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ABSTRACT  
 
In this paper we present an approach for representing the 
Concept Based Censor Production Rules (CBCPR) using 
Neural Networks (NN). CBCPR is a very useful rule 
structure where it can be used either as standard rule or as 
Censor Production Rule (CPR) used in real time systems 
applications. In the proposed approach, NN representation 
should be able to handle various UNLESS slots related to 
one CBCPR. The representation should also reflect the 
PRIORITY slot in the CBCPR to express the priorities of 
UNLESS slots.  A special algorithm to perform the 
representation and how the knowledge base system should 
be treated as one NN are presented. For the learning 
purpose, the backward pass of the backpropagation 
algorithm can be adopted, whereas the forward pass can be 
replaced with our proposed approach since it has a direct 
relation with the representation mechanism.  
  
Key words : Censor Production Rules, knowledge 
representation, rule Based System  

1.INTRODUCTION  
 

Concept Based Censor Production Rules (CBCPR) [6] are 
rules obtained through a series of developments starting from 
the standard rule structure in the form of IF <condition> 
THEN <action> passing through Censored Production Rules 
(CPR) [11], Hierarchical Censored Production Rules 
(HCPR) [12], General Structure Rules (GSR) [5] and ending 
with CBCPR [6]. In rule-based systems, sometimes we have 
incomplete or inconsistent knowledge, and to overcome this 
drawback, machine learning is one of the potential solutions. 
Nowadays Neural Network (NN) and especially deep NN is 
becoming one very important model in machine learning. In 
this paper we propose an approach to represent CBCPR 
using neural networks, this will be very useful in rule -based 
systems that need to improve their classification. This would 
be significant when the system is having incomplete or 
inconsistent knowledge, and also in hybrid systems that 
incorporate learning in expert systems. 

 

1.1 Pre CBCPR-Structure 
CBCPRs [6] are rules basically based on the concept of 
CPRs [11] which have the form IF <condition> THEN 
<action> UNLESS <censors>. The condition/antecedent and 
action/consequence parts work the same way as in standard 
rule structure, the censors in the UNLESS part are 

conditions which rarely  occur, and that is why such kind of 
rules can be used in real time systems, if more time is given, 
more censor conditions can be checked to be more certain 
about the answer, otherwise, the action will be taken without 
checking all the censor conditions. If any of the censor 
conditions is true, the rule action will be prevented/denied. 
As an example,  
(IF Joh-at-home THEN John-watching-TV: 0.8) UNLESS 
(has-guest:0.04, TV-malfunctioning:0.02) 

The certainty value for the above rule without checking 
any of the censor conditions is 0.8 (this value is usually 
indicated by Ɣ). If there is a time and the censor condition 
has-guest can be checked and proved to be false, the 
certainty value becomes 0.84 (0.8+0.04) (this value is 
usually indicated by δ).  If we still have more time, the 
second censor condition can be checked and the overall 
certainty value becomes 0.86 (0.84+0.02). If any checked 
censor condition is true, the action John-watching-TV is 
denied. From the previous example we can understand that 
when John is at home, he usually watches TV unless he has 
a guest or the TV is not working properly.  This means, if 
we have time to be surer about the rule result, we can check 
if John has a gust or not. If he has a guest, the rule will fail 
and the conclusion will not be taken, if he does not have a 
guest, and we have no more time, we can take a decision 
with John-watching-TV with 0.84 certainty value.  
Similarly, we will do the same with TV-malfunctioning 
censor condition. The more censor conditions are checked 
(having more time), the rule certainty value will be 
increased. HCPR is same as CPR, but in addition to the 
three main slots of the CPR (IF, THEN and UNLESS), two 
more slots have been added, i.e., GENERALITY and 
SPECIFICITY, where GENERALITY is to have the name 
of the parent rule of this current rule and SPECIFICITY is 
the name of the most specific rule of this current rule. Set or 
related rules with GENERALITY and SPECIFICITY form a 
tree called HCPR-tree [12]. This will allow the user to 
conclude results based on how much specific/general level 
he/she wants.  Below is a set of HCPRs representing rules 0, 
1 and 2 and indicated by R0. R1 and R2 are related to 
HCPR-tree in Figure 1. 

 
 

R0: 
IF [X-eats, X-drinks,X-Reproduce] 
THEN [X-Animal] 
UNLESS [ X-dead] 
GENERALITY[ ] 
SPECIFICITY[R1, R2] 
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R1: 
IF [X-lives in jungles, X-lives in desert]  
THEN [X-is-Wild] 
UNLESS [X-in-house] 
GENERALITY[R0 ] 
SPECIFICITY[R3, R4,R5] 
 
R2: 
IF [X-lives at home] 
THEN [X-is-Pet] 
UNLESS [] 
GENERALITY[R0] 
SPECIFICITY [ R6,R7,R8] 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In Figure 1, the tree root (level 0 of the tree) represents R0, 
level 1 in the tree represents rules R1 and R2, and level 2 
represents rules R3, R4, R5, R6, R7 and R8 in order from 
left to right (if any and so on).  
GRS [5] introduced a new slot called ALTERNATIVELY 
to state in the rule the possible next rules to be fired if the 
current rule is failed. This will help the system to expedite 
the process of the system inference. 

1.2 CBCBR Structure 
CBCPR is a rule structure that has been proposed as an 
extension of CPR, the extension has two directions, the first 
direction is to introduce a slot to the rule to reflect the main 
concept of the rule (about what is the rule), the idea of rule 
concept is that more than one rule might have the same 
condition/s but are related to different concepts to conclude. 
The second direction is that in the original CPR, there is 
only one slot for UNESS, whereas in CBCPR, there might 
be more than one UNLESS slot, each contains only certain 
censor conditions related to a specific category. This would 
be useful to expedite the process of inference by instead of 
trying to check all the censor conditions (if there is only one 
UNLESS slot), only censor conditions related to a certain 
category are checked. This will reduce the required time and 
allow the system to respond within time limits with higher 
certainty. To help controlling various UNLESS slots, 
PRIORITY slot is added to the rule to list the priority of 

UNLESS slots. The general structure of CBCPR is as 
below: 
 ([Concept-Title]: IF condition 
                    THEN action 

UNLESS-1 [ Type-1]: [c1,c2,…cn] 
UNLESS-2 [Type-2]: [s1,s2,…,sm] 

                     ..... 
                     UNLESS-z [Type-z]: [k1,k2,...,kr] 
                      PRIORITY [p1,p2,..pz]: Ɣ, δ)  
It is to be noticed that p1, p2 and so on   are numbers of 
UNLESS slots according to their priority in the rule. Let us 
consider the following CBCPR as example 
Rule 1: 
([ENTERTAINMENT]: IF X is summer 

                    THEN X is entertaining 
                                       UNLESS-1[Personal-Failures]: [X    

                                 is sick, X has emergency case] 
                                        UNLESS-2[External-Causes]: [visa      

                                not issued, no available flight] 
                                        PRIORITY[1,2]) 
 
In Rule 1 example, we have two UNLESS slots for two 
different categories, Personal-Failures and External-Causes. 
The PRIORITY slot says that UNLESS-1 censor conditions 
are having higher priority than UNLESS-2. If in PRIORITY 
slot, 2 is given before 1, it means UNLESS-2 censor 
conditions are having higher priority than the censors in 
UNLESS-1.  Ɣ in CBCPR is exactly as in CPR which is the 
obtained certainty value for the action by checking only the 
input conditions without looking to any of the censor 
conditions. δ is the certainty value of the action if the input 
conditions are true and the tested censor conditions are false 
based on the given time for the system response. For more 
information about how these values are calculated, reader 
can refer to [6]. A more tuning and restructuring for CBCPR 
is presented in [8]. 
 

1.3 Neural Networks for Rule Structure 
Due to the importance of neural networks as a machine 
learning model, many attempts were tried to represent 
various rule structures using neural networks. Knowledge 
Based Neural Networks (KBANN) [13] is an algorithm used 
to make the system learn set of symbolic rules using NN, to 
perform this task, rules first need to be represented in the 
form of  NN, then the NN is trained using the  KBANN 
followed by the backpropgation algorithm used usually for 
the feed forward NN.  Bharadwaj and Silva (1998) proposed 
an approach to integrate HCPR with NN called  Variable 
Precision Neural  Logic (VPNL). Later Hewahi [7] 
introduced an approach called General Rule Structure 
Neural Logic (GRSNL) network to represent GRS in a 
neural network model. Due to the importance of CBCPR 
and its comprehension compared with CPR, in this paper we 
present an approach to represent it using NN. 

2.THE PROPOSED APPROACH TO REPRESENT 
CPCBR USING NN 
 
CBCPR structure is not simple because it has various slots 
related to UNLESS, also there should be a technique to 
make the representation of PRIORITY slot viable. The other 

X-is-Animal 

   X-is-Pet X-is-Wild 

Mammals Birds Reptilians Mammals Birds Reptilians 

Figure 1: A simple HCPR-trees 
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important issue is that how to deal with Ɣ and δ. To make 
the process clear, we shall consider the following template 
 
Concept  IF   condition  
               THEN action 

    UNLESS-1 [ …] 
     .. 
    UNLESS-n […..] 
    PRIORITY […..] 
 

Logically the action should be in output layer, whereas, the 
input conditions and the input censor conditions should be 
in the input layer. All censor conditions related to one 
UNLESS slot should be connected to one unit in the hidden 
layer, this means if we have n UNLESS slots related to one 
rule, it means those n neurons in the hidden layer should be 
connected somehow to one neuron (to represent all the 
UNLESS slots related to one CBCPR in one node) then 
from this neuron a connection to the rule output node should 
be there. To visualize this process, let us consider Figure 2. 
As shown in Figure 2, I1, I2 and I3 are the rule input 
conditions, C11, C12 and C13 are the censor conditions for 
UNLESS-1slot, C21, C22 and C23 are the censor conditions 
for UNLEASS-2 slot and so on. In the hidden layer 1 all the 
inputs I1, I2 and I3 are linked to one neuron (oval shape), 
and all the censor conditions of UNLESS-1 slot are linked to 
one neuron (square shape). Similarly, all the censor 
conditions of UNLESS-2 slot are linked to one neuron and 
so on. In hidden layer 2, all the UNLESS slots in layer 1 are 
linked to one neuron. In the output layer, the neuron from 
hidden layer 1 related to condition inputs and the neuron of 
the hidden layer 2 represents all the UNLESS slots are 
linked to the output neuron. To consider the representation 
of PRIORITY slot, p1, p2 and p3 in Figure 2 just to 
represent the priorities of UNLESS slot nodes in the rule. It 
is to be noticed that neuron of p1 priority is having two 
outputs, the first (RO1) goes as input to neuron of UNLESS 
slot with priority p2 and the other output (RO2) goes to the 
triangle neuron which deals with all the UNLESS slots. 
Similarly, is the relation between the node with p2 priority 
and the node with p3 priority and so on if there is more 
UNLESS slots. Actually, for simplicity we consider 
rectangle shape of UNLESS slot of p2 in hidden layer 1 
despite it should be considered in layer 2 because the output 
of p1 goes as input to p2. Similarly, for other UNLESS slots 
based on their priority. The working process of these two 
outputs of the UNLESS slot will be explained in the 
algorithm.   

Our assumption is that the possible input values for 
input conditions are 1, -1 and 0 for true, false and unknown 
respectively. Also, for the sensor conditions, the possible 
input values are 1, -1 and 0 for true, false and unknown 
respectively. Since the censor conditions are rarely occur, 
their initial weights should be very small, two choices can 
be followed, the first we use the value of the certainty of the 
censor condition as the weight for its link with the neuron in 
the first hidden layer, the second choice is to multiply the 
certainty value with a factor  f smaller than 1, this will make 

the maximum initial weight of the censor condition as its 
certainty value. To make it clear, assume UNLESS-
1[c1:0.06, c2:0.03], it means the weights of the links will be  
First approach 
w1=-0.06      w2=-0.03 
Second approach assuming f = 0.2 
w1 = 0.06 * 0.2  =  0.012                w2= 0.03 * 0.2*1 = 
0.006 
A third approach can also be used by changing f based on 
the importance effect of the censor condition. Our 
assumption is that, all the censor conditions are listed based 
on the certainty value of the censor conditions from higher 
to lower as given in the UNLESS-1 in the above example. 
Starting with f=0.2 and using the same mechanism in the 
second approach 
w1 = 0.06 * 0.2 = 0.012  
new_f = old_f /co,                             (1) 
where co is the censor order 
new f = 0.2/2 = 0.1 
w2 = 0.03 * 0.1 = 0.003 
The process will continue up to the end of all the censor 
conditions in the UNLESS slot. 
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Figure 2: Simple representation of one CBCPR using NN 
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The algorithm used to construct the neural networks for 
CBCPR is as below: 
 

 For all the rules in the system, include all the input 
conditions and the censor conditions as inputs in the 
NN input layer. 

 Consider 1, -1 and 0  as inputs for condition inputs for 
true, false and unknown respectively. Also, consider 
1, -1 and 0 as inputs for censor conditions for true, 
false and unknown respectively. The output of the 
neural network is either 0 (false) or a value greater 
than 0 representing the certainty value of the rule. 

 Connect all the condition inputs to one neuron in the 
first hidden layer (oval shape), the initial weights are 
1’s. 

 Connect all the censor conditions in one UNLESS slot 
to one neuron in the hidden layer 1 (rectangular 
shape). The weights are the certainty values of the 
censor conditions as explained above. 

 Connect all the neurons of rectangular shapes (related 
to UNLESS) slots to one neuron in the second hidden 
layer (triangle shape). The initial weights for the 
connections are 1’s.  

 The rectangle node related to UNLESS slot with 
priority p1 has two outputs, one goes to triangle node 
and the other goes as input to the rectangle node with 
priority p2. Similarly, the node with p2 has two 
outputs and so on. The last UNLESS slot rectangle 
node will have only one output which goes as input to 
the triangle node. 

 Connect the neuron of the first hidden layer related to 
the input conditions and the triangle shape node in the 
second layer with the output node in the output layer 
related to the rule action.  The initial weights for the 
connections are 1’s. 

Now we need to explain how is the output of each neuron is 
computed 
 
a. Hidden layer 1 (oval shape node): The computation of 

this node is similar to normal computation used in neural 
networks but with a specific condition 

If any input is -1 (false), then the node output (OO) is -1 
Otherwise, OO =    W1 . I                                 (2),  
where W1 is the vector of weights from inputs conditions to 
the node (initial weights are 1’s), and I is the vector of 
condition inputs. 
b. Hidden layer 1 (rectangular shape node p1 as example):  
If any input is 1 (true), then the node output which goes to 
p2 node (RO1) is -1, and the second output which goes to 
the triangle node (RO2) is -1. 
Otherwise, RO1 = 1  and RO2 =  W2 . (-C)     (3) 
 
where C is the vector of censor conditions and W2 is the 
vector of weights from the censor conditions to the node. 
We multiply – with C to make the value equal to 1 because 
in this case all the values in C are either -1 or 0 (the value is 
false which means -1 and that is why we multiply it with – 

to get correct certainty). It is also to be noted that the 
weights of the links that connect p1 to p2 and p1 to the 
triangle node are 1’s.  
c. Hidden layer 1 (rectangle shape node p2 as example): 
If any input is 1(true) except the value of RO1 coming from 
p1(if any input is 1, we do not care about the value of RO1 
coming from p1), then the node output goes to p3 with 
RO1=-1 and RO2=-1 
Otherwise (all inputs are -1 and RO1=1 coming from p1),  
RO1 = 1  and RO2 =  W2 . (-C) , it is to be noted that RO1 
of p1 is not included in the computation, it is just used to 
decide the value of RO2 of the next node. 
d. Hidden layer 2 (triangle shape node): 
If any of the inputs to this node is -1, then the output (TO) is 
-1, 
Otherwise, TO =  W3 . VRO2                           (4) 
Where W3 is the vector of weights from layer 2 to layer 3 
(initially 1s). VRO2 is a vector containing all RO2 values 
obtained from the rectangle node related to UNLESS slot. 
e. Output layer (diamond shape node): 
If any of the inputs (coming from the oval node and from 
the triangle node) is -1, then the output (OUT) is 0 (false), 
Otherwise, OUT =  (W4 . TO  )/n                       (5) 
Where W4 is the vector of weights from the second hidden 
layer (initially 1s), and n is the number of UNLESS slots in 
CBCPR. Equation (5) is based on the computation of 
certainty factor for CBCPR in [6]. The result of OUT will be 
the certainty value of the rule. Figure 3 shows a flowchart 
that summarizes the general procedure to compute the 
output of the neural networks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.1 Knowledge Base Representation 
In rule-based systems, the knowledge base contains set of 
rules, in our case we shall consider set of CBCPRs. Two 
basic cases can be considered: 

Compute the output for the oval node 

Compute the output for the first UNLESS 
slot (p1) 

Compute the output for other UNLESS 
slots sequentially (p2,p3,..) 

      Start 

         Stop 

Compute the node output (diamond 
output) 

Figure 3: Flowchart for the sequence of computation in the NN 
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a. Independent CBCPRs: In this case each CBCPR might 
have independent output and each rule does not depend 
on any other rule. Figure 4 illustrates this situation. 
NNRi in Figure 3 and in any later figure means the NN 
for the ith CBCPR. In Figure 3, NNR1 and NNR2 have 
two independent outputs. Independent means the firing 
of one rule does not depend on firing of another rule. 
 

 

 

 

 

 

 

 

 

b. Dependent CBCPRs: In this case some CBCPRs 
depend on previous fired CBCPRS. Figure 5 shows 
this situation. In Figure 5 CBCPR number n depends 
on CBCPRs 1 and 2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Learning Process Discussion 
 

Once the knowledge base is represented, the main question 
is what would be the proper approach to perform the 
learning process. Rule based machine learning system is a 
system that utilizes machine learning techniques to learn 
rules. Some of such kind of systems are artificial immune 
system which is based on modeling the biological immune 
system [4] [12], classifier system which is based on genetic 
algorithms [9][10], and associations rules which are based 
on discovering the relations between variables in the dataset 
[1]. However, the previous stated approaches do not depend 
on NN representation. As stated before, one of the 
approaches used to train rules using NN structure is 
KBANN algorithm, the other choice is to use 
backpropgation algorithm. Whatever is the approach to be 
followed, the system needs a dataset of examples to be 
applied on the knowledge based NN structure. In the 
dataset, enough number of examples with various cases for 
input values related to condition inputs and censor condition 
inputs is required to train the system. Table 1 shows a 
simple example of a small segment of a dataset. In Table 1, i 
refers to condition input, c refers to censor condition input, 
and O represents the corresponding output. AT in the table 
is the “on average” number of censor conditions permitted 
to be checked on some given time. We mean by “on 
average” is the average number of censor conditions in the 
UNLESS slots in all the participated CBCPRs in the 
inference mechanism. For example, if AT is 2, it means only 
maximum of two censor condition inputs in any of UNLESS 
slots of any participated CBCPR in the inference are 
checked. This might not be very accurate, but it is a sort of 
heuristic.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

EX i1 i2 i3 i5 c1 c2 c3 c4 AT O1 O2 

1 1 1 -1 1 0 0 -1 0 1 0 0 

2 1 1 1 0 1 1 -1 0 2 0.5 0.6 

3 0 0 0 1 1 1 0 1 1 0.8 0 

4 -1 1 1 0 0 0 0 1 3 0 0.83 

Conditi
on 
inputs 
and 
censor 
conditi
ons 
inputs 

NNR1 

NNRm 

…… 

NNR1Output 

NN RmOutput 

Figure 4: Knowledge base with independent CBCPRs 

Condition 
inputs 
and 

censor 
condition 

inputs 

NN
R1 

NN
R2 

NNR1 
Output 

NNR2 

Output 

NN
Rm 

NNRn NN 
RnOutput 

NN 
RmOutput 

Figure 5: Knowledge base with dependent CBCPRs 

Table 1: An example of a segment of a dataset that might be 
used for training 

Condition 
inputs and 

censor 
conditions 

inputs 

NNR1 
NNRn NN RnOutput 

NNR2Output 

NNRm NN RmOutput 

       AT 

Figure 6: A sample of NN structure used to train and test the system  

NNR2 

NNR1Output 
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It is to be noted that the condition inputs and the censor 
condition inputs are related to the whole knowledge base. 
According to what has been given in the algorithm, the 
result is either a zero or a value greater than zero that refers 
to the certainty value. Based on the concept presented in 
Table 1, a sample example of NN used for training and 
testing can have a structure shown in Figure 6. 

Based on the above mechanism, backpropgation algorithm 
can be easily used to train the knowledge-based system, the 
only difference is that the forward pass of the 
backpropgation algorithm must be replaced with our given 
approach in section 2 for assigning weights and getting the 
output. The initial weights of AT to output nodes are 
generated at random. The second pass of the backpropgation 
algorithm to adjust the weights can still be a valid 
procedure. 

3.CONCLUSION 
 

CBCPR is considered to be a well-structured rule, and can 
work well in normal cases or in real time systems. Adaptive 
rule-based systems are becoming very important in various 
applications. In this work, an approach to represent CBCPR 
in the form of NN is presented.  Also, a NN representation 
of a knowledge based on CBCPRs system has been 
proposed. A mechanism to learn and produce outputs based 
on training inputs has been explained. The representation of 
CBCPR is not simple or straight forward process because 
the representation has to handle various UNLESS slots in 
CBCPR. The more is the UNLESS slots, the more is the 
complexity of the NN. This complexity emerges to maintain 
the PRIORITY slot in the CBCPR. This research opens the 
door to have very effective adaptive rule-based system 
based on NN that can be used in various real time 
applications such as robotics navigation and industry, or in 
normal applications such as expert systems. Some of the 
future directions would be applying the CBCPR 
representation and the proposed approach for computing the 
outputs of the rules to real applications in various domains, 
this should be done for real time systems and non-real time 
systems.  
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