of the wind 
flow around and inside the wind farm site[11]. The second 
approach is the statistical or data-driven prevision method, 
which depends on creating statistical models including 
machine learning technique, built by recognizing the complex 
relationships between weather predictions, previous historical 
measures and power generation[11]. 

 
Starting with traditional statistical approaches followed by a 
number of physical approaches, there has been a recent trend 
of using artificial intelligence with machine learning 
techniques and a number of other new methods[6][12]. Some 
studies in literature showed that is possible to provide 
satisfactory precise forecasting by combining several physical 
aspects by adopting Numerical Weather Forecast (NWF) and 
MesoScale models[13], which are considered as physical 
methods. Few studies [14][15][16] employed traditional 
statistical approaches like Auto- Regressive Integrated 
Moving Average (ARIMA) and it's derived methods. More 
recently new methods are adopted using Machine Learning 
algorithms to tackle time-series forecasting problems. Recent 
Studies mainly proposed Artificial Neural Network (ANN), 
compared to conventional model-based approaches, as ANNs 
are self-adaptive reliable predictive models [17]. ANN based 

studies that are significantly investigated in the literature more 
recently used the following techniques : Multi-Layer 
Perceptron (MLPs) [18][17], K-nearest neighbor 
regression[19][20], Random Forest [21], Support vector 
regression[22][23], and Gaussian processes, Radiale Basic 
Function [24][25][17]and the Recurrent Neural 
Networks[26][27][28] and the Fuzzy Logic [29][30][31]. 

 
According to the number of characteristics attributes used for 
forecasting, wind prediction methods can be divided into two 
major categories, namely, univariate model-based methods 
and multivariate model-based methods. Univariate methods 
take into account the value of only either past or current wind 
speed data in time series, rather than use of other external data 
attributes. The multivariate methods generally take into 
account other weather parameters that influence wind speed 
value such as wind direction, air temperature, atmospheric 
pressure, relative humidity and surface roughens. Univariate 
approaches seem to be cost-effective because it does not 
require the procurement and maintenance of a weather station 
or other measurement instruments. Furthermore, univariate 
methods are more effective in the case of short-term forecasts 
used for preload sharing, system management and 
maintenance schedules, as they do not depend on an extended 
process of data collection. However Multivariate time series 
model-based methods aims to yield more accurate forecasting 
compared to Univariate forecasting method. 
 
Many researchers have investigated the multivariate wind 
speed forecasting methods.  Authors of the article[32] used 
three parameters (temperature, wind speed and direction) to 
compute short-term wind power forecasting on a wind farm. 
Researchers of another study [33]proposed that wind speed 
and wind direction as inputs gives better prediction with 
multivariate model consisting of 4 characteristics 
(temperature, wind speed, wind direction and humidity) for a 
day ahead prediction of wind speed. Authors of the article 
[34] used six fundamental variables in wind power output for 
a day ahead forecasting of wind power generation. 
 
Some studies focused on forecasting using univariate time 
series data using  either linear or nonlinear regressive 
models[35]. These research efforts addressed the prediction 
time scale of the next 100 minutes of the day using the  input 
of wind speeds of the previous 5 days, while some of the 
studies used univariate time series forecasting method to 
compare their approach with multivariate model[36][37]. 
 
3. PROBLEM FORMULATION 
 
The problem of wind speed forecasting is aimed at seeking an 
approximation f(t + k) of the wind vector y(t + k) based on 
previous n  measurements y(t), y(t + 1), ... , y(t - m + 1).  ‘k’ is 
chosen to be small in order to provide precise wind speed 
forecast and this is known as short-term wind speed 
forecasting[4]. 
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We consider this problem as a classical univariate forecasting 
problem with discrete time points. The goal is to use y = (y(t1) 
. . . y(tT)) observations of a single time series observed up to 
time point 'tT' in order to find a forecaster that can allow 
reliable time forward predictions ˆy(hj) = ˆf(hj) for the time 
points h1 . . . hH of the forecasting horizon. 
The forecast or prediction error (Et) is defined as the 
difference between the actual value and the predicted value 
for the corresponding time (t) and given by below equation: 
 
௧ܧ = )	݁ݑ݈ܽݒ	݈ܽݑݐܿܣ	 ௧ܻ)−  (1) (௧ܨ)	݁ݑ݈ܸܽ	݀݁ݐݏܽܿ݁ݎ݋ܨ	

 
 
Error measures have a significant role to play in calibrating 
the refining process of forecasting models. Since the principal 
goal of forecasting is to improve the prediction accuracy, error 
measures or evaluation metrics are very significant from the 
point of view of the forecaster. There are a variety of different 
error measures definitions of forecasting in the literature, few 
of them are listed below: 
 
1) Mean Squared Error (MSE): 

ܧܵܯ = 	
෌ ௧ଶܧ

ே
௧ୀଵ
ܰ  

 
 
(2) 

2) Mean Absolute Percentage Error (MAPE): 

ܧܲܣܯ = 	
෍ ቚா೟

మ

௒೟
ቚ

ே

௧ୀଵ
ܰ  

 
 
 
(3) 

3) Mean Absolute Error(MAE): 

ܧܣܯ = 	
∑ ௧|ேܧ|
௧ୀଵ

ܰ  

 
 
(4) 

4) Mean Squared Error (MSE): 

ܧܵܯܴ = ඨ෌ ௧ଶܧ
ே
௧ୀଵ
ܰ  

 
 
 
(5) 
 

5) Symmetric Mean Absolute Percentage Error 
(sMAPE): 

ܧܲܣܯݏ = ݉݁ܽ݊(	
200	| ௧ܻ − |௧ܨ

( ௧ܻ + (௧ܨ
) 

 

  
6) Mean Absolute Scaled Error (MASE): 
MASE = ௧ݍ		݁ݎℎ݁,	(|௧ݍ|)݊ܽ݁݉  		ݎ݋ݎݎ݁	݈݀݁ܽܿݏ	ݏ݅	

௧ݍ = 	
௧ܧ

ଵ
௡ିଵ	

(∑ | ௜ܻ − ௜ܻିଵ|ே
௧ୀଶ )

 

 
 
(6) 

  
 
This paper uses Mean Square Error (MSE), Mean Absolute 
Percentage Error (MAPE), MASE (mean absolute scaled 
error) and sMAPE (symmetric mean absolute percentage 
error), as error measures for the exercises that are discussed in 
the Section 6.MASE and sMAPE are scale-independent 
metrics and are thus ideal for comparing forecasting 
algorithms across various series[38]. 
 

4. TIME SERIES FORECASTING MODELS  
 
Forecasting models are the mathematical models which 
capture certain characteristics or features and include certain 
assumptions of time series, in order to predict the next 
unknown value. The forecasting algorithms used in this paper 
are derived from the machine learning approaches and this 
section summarizes the algorithms used. These algorithms 
have also been used in other prediction applications including 
but not limited to domains of Weather forecasts, energy load 
forecasting, domain of coastal and marine applications. 

4.1Naïve or Persistent 
Naïve method is one of the extremely simple and surprisingly 
effective forecasting methods, where the current forecast 
value is set to be the value of the last observation. In other 
words the prediction for the next minute’s wind speed equals 
to the current wind speed, i.e., yˆ(t + 1) = y(t).  This method is 
considered as a base line for algorithm comparisons. 
 

4.2Auto Regressive Integrated Moving Average 
Autoregressive Integrated Moving Average algorithm 
(ARIMA) is a statistically sophisticated model and is one of 
the traditional algorithms for time series forecasting. 
Autoregressive models reliably predict short-term temporal 
structures, but accuracy drops for long-term high-level 
structures as these models assume certain stationary time 
series properties.  ARIMA is represented with a standard 
notation ARIMA(p,d,q), where p, d and q are the order of the 
three main components AR, I, and MA, respectively . Within 
the ARIMA method, also known as the Box-Jenkins 
method[39], the Auto Regressive (AR) component uses the 
dependent relationship between an observation and some 
lagged observations. Part I model the number of differences 
required to turn the time series into a stationary time series. 
Moving Average (MA) component models the contribution of 
noise terms arising from the reliance on lagged measurement 
between a measurement and residual errors from a moving 
average model. 
 
ARIMA method requires to tune the parameters (p,d and q) in 
order to minimize the MAE for selected model and can 
produce high prediction accuracy. 

4.3Holt-Winter Method 
The Holt-Winter[40] approach  is a well-known forecasting 
techniques for the time series and takes into account both 
seasonality and  trend components. Additive and 
Multiplicative are two variants of this algorithm based on the 
seasonality. If the degree of seasonal variability increases as 
the mean time series level increases, then the seasonality is 
called multiplicative. If the seasonal effect is independent of 
the current mean level of the time series, it is classified as 
Additive. 
 
 Considering an exponential smoothing of level (St), seasonal 
index (It) and trend (Tt), then mathematically the Holt-Winter 
forecasting with Multiplicative seasonality is represented as: 



Yunus Parvej Faniband  et al.,  International Journal of Advanced Trends in Computer Science and  Engineering, 10(1),  January – February  2021,  257 - 264 

260 
 

 

௧ܵ = ⍺ቆ
௧ܦ
௧ି௣ܫ

ቇ + (1 − ⍺)( ௧ܵିଵ) + ௧ܶିଵ 

௧ܫ = ߛ ൬
௧ܦ
௧ܵ
൰+ (1− )(ߛ ௧ܵିଵ) +  ௧ି௣ܫ

௧ܶ = ݐ_ܵ)	ߚ − ௧ܵିଵ) + (1 − (ߚ ௧ܶିଵ 
Here α, γ and β, are considered as smoothing constants and p 
is the number of observation points in a cycle, for example p = 
4 for quarterly data. 
 
The Holt Winter's forecasting method is simple exponential 
smoothing, which is a special case of ARIMA models, namely 
the IMA (0,1,1) model. This paper use sktime[41], a Python 
library which is a unified framework for machine learning 
with time series and compatible with scikit-learn[42] (an 
open-source machine learning library).Sktime provides 
algorithm for Holt-Winters triple exponential smoothing 
method to select the model order and estimate the parameters. 

4.4K-Nearest Neighbor (k-NN) 
K Nearest Neighbor [43]is an algorithm that creates a 
database of all available features and forecasts the numerical 
target, which is computed from the similarity measure 
calculations (e.g., distance functions). The initial step for 
forecasting time-series in K-NN approach involves 
development of database with a set of features to be used 
relative to 'present' conditions. For a uni-variate dataset like 
the one used in this paper, examples of features used that can 
be identified are time series values, average time series 
values, cumulative time series sum, entropy of time series, 
etc.  
 
Brief explanation of the implementation of k-NN algorithm is 
as follows. Consider a vector p, where n features are patterns 
for time t and having components pi, i = 1,…, n,. Assume that 
matrix Aij consists of features for historical data. In this matrix 
each row corresponds to the vector of features for each time in 
the historical data set. 
 
The following two steps are required to determine the k 
nearest neighbor to pi: 
1. Compute the distance between pi and all the rows from 

Aij from Equation6. There are different methods that are 
used to calculate the distance such has Euclidian distance 
or Manhattan distance. In this paper we used the 
Euclidian distance. 

௝݀ = ෍ቆට൫݌௜ − ௜௝൯ܣ
ଶቇ 

 
(6) 

2. From Equation 7, extract the k indices returning the 
smallest element of dj and its related k time stamps 
(τ1,…,τk) 

ܼ௧ + Δ୲ =
∑ ⍺	ܼఛ೔ା௱೟
௞
௜ୀଵ

∑ ⍺௜௞
௜ୀଵ

 
 
(7) 

 
This means that the prediction parameter Zt + Δt is determined 
from a linear combination of time series values following the 
nearest neighborsτi. The weights ⍺iare also depending on the 
distance dj. 

4.5Random Forest model 
Random Forest model [44]make use of decision trees to 
capture the  non-linearity in the data by dividing the space into 
small sub-spaces depending on the problem. The Random 
Forest is an ensemble machine learning algorithm called 
Bootstrap Aggregation or bagging and more specifically a 
randomized aggregated ensemble of decision tree. An 
ensemble technique incorporates the predictions from several 
machine learning algorithms to make predictions more 
accurate than any single model. 
 
Decision tree model the data with high variance, which results 
in over fitting models and hence not effective in generalizing 
the learned rules. The Random Forest model addresses this 
limitation by training a collection of trees instead of a single 
tree. In order to ensure randomness, the RF approach, 
introduce randomness at different levels. For example, 
introducing random sampling of the training dataset for each 
tree, RF technique has shown good efficiency in both 
regression and classification problems. 
 
This paper uses sktime[41]python library compatible with 
scikit-learn.'KNeighborsRegressor' class in scikit-learn 
provide APIs for constructing a forest of random trees. 

4.6Support Vector Regression (SVR) 
The adaptation of Support Vector Machines (SVM) concepts 
for regression is known as Support Vector Regression 
(SVR)[45]. The approach of SVR operates by finding the best 
possible line to minimize a cost function error, using data 
instances known as Support Vectors. It is achieved using a 
method of optimization that considers only those data 
instances that are nearest to line with the minimum cost, in the 
training dataset. 
 
For the current problem of wind speed forecasting this paper 
employs a special approach known as ε-SV regression 
algorithm (a derivative method of SVRalgorithm). Consider 
the training set {(x1, y1),..., (xι, yι)}⊂χ⨯	ℝ, where χ denotes 
the space of the input patterns. The     ε-SV regression 
algorithm[46] operates by finding the function f(x) that has at 
most ε deviation from the actually obtained targets yi for all 
the training data, and is as flat as possible at the same time. 
Using ε-SV, the current problem of wind speed forecasting is 
given by the following Equation 8, by first considering the 
case of linear functions f, taking the form f(x), as follows: 
 

f(x) = ⟨ω,x⟩ + b (8) 
With ω∈c, b∈ℝ,where⟨.,.⟩is the dot product inχ. 
 

(ݔ)݂ = 	෍(ߙ௜ ∗௜ߙ	−
ఐ

௜ୀଵ

	)	⟨x_i, x⟩ 	+ 	b		 
 
(9) 

x(i)is the input vector, the terms ௜ߙ , ∗௜ߙ are Lagrange 
multipliers,b∈ℝandG(xi,xj)isakernelfunction. 
 
As formulated by Equation 9, ω is expressed as a linear 
combination of the training patterns xi. It can be inferred from 
this equation that the complexity of the representation of a 
function by SVs depends only on the number of SVs and not 
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on the dimensionality of the input space χ. Some of the kernels 
approaches that can be applied are polynomial, hyperbolic 
tangent and Gaussian radial basis function. 
 
In this paper, we used sktime[41]python library compatible 
with scikit-learn, specifically SVR - a epsilon-Support Vector 
Regression from scikit-learn. The Polynomial Kernel was 
applied with exponent of 1 and value of 0.002 for the epsilon 
parameter of the epsilon insensitive loss function [47]. 

4.7Linear Regression (LR) 
LR approach only supports regression type problems and can 
be perceived as intersection between ML methodologies of 
RF, kNN, SVR, and statistically sophisticated model of 
ARIMA. LR algorithm computes the coefficients for a line or 
hyperplane which best fits the training data. This method 
proves to be efficient if the output variable for the data is a 
linear combination of the inputs [48]. In this paper, we used 
sktime[41]python library compatible with scikit-learn[42], 
specifically Linear Regression - Ordinary least squares Linear 
Regression class from scikit-learn. 
 

Table 1: Information of site Yanbu, Saudi Arabia and 
wind speed characteristics 

 

 

Table 2: Training and Test samples for each season 

 

 
5.WIND SPEED DATASET 

 
The Kingdom of Saudi Arabia (KSA) is basically a desert land 
with hot summers and cold winters. Climatic conditions 
determine availability of wind energy at a given site. Wind 
power systems are characterized by availability of wind speed 
resources. Yanbu is an industrial city that plays a major role in 
the economy of Saudi Arabia. Yanbu is a highly potential 
wind resource location for exploitation of wind energy and for 

deployment of wind power systems. The long term wind 
speed data used in the present study covers the period 
1970-1982 [49]and is shown in Figure 1 and the wind speed 
characteristics are presented in Table-1. This data has been 
used for training models of the selected algorithms. 
 
The details of period of each the season and information of 
Training and Test data selected for each season is depicted in 
Table-2. We selected 75% of hourly data instances as training 
data and 25% samples as testing data in each season. 

 
Figure 1: Long-term (1970-1982) average wind speed for different 

months of Yanbu, Saudi Arabia. 
 

Table 3: Optimum Parameters selected for each 
Algorithm 

Algorithm Details of Optimal parameters 
KNN [43] Number of nearest neighbors (k)=5 and Nearest 

neighbor search algorithm with Euclidean 
Distance. 

RF [44] The maximum depth of the tree = 0 for unlimited, 
Number of trees in the random forest N=500. 

SVR 
[50][45] 

The complexity constant C=1. The Polynomial 
Kernel was applied and the epsilon parameter in 
epsilon-insensitive loss function L=0.001. 

Holt-Winter 
[40] 

Number of seasons for the seasonal cycle CL=4 , 
Seasonal and Trend smoothing factor both set to 
0.2. 

LR Use M5 [51] method for attribute selection and 
setting to remove highly correlated input 
attributes. 

 
6.RESULTS AND DISCUSSION 
 
As shown in Table-2 each model is trained with 75% of 
hourly data instances and evaluated with 25% samples as 
testing data in each season. Figure2,Figure 3, Figure4 and 
Figure5show the Mean Absolute Error(MAE), Mean 
Absolute Percentage Error (MAPE), Mean Absolute Scaled 
Error (MASE) and Symmetric Mean Absolute Percentage 
Error (sMAPE) respectively, for one-step ahead forecasting 
after employing each algorithm in four seasons. We used the 
‘GridSearchCV’ class from scikit-learn[42] in order to do 
Exhaustive search over specified parameter values for an 
estimator, to look for the optimum selected parameter in each 
algorithm (as shown in Table-3).Moreover, Table-4 reports, 

Information Details 
Site Yanbu 

Latitude (North) 24° 07' 
Longitude (East) 38° 03' 

Elevation (m) 10 
Wind speed details 

(m/s) 
Mean 4.425 
Min 0.001 
Max 23.559 

Season Winter Spring Summer Autumn 
Training 
Data 
Period 

1 Jan - 1 
March 

16 
March - 
3 May 

16 May - 
22 Aug 

16 Sept - 
27 Nov 

Training 
Samples 

1420 1171 2361 1747 

Test Data 
Period 

2   
March   
-   15 
March 

4 May - 
15 May 

23 Aug - 
15 Sept 

28 Nov - 
15 Dec 

TestSamples 355 292 590 436 
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the time taken (in seconds) to train the model for each 
algorithm with the best optimal parameters with sktime[41] 
library. It also reports the average time (inseconds) for each 
investigated algorithm to make a 1-hour ahead prediction. 
 
Table 4 : Average Training and Prediction Time for test data of 

Wind Speed Forecasting in each algorithm 

Algorithm Training (fit) time 
with optimal 
parameters (sec) 

Prediction time 
with optimal 
parameters (sec) 

KNN [43] 0.6405 0.3009 
 

RF [44] 2.2490 
 

5.1820 
 

SVR [50][45] 0.7895 0.0825 
Holt-Winter 
[40] 0.4740 0.05058 
LR 29.5184 0.0539 
Ensemble 1.1358 0.1090 
 
Results indicate that SVR algorithm has the impressive 
overall performance. Compared to other algorithms, the 
relative error (SMAPE) of SVR is considerably better.  With 
respect to MAE, SVR is comparable to that of ARIMA and 
RF. 

 
Figure 2: LongMean Absolute Error(MAE) for test data in four 

seasons for each algorithm. 
It can be noted from the results that, while all three algorithms 
RF, KNN, and SVR have comparable absolute errors (MAE), 
their relative error (SMAPE) is comparatively different.LR 
algorithm makes use of the same input attributes as other ML 
algorithms by considering the daily periodicity trend which 
result in significantly better performance than Holt-Winters 
algorithm. The Holt-Winters approach shows poor 
performance according to these two parameters, even-though 
Holt-Winters algorithm takes into account trend and 
seasonality to forecast future values. 
 
As shown in the Table-3 it is important to select optimum 
parameter in each algorithm by trial and error based on the 
dynamics of wind speed values that will lead to identify local 
patterns in short-term time series forecasting rather than 
global patterns, depending on the tuning parameter of specific 
algorithm. 

 
Figure 3: Mean Absolute Percentage Error (MAPE) for test data in 

four seasons for each algorithm. 
Since this paper considers only univariate data, the training 

period is relatively small and overall training time is less than 
3 seconds. Also, the samples at the end of the time series in 
each season are considered for validation of the model. The 
second column in Table-4 reports the average time (in 
milli-seconds) taken for 1-hour ahead wind speed forecasting 
in each algorithm, once they are provided with the query. It 
should be noted that apart from RF based approach, each 
prediction model with specific algorithm responds quickly 
(fractions of second), in less than few seconds limit for 
short-term wind prediction.  Because of the lazy 
learning-based approach followed in kNN, the training time is 
short, but the response time increases, as kNN searches the 
whole training dataset. 

 
Figure 4: Mean Absolute Scaled Error (MASE) for test data in four 

seasons for each algorithm. 
The last column in Table-4 reports, the training time of 
models in each algorithm and it is found that training time 
increases depending on the complexity of the model and 
hardware configuration used or training and therefore the 
training time for LR and RF approach is highest, whereas 
Holt-Winter and kNN has lowest training time. This paper 
conducted experiments using sktime[41] library with 
scikit-learn[42] on an Intel Core i7 CPU, 2.3 GHz Quad with 
16MB RAM. 
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Figure 5: Symmetric Mean Absolute Percentage Error (sMAPE)for 

test data in four seasons for each algorithm. 
7. CONCLUSIONS AND RECOMMENDATIONS 
 
The outcomes of wind speed forecasts with the different 
algorithms studied suggest that performance of each 
algorithm can be different in its output under various error 
definitions. The wind speed forecasting using different 
algorithm indicate that the machine learning-based algorithms 
perform better than the statistical approaches for the 
performance criteria of MAE and SMAPE. More specifically 
the forecasting results using approaches of RF, SVR, and 
kNN showed significantly higher performance than the 
statistical methods of Holt-Winter and ARIMA algorithms. 
Out of the evaluated ML-based approaches the performance 
of SVR and RF is better than kNN. However, KNN based 
model tends to be simpler because of fewer parameters to be 
tuned. 
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