
6669

Representation of Concept Based Censor Production Rules
using Neural Networks

ABSTRACT

In this paper we present an approach for representing the
Concept Based Censor Production Rules (CBCPR) using
Neural Networks (NN). CBCPR is a very useful rule
structure where it can be used either as standard rule or as
Censor Production Rule (CPR) used in real time systems
applications. In the proposed approach, NN representation
should be able to handle various UNLESS slots related to
one CBCPR. The representation should also reflect the
PRIORITY slot in the CBCPR to express the priorities of
UNLESS slots. A special algorithm to perform the
representation and how the knowledge base system should
be treated as one NN are presented. For the learning
purpose, the backward pass of the backpropagation
algorithm can be adopted, whereas the forward pass can be
replaced with our proposed approach since it has a direct
relation with the representation mechanism.

Key words : Censor Production Rules, knowledge
representation, rule Based System

1.INTRODUCTION

Concept Based Censor Production Rules (CBCPR) [6] are
rules obtained through a series of developments starting from
the standard rule structure in the form of IF <condition>
THEN <action> passing through Censored Production Rules
(CPR) [11], Hierarchical Censored Production Rules
(HCPR) [12], General Structure Rules (GSR) [5] and ending
with CBCPR [6]. In rule-based systems, sometimes we have
incomplete or inconsistent knowledge, and to overcome this
drawback, machine learning is one of the potential solutions.
Nowadays Neural Network (NN) and especially deep NN is
becoming one very important model in machine learning. In
this paper we propose an approach to represent CBCPR
using neural networks, this will be very useful in rule -based
systems that need to improve their classification. This would
be significant when the system is having incomplete or
inconsistent knowledge, and also in hybrid systems that
incorporate learning in expert systems.

1.1 Pre CBCPR-Structure
CBCPRs [6] are rules basically based on the concept of
CPRs [11] which have the form IF <condition> THEN
<action> UNLESS <censors>. The condition/antecedent and
action/consequence parts work the same way as in standard
rule structure, the censors in the UNLESS part are

conditions which rarely occur, and that is why such kind of
rules can be used in real time systems, if more time is given,
more censor conditions can be checked to be more certain
about the answer, otherwise, the action will be taken without
checking all the censor conditions. If any of the censor
conditions is true, the rule action will be prevented/denied.
As an example,
(IF Joh-at-home THEN John-watching-TV: 0.8) UNLESS
(has-guest:0.04, TV-malfunctioning:0.02)

The certainty value for the above rule without checking
any of the censor conditions is 0.8 (this value is usually
indicated by Ɣ). If there is a time and the censor condition
has-guest can be checked and proved to be false, the
certainty value becomes 0.84 (0.8+0.04) (this value is
usually indicated by δ). If we still have more time, the
second censor condition can be checked and the overall
certainty value becomes 0.86 (0.84+0.02). If any checked
censor condition is true, the action John-watching-TV is
denied. From the previous example we can understand that
when John is at home, he usually watches TV unless he has
a guest or the TV is not working properly. This means, if
we have time to be surer about the rule result, we can check
if John has a gust or not. If he has a guest, the rule will fail
and the conclusion will not be taken, if he does not have a
guest, and we have no more time, we can take a decision
with John-watching-TV with 0.84 certainty value.
Similarly, we will do the same with TV-malfunctioning
censor condition. The more censor conditions are checked
(having more time), the rule certainty value will be
increased. HCPR is same as CPR, but in addition to the
three main slots of the CPR (IF, THEN and UNLESS), two
more slots have been added, i.e., GENERALITY and
SPECIFICITY, where GENERALITY is to have the name
of the parent rule of this current rule and SPECIFICITY is
the name of the most specific rule of this current rule. Set or
related rules with GENERALITY and SPECIFICITY form a
tree called HCPR-tree [12]. This will allow the user to
conclude results based on how much specific/general level
he/she wants. Below is a set of HCPRs representing rules 0,
1 and 2 and indicated by R0. R1 and R2 are related to
HCPR-tree in Figure 1.

R0:
IF [X-eats, X-drinks,X-Reproduce]
THEN [X-Animal]
UNLESS [X-dead]
GENERALITY[]
SPECIFICITY[R1, R2]

Nabil M. Hewahi,
Computer Science Department, University of Bahrain

 nhewahi@uob.edu.bh

ISSN 2278-3091
Volume 9, No.4, July – August 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse360942020.pdf

https://doi.org/10.30534/ijatcse/2020/360942020

Nabil M. Hewahi, International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6669 – 6674

6670

R1:
IF [X-lives in jungles, X-lives in desert]
THEN [X-is-Wild]
UNLESS [X-in-house]
GENERALITY[R0]
SPECIFICITY[R3, R4,R5]

R2:
IF [X-lives at home]
THEN [X-is-Pet]
UNLESS []
GENERALITY[R0]
SPECIFICITY [R6,R7,R8]

In Figure 1, the tree root (level 0 of the tree) represents R0,
level 1 in the tree represents rules R1 and R2, and level 2
represents rules R3, R4, R5, R6, R7 and R8 in order from
left to right (if any and so on).
GRS [5] introduced a new slot called ALTERNATIVELY
to state in the rule the possible next rules to be fired if the
current rule is failed. This will help the system to expedite
the process of the system inference.

1.2 CBCBR Structure
CBCPR is a rule structure that has been proposed as an
extension of CPR, the extension has two directions, the first
direction is to introduce a slot to the rule to reflect the main
concept of the rule (about what is the rule), the idea of rule
concept is that more than one rule might have the same
condition/s but are related to different concepts to conclude.
The second direction is that in the original CPR, there is
only one slot for UNESS, whereas in CBCPR, there might
be more than one UNLESS slot, each contains only certain
censor conditions related to a specific category. This would
be useful to expedite the process of inference by instead of
trying to check all the censor conditions (if there is only one
UNLESS slot), only censor conditions related to a certain
category are checked. This will reduce the required time and
allow the system to respond within time limits with higher
certainty. To help controlling various UNLESS slots,
PRIORITY slot is added to the rule to list the priority of

UNLESS slots. The general structure of CBCPR is as
below:
 ([Concept-Title]: IF condition
 THEN action

UNLESS-1 [Type-1]: [c1,c2,…cn]
UNLESS-2 [Type-2]: [s1,s2,…,sm]

 UNLESS-z [Type-z]: [k1,k2,...,kr]
 PRIORITY [p1,p2,..pz]: Ɣ, δ)
It is to be noticed that p1, p2 and so on are numbers of
UNLESS slots according to their priority in the rule. Let us
consider the following CBCPR as example
Rule 1:
([ENTERTAINMENT]: IF X is summer

 THEN X is entertaining
 UNLESS-1[Personal-Failures]: [X

 is sick, X has emergency case]
 UNLESS-2[External-Causes]: [visa

 not issued, no available flight]
 PRIORITY[1,2])

In Rule 1 example, we have two UNLESS slots for two
different categories, Personal-Failures and External-Causes.
The PRIORITY slot says that UNLESS-1 censor conditions
are having higher priority than UNLESS-2. If in PRIORITY
slot, 2 is given before 1, it means UNLESS-2 censor
conditions are having higher priority than the censors in
UNLESS-1. Ɣ in CBCPR is exactly as in CPR which is the
obtained certainty value for the action by checking only the
input conditions without looking to any of the censor
conditions. δ is the certainty value of the action if the input
conditions are true and the tested censor conditions are false
based on the given time for the system response. For more
information about how these values are calculated, reader
can refer to [6]. A more tuning and restructuring for CBCPR
is presented in [8].

1.3 Neural Networks for Rule Structure
Due to the importance of neural networks as a machine
learning model, many attempts were tried to represent
various rule structures using neural networks. Knowledge
Based Neural Networks (KBANN) [13] is an algorithm used
to make the system learn set of symbolic rules using NN, to
perform this task, rules first need to be represented in the
form of NN, then the NN is trained using the KBANN
followed by the backpropgation algorithm used usually for
the feed forward NN. Bharadwaj and Silva (1998) proposed
an approach to integrate HCPR with NN called Variable
Precision Neural Logic (VPNL). Later Hewahi [7]
introduced an approach called General Rule Structure
Neural Logic (GRSNL) network to represent GRS in a
neural network model. Due to the importance of CBCPR
and its comprehension compared with CPR, in this paper we
present an approach to represent it using NN.

2.THE PROPOSED APPROACH TO REPRESENT
CPCBR USING NN

CBCPR structure is not simple because it has various slots
related to UNLESS, also there should be a technique to
make the representation of PRIORITY slot viable. The other

X-is-Animal

 X-is-Pet X-is-Wild

Mammals Birds Reptilians Mammals Birds Reptilians

Figure 1: A simple HCPR-trees

Nabil M. Hewahi, International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6669 – 6674

6671

important issue is that how to deal with Ɣ and δ. To make
the process clear, we shall consider the following template

Concept IF condition
 THEN action

 UNLESS-1 […]
 ..
 UNLESS-n […..]
 PRIORITY […..]

Logically the action should be in output layer, whereas, the
input conditions and the input censor conditions should be
in the input layer. All censor conditions related to one
UNLESS slot should be connected to one unit in the hidden
layer, this means if we have n UNLESS slots related to one
rule, it means those n neurons in the hidden layer should be
connected somehow to one neuron (to represent all the
UNLESS slots related to one CBCPR in one node) then
from this neuron a connection to the rule output node should
be there. To visualize this process, let us consider Figure 2.
As shown in Figure 2, I1, I2 and I3 are the rule input
conditions, C11, C12 and C13 are the censor conditions for
UNLESS-1slot, C21, C22 and C23 are the censor conditions
for UNLEASS-2 slot and so on. In the hidden layer 1 all the
inputs I1, I2 and I3 are linked to one neuron (oval shape),
and all the censor conditions of UNLESS-1 slot are linked to
one neuron (square shape). Similarly, all the censor
conditions of UNLESS-2 slot are linked to one neuron and
so on. In hidden layer 2, all the UNLESS slots in layer 1 are
linked to one neuron. In the output layer, the neuron from
hidden layer 1 related to condition inputs and the neuron of
the hidden layer 2 represents all the UNLESS slots are
linked to the output neuron. To consider the representation
of PRIORITY slot, p1, p2 and p3 in Figure 2 just to
represent the priorities of UNLESS slot nodes in the rule. It
is to be noticed that neuron of p1 priority is having two
outputs, the first (RO1) goes as input to neuron of UNLESS
slot with priority p2 and the other output (RO2) goes to the
triangle neuron which deals with all the UNLESS slots.
Similarly, is the relation between the node with p2 priority
and the node with p3 priority and so on if there is more
UNLESS slots. Actually, for simplicity we consider
rectangle shape of UNLESS slot of p2 in hidden layer 1
despite it should be considered in layer 2 because the output
of p1 goes as input to p2. Similarly, for other UNLESS slots
based on their priority. The working process of these two
outputs of the UNLESS slot will be explained in the
algorithm.

Our assumption is that the possible input values for
input conditions are 1, -1 and 0 for true, false and unknown
respectively. Also, for the sensor conditions, the possible
input values are 1, -1 and 0 for true, false and unknown
respectively. Since the censor conditions are rarely occur,
their initial weights should be very small, two choices can
be followed, the first we use the value of the certainty of the
censor condition as the weight for its link with the neuron in
the first hidden layer, the second choice is to multiply the
certainty value with a factor f smaller than 1, this will make

the maximum initial weight of the censor condition as its
certainty value. To make it clear, assume UNLESS-
1[c1:0.06, c2:0.03], it means the weights of the links will be
First approach
w1=-0.06 w2=-0.03
Second approach assuming f = 0.2
w1 = 0.06 * 0.2 = 0.012 w2= 0.03 * 0.2*1 =
0.006
A third approach can also be used by changing f based on
the importance effect of the censor condition. Our
assumption is that, all the censor conditions are listed based
on the certainty value of the censor conditions from higher
to lower as given in the UNLESS-1 in the above example.
Starting with f=0.2 and using the same mechanism in the
second approach
w1 = 0.06 * 0.2 = 0.012
new_f = old_f /co, (1)
where co is the censor order
new f = 0.2/2 = 0.1
w2 = 0.03 * 0.1 = 0.003
The process will continue up to the end of all the censor
conditions in the UNLESS slot.

I1

C11

I2

I3

C1

C23

C22

C13

C21

Output/action

 Input
layer

Hidden
layer 1

Hidden
layer 2

Output
layer

C32

C31

P1

P2

P3

Figure 2: Simple representation of one CBCPR using NN

Nabil M. Hewahi, International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6669 – 6674

6672

The algorithm used to construct the neural networks for
CBCPR is as below:

 For all the rules in the system, include all the input
conditions and the censor conditions as inputs in the
NN input layer.

 Consider 1, -1 and 0 as inputs for condition inputs for
true, false and unknown respectively. Also, consider
1, -1 and 0 as inputs for censor conditions for true,
false and unknown respectively. The output of the
neural network is either 0 (false) or a value greater
than 0 representing the certainty value of the rule.

 Connect all the condition inputs to one neuron in the
first hidden layer (oval shape), the initial weights are
1’s.

 Connect all the censor conditions in one UNLESS slot
to one neuron in the hidden layer 1 (rectangular
shape). The weights are the certainty values of the
censor conditions as explained above.

 Connect all the neurons of rectangular shapes (related
to UNLESS) slots to one neuron in the second hidden
layer (triangle shape). The initial weights for the
connections are 1’s.

 The rectangle node related to UNLESS slot with
priority p1 has two outputs, one goes to triangle node
and the other goes as input to the rectangle node with
priority p2. Similarly, the node with p2 has two
outputs and so on. The last UNLESS slot rectangle
node will have only one output which goes as input to
the triangle node.

 Connect the neuron of the first hidden layer related to
the input conditions and the triangle shape node in the
second layer with the output node in the output layer
related to the rule action. The initial weights for the
connections are 1’s.

Now we need to explain how is the output of each neuron is
computed

a. Hidden layer 1 (oval shape node): The computation of

this node is similar to normal computation used in neural
networks but with a specific condition

If any input is -1 (false), then the node output (OO) is -1
Otherwise, OO = W1 . I (2),
where W1 is the vector of weights from inputs conditions to
the node (initial weights are 1’s), and I is the vector of
condition inputs.
b. Hidden layer 1 (rectangular shape node p1 as example):
If any input is 1 (true), then the node output which goes to
p2 node (RO1) is -1, and the second output which goes to
the triangle node (RO2) is -1.
Otherwise, RO1 = 1 and RO2 = W2 . (-C) (3)

where C is the vector of censor conditions and W2 is the
vector of weights from the censor conditions to the node.
We multiply – with C to make the value equal to 1 because
in this case all the values in C are either -1 or 0 (the value is
false which means -1 and that is why we multiply it with –

to get correct certainty). It is also to be noted that the
weights of the links that connect p1 to p2 and p1 to the
triangle node are 1’s.
c. Hidden layer 1 (rectangle shape node p2 as example):
If any input is 1(true) except the value of RO1 coming from
p1(if any input is 1, we do not care about the value of RO1
coming from p1), then the node output goes to p3 with
RO1=-1 and RO2=-1
Otherwise (all inputs are -1 and RO1=1 coming from p1),
RO1 = 1 and RO2 = W2 . (-C) , it is to be noted that RO1
of p1 is not included in the computation, it is just used to
decide the value of RO2 of the next node.
d. Hidden layer 2 (triangle shape node):
If any of the inputs to this node is -1, then the output (TO) is
-1,
Otherwise, TO = W3 . VRO2 (4)
Where W3 is the vector of weights from layer 2 to layer 3
(initially 1s). VRO2 is a vector containing all RO2 values
obtained from the rectangle node related to UNLESS slot.
e. Output layer (diamond shape node):
If any of the inputs (coming from the oval node and from
the triangle node) is -1, then the output (OUT) is 0 (false),
Otherwise, OUT = (W4 . TO)/n (5)
Where W4 is the vector of weights from the second hidden
layer (initially 1s), and n is the number of UNLESS slots in
CBCPR. Equation (5) is based on the computation of
certainty factor for CBCPR in [6]. The result of OUT will be
the certainty value of the rule. Figure 3 shows a flowchart
that summarizes the general procedure to compute the
output of the neural networks.

2.1 Knowledge Base Representation
In rule-based systems, the knowledge base contains set of
rules, in our case we shall consider set of CBCPRs. Two
basic cases can be considered:

Compute the output for the oval node

Compute the output for the first UNLESS
slot (p1)

Compute the output for other UNLESS
slots sequentially (p2,p3,..)

 Start

 Stop

Compute the node output (diamond
output)

Figure 3: Flowchart for the sequence of computation in the NN

Nabil M. Hewahi, International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6669 – 6674

6673

a. Independent CBCPRs: In this case each CBCPR might
have independent output and each rule does not depend
on any other rule. Figure 4 illustrates this situation.
NNRi in Figure 3 and in any later figure means the NN
for the ith CBCPR. In Figure 3, NNR1 and NNR2 have
two independent outputs. Independent means the firing
of one rule does not depend on firing of another rule.

b. Dependent CBCPRs: In this case some CBCPRs
depend on previous fired CBCPRS. Figure 5 shows
this situation. In Figure 5 CBCPR number n depends
on CBCPRs 1 and 2.

2.2 Learning Process Discussion

Once the knowledge base is represented, the main question
is what would be the proper approach to perform the
learning process. Rule based machine learning system is a
system that utilizes machine learning techniques to learn
rules. Some of such kind of systems are artificial immune
system which is based on modeling the biological immune
system [4] [12], classifier system which is based on genetic
algorithms [9][10], and associations rules which are based
on discovering the relations between variables in the dataset
[1]. However, the previous stated approaches do not depend
on NN representation. As stated before, one of the
approaches used to train rules using NN structure is
KBANN algorithm, the other choice is to use
backpropgation algorithm. Whatever is the approach to be
followed, the system needs a dataset of examples to be
applied on the knowledge based NN structure. In the
dataset, enough number of examples with various cases for
input values related to condition inputs and censor condition
inputs is required to train the system. Table 1 shows a
simple example of a small segment of a dataset. In Table 1, i
refers to condition input, c refers to censor condition input,
and O represents the corresponding output. AT in the table
is the “on average” number of censor conditions permitted
to be checked on some given time. We mean by “on
average” is the average number of censor conditions in the
UNLESS slots in all the participated CBCPRs in the
inference mechanism. For example, if AT is 2, it means only
maximum of two censor condition inputs in any of UNLESS
slots of any participated CBCPR in the inference are
checked. This might not be very accurate, but it is a sort of
heuristic.

EX i1 i2 i3 i5 c1 c2 c3 c4 AT O1 O2

1 1 1 -1 1 0 0 -1 0 1 0 0

2 1 1 1 0 1 1 -1 0 2 0.5 0.6

3 0 0 0 1 1 1 0 1 1 0.8 0

4 -1 1 1 0 0 0 0 1 3 0 0.83

Conditi
on
inputs
and
censor
conditi
ons
inputs

NNR1

NNRm

……

NNR1Output

NN RmOutput

Figure 4: Knowledge base with independent CBCPRs

Condition
inputs
and

censor
condition

inputs

NN
R1

NN
R2

NNR1
Output

NNR2

Output

NN
Rm

NNRn NN
RnOutput

NN
RmOutput

Figure 5: Knowledge base with dependent CBCPRs

Table 1: An example of a segment of a dataset that might be
used for training

Condition
inputs and

censor
conditions

inputs

NNR1
NNRn NN RnOutput

NNR2Output

NNRm NN RmOutput

 AT

Figure 6: A sample of NN structure used to train and test the system

NNR2

NNR1Output

Nabil M. Hewahi, International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6669 – 6674

6674

It is to be noted that the condition inputs and the censor
condition inputs are related to the whole knowledge base.
According to what has been given in the algorithm, the
result is either a zero or a value greater than zero that refers
to the certainty value. Based on the concept presented in
Table 1, a sample example of NN used for training and
testing can have a structure shown in Figure 6.

Based on the above mechanism, backpropgation algorithm
can be easily used to train the knowledge-based system, the
only difference is that the forward pass of the
backpropgation algorithm must be replaced with our given
approach in section 2 for assigning weights and getting the
output. The initial weights of AT to output nodes are
generated at random. The second pass of the backpropgation
algorithm to adjust the weights can still be a valid
procedure.

3.CONCLUSION

CBCPR is considered to be a well-structured rule, and can
work well in normal cases or in real time systems. Adaptive
rule-based systems are becoming very important in various
applications. In this work, an approach to represent CBCPR
in the form of NN is presented. Also, a NN representation
of a knowledge based on CBCPRs system has been
proposed. A mechanism to learn and produce outputs based
on training inputs has been explained. The representation of
CBCPR is not simple or straight forward process because
the representation has to handle various UNLESS slots in
CBCPR. The more is the UNLESS slots, the more is the
complexity of the NN. This complexity emerges to maintain
the PRIORITY slot in the CBCPR. This research opens the
door to have very effective adaptive rule-based system
based on NN that can be used in various real time
applications such as robotics navigation and industry, or in
normal applications such as expert systems. Some of the
future directions would be applying the CBCPR
representation and the proposed approach for computing the
outputs of the rules to real applications in various domains,
this should be done for real time systems and non-real time
systems.

REFERENCES
1. R. Agrawal, T. Imieliński. A. Swami. Mining

association rules between sets of items in large
databases, Proceedings of the 1993 ACM
SIGMOD international conference on Management
of data - SIGMOD '93, 1993, pp. 207-216.

 https://doi.org/10.1145/170035.170072

2. K.Bharadwaj and N.Jain. Hierarchical censored
production rules(HCPR) system, Data and Knowledge
Engineering, Vol.8, pp.19-34, 1992.

3. K.Bharadwaj, and J.Silva. Towards Integrating
Hierarchical Censored Production Rule(HCPR)
Based System and Neural Networks, in Lecture
notes in Artificial Intelligence, 1515, Oliveira, 1998,
pp.121-130.

4. de Castro and N. Leandro, Timmis, and Jonathan.
Artificial Immune Systems: A New Computational
Intelligence Approach. Springer, 2002. pp. 57–58. 5.
N. Hewahi, A general rule structure, Journal of
Information and Software Technology,44, pp.451-457,
2002.

6. N. Hewahi. Concept Based Censor Production Rules,
International Journal of Decision Support System
Technology, Vol. 10, issue 1, pp. 59-67,2018.

7. N. Hewahi, Principles on Integrating General Rule
Structure(GRS) Based Systems and Neural
Networks, Proceedings of the 2004 International
Conference on Artificial Intelligence (IC-AI’04), Las
Vegas, Nevada, USA, June 21-24,2004, pp. 1-12.

8. N. Hewahi,. Restructuring Concept Based Censor
Production Rules, 2018 International Conference on
Innovation and Intelligence for Informatics,
Computing and Technologies (3ICT), Bahrain, 2018,
pp.1-3.
https://doi.org/10.4018/IJDSST.2018010104

9. J. Holland. A Mathematical Framework for Studying
Learning in Classifier Systems, Physica D,22,pp.
307-317, 1986.

10. J.Holland. Escaping Brittleness: The Possibilities of
General-Purpose Learning Algorithms Applied to
Parallel, in Machine Learning: An Artificial
Intelligence Approach Mitchell, Michalski and
Carbonell, Eds., Vol. 2, Chapter 20, Los Altos, CA
Morgan Kaufmann, pp. 593-623, 1986.

11. R. Michalski and P. Winston. Variable Precision
Logic, Artificial Intelligence, 29, pp. 121-145, 1986.
https://doi.org/10.1016/0004-3702(86)90016-0

.12. M. Read, P. Anders, and J. Timmis. An Introduction
to Artificil Immune Systems, in Handbook of Natural
Computing , Rozenberg, Back, Kok. Eds. Berlin,
Heidelberg, Springer, 2012.

.13. G. Towell and J. Shavlik. Knowledge Based Artificial
Neural Networks. Artificial Intelligence, 70, No. 1-2,
pp. 119-165, 1994.
https://doi.org/10.1016/0004-3702(94)90105-8

