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 
ABSTRACT 
 
Locumba River Basin is characterized by its poor water 
quality due to its high concentrations of arsenic, boron and 
elevated electric conductivity, which has caused health 
problems related with the difficulty of a correct water 
treatment, especially in the Ite district, Peru. This study carries 
out a water assessment of surface waters using the Grey 
Clustering Method, based on the center-point triangular 
whitenization weight functions (CTWF), which are based on 
grey systems. In the present, eight points analyzed by 
DIGESA in 2019 along the basin are evaluated based on its 
values of pH, electric conductivity, dissolved oxygen and 
dissolved metals (being specifically arsenic, iron, cadmium 
and lead) according with the ranges established in the 
Peruvian ECA intended for human consumption. All points 
studied were classified within the subcategory A1, except the 
one located on the mouth of Locumba River (subcategory A3) 
due to its high electric conductivity and elevated iron and 
arsenic concentrations. These results could be used by 
authorities to evaluate better water sources to supply the 
human consumption, as well as supervise industrial activities 
nearby. Despite DIGESA’s report is focused on inspecting 
Toquepala Mine impact, more parameters should be measured 
in future studies and additional intermediate points must be 
established at Pampa Sitana to determinate a current influence 
of the mining company in the area.  
 
Key words: Grey systems, Grey Clustering, Locumba River 
Basin, Water Quality.  
 
1. INTRODUCTION 
 
Peru, particularly its southern part, is characterized by having 
several mining operations related mainly to cooper 
production. Despite of it, a Peruvian mining regulation has not 
been established until 1993 [1]. In the region of Tacna, due to 
the lack of regulations, Toquepala Mine had been dumping its 
tailings (40 Mm3) directly at Locumba River between 1960 
and 1996, which used to transport those toxic compounds 
until Ite Bay [2].This pollution affected an area of more than 

 
 

1600 hectares causing a variation of the coast line and 
damaging the sea coast. Nevertheless, in 2002, the Peruvian 
government approved the tailings remediation using an 
anaerobic wetland system. Thus, nowadays, Tacna people 
enjoy a tourist wetland with many species of birds as a result 
of the environment conditions improvements[3]. This wetland 
has neutralized the acidic and oxidizing conditions of the 
ancient tailings allowing the reduction of mobility and 
liberation of heavy metals such as Iron (Fe), Aluminium (Al), 
Manganese (Mn), Zinc(Zn), Cooper (Cu) and Nickel (Ni)[4]. 
Notwithstanding, the newspaper La República and the 
General Directorate of Health (DIGESA) have noticed some 
area that have not been remedied [2], [5]. As a result of these 
discrepancies, this study will be focused on analyzing the 
quality of the surface waters around the Toquepala Mine. 
Many studies of water body analysis have applied the grey 
clustering method by means of the center-point triangular 
whitenization weight functions (CTWF), obtaining reliable 
results that lead to a great scientific interpretation [6], [7]. 
This is because the method is able to weight and classify the 
information from the sampling data according to standards 
known as grey classes [8]. These standards will qualify and 
classify the information from the sample data. In this case 
study, the dataobtained from OEFA’s Technical Supervision 
Report (0391-2019-DSEM-CMIN) [9] will be gathered from 
the Peruvian law (D.S. 004-2017-MINAM) [10]. 
The main objective of this study is to characterize the quality 
of the waters surrounding Toquepala mine, located on 
Locumba River Basin. For which, each monitoring point is 
evaluated with the purpose of identifying contaminated areas 
and to assess the remediation carried out by Ite wetlands. 
For this case study, 8 sampling points in 6 water bodies were 
considered to determine if the current and ancient activities of 
Toquepala mine have an impact on them. The first and second 
points belong to Suches lagoon at approximate 105 m from 
the shore of the Cuajone side at an altitude of 4461 m.a.s.l. and 
472 m southeast of the ToquepalaBarcaza at an altitude of 
4453 m.a.s.l., respectively. The third point is located at the 
exit of a catchment well on the northeast side of the Hacienda 
Matagroso at an altitude of 1689 m.a.s.l. The next two points 
are located at Aricota lagoon; the fourth, at approx. 270 m 
from the northeast end at an altitude of 2758; and the fifth, on 
the east side, between a public electric company (EGESUR) 
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pumping station and floating trout cages at an altitude of 2734 
m.a.s.l. The sixth and eighth points are found in watering 
holes, in the southern and northern sectors of the Ite tailings 
reserve, respectively. Lastly, the seventh point is located at 
Locumba River at approx. 100 m before the entry of the Ite 
tailings reserve. 
The structure of the present study is as follows: In section 2 a 
literature review is given, then, in section 3 the grey clustering 
method based on CTWF is explained. Section 4 provides 
details and considerations needed for this particular case, 
while results and the discussion are presented in section 5. 
Finally, conclusions of both the method and the case analyzed 
are provided in section 6. 
 
2. LITERATURE REVIEW 
 
Wang [7] used the Grey Clustering methodology to highlight 
the differences in the impacts on surface water qualities (in 
periods of normal, abundant and poor water flow) of different 
indicators of water samples such as dissolved oxygen, 
permanganate index, five-day biochemical oxygen demand, 
ammonia nitrogen and total phosphorus. The evaluation was 
carried out in four sections of the Qingshui River in the Duyun 
city of China. Likewise, national water quality standards and 
the AHP method were used to establish the weighting of the 
values evaluated in the Grey Clustering. Therefore, it was 
concluded that the Grey Clustering method combined with the 
AHP method provides a more comprehensive and scientific 
assessment of water quality. In addition, they recommended 
the use of the Delphi method to obtain the weight of each 
parameter. 
Likewise, considering 12 monitoring points in the Yellow 
River basin in China, a water quality assessment was carried 
out using the grey clustering method. Water quality 
monitoring data from the Ministry of Environmental 
Protection of China from May 2016 and the environmental 
quality standards of surface water that includes 5 levels (I, II, 
III, IV and V) were used. The parameters or indicators that 
were used for this study were OD (dissolved oxygen), 
CODMn (permanganate index) and NH3-N (ammonia). After 
the respective analysis using the grey clustering method, it 
was obtained that 9 out of the 12 monitoring points have a 
grade I of water quality, 2 of them belonged to grade V and 1 
belonged to grade III of water quality. A fuzzy comprehensive 
evaluation method water quality study was also carried out to 
do a comparison between the methodologies; finally the 
results obtained were the same as for the grey clustering 
method. In conclusion, in the mentioned study of the Yellow 
River basin the grey clustering method demonstrated to be an 
optimal and efficient method [11]. 
Besides this, Delgado [12] carried out a study of six 
monitoring points in Challhuahuacho and Ferrobamba rivers, 
areas surrounding Las Bambas mine in Apurimac, south of 
Peru. Grey Clustering Method was used along with the water 
parameters established by Peruvian D.S. N° 
004-2017-MINAM. The results of their study showed that 
The Ferrobamba River had a high-water quality, while the 

Challhuahuacho River presented a poor water quality, fact 
that could be associated with spills in the area. 
In the same  way, Diaby[4] carried out a study of the 
un-remediated and remediated parts of the tailings deposit at 
Ite Bay, Southern Peru, in order to understand the 
biogeochemical processes resulting from the construction of 
the Ite wetland. They used a solid and aqueous geochemistry, 
mineralogy, and microbiology methods. The results of their 
study showed that the oxidizing tailings have a low-pH 
oxidation zone (pH 1-4) with a strong accumulation of 
efflorescent salts at the surface due of the capillary transport 
of metal cations such as Iron (Fe), Cadmium (Cd), Manganese 
(Mn), Zinc (Zn), Cooper (Cu) and Nickel (Ni). Also, the 
authors mentioned that the alkaline waters (pH 8), that 
infiltrated into the Ite Bay tailings deposit, contained around 
500ug/L of natural arsenic concentrations. However, in the 
shoreline samples, the arsenic concentrations in the pore water 
are below the detection limit, and the authors suggest a 
retention of As by Fe (III) hydroxide. 
 
3. METHODOLOGY 
 
In this section, the grey clustering method is explained as well 
as the parameters used for evaluating the surface water related 
with the mining activity at Toquepala Mine. 

3.1 Grey Clustering Method 
This method is a process at which the user can extrapolate few 
data of analyses to a whole component of interest in order to 
classify it and analyze a determined problem [8].  It is based 
on the center-point triangular whitenization weight functions 
(CTWF) and the steps followed were[6], [7], [11]–[13]: 
First of all, a set of group of study (݅ = 1, 2, 3, … , ݊) , 
parameters(݆ = 1, 2, 3, … ,݉), grey classes (݇ = 1, 2, 3, … ,  (ݖ
and monitoring points for each group of study must be 
established for the case. 

A. First Step 
In order to compare the parameters that are measured in 

different units, it is necessary to establish non-dimension 
standard values (ܣ௝௞)	according to a regulation system, in this 
particular case, Peruvian law (D.S. 004-2017-MINAM) [10] 
was selected. This is carried out splitting the standard values 
on the average of them. Then, non-dimension monitoring data 
of each parameter (ܥ௝௜)  for each group of study (݅)  are 
calculated trough the average of standard values. 

B. Second Step 
The grey classes (݇) are stablished with the non-dimension 

standard parameters obtained as detailed in the previous step. 
For this case, it will be stablished three criteria (݇ = 1, 2, 3) 
according to water quality of the Peruvian law, a 
representation of this can be seen in Figure 1. 
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Figure 1: Grey Clustering Method based on CTWF 

 
ଷܣ	݀݊ܽ	ଶܣ,ଵܣ Values are established according to 

Environmental Quality Standards for water for human 
consumption. Therefore, (1)-(3) are applied. 

௝݂
ଵ(ݔ௜௝) =

⎩
⎪
⎨

⎪
⎧ ݔ,1 ∈ 	 ௝ଵ൧ܣ,0ൣ

஺ೕ
మି௫

஺ೕ
మି஺ೕ

భ , ݔ ∈ 	 ൻܣ௝ଵ,ܣ௝ଶൿ

0, ݔ ∈ 	 ,௝ଶܣൣ +∞ൿ

 (1) 

௝݂
ଶ(ݔ௜௝) =

⎩
⎪⎪
⎨

⎪⎪
⎧ ௫ି஺ೕ

భ

஺ೕ
మି஺ೕ

భ , ݔ ∈ 	 ൻܣ௝ଵ,ܣ௝ଶ൧

஺ೕ
యି௫

஺ೕ
యି஺ೕ

మ , ݔ ∈	 ൻܣ௝ଵ,ܣ௝ଶൿ

0, ݔ ∈ 	 ௝ଵ൧ܣ,0ൣ ∪ ,௝ଷܣൣ +∞ൿ

 (2) 

௝݂
ଷ(ݔ௜௝) =

⎩
⎪
⎨

⎪
⎧ ௫ି஺ೕ

మ

஺ೕ
యି஺ೕ

మ , ݔ ∈	 ൻܣ௝ଶ,ܣ௝ଷൿ

1, ݔ ∈ 	 ,௝ଷܣൣ +∞ൿ
0, ݔ ∈ 	 ௝ଶ൧ܣ,0ൣ

 (3) 

 
Following this, the monitoring data is evaluated in its 

respective function. 

C. Third Step 
To avoid subjectivism, a weight of each parameter in each 

grey class is calculated using the following equation. 

௝௞ߟ = 	

భ
ಲೕ
ೖ

∑ భ
ಲೕ
ೖ

೘
ೕసభ

 (4) 

This weight is calculated using the non-dimensional 
standard values	(ܣ௝). 

D. Fourth Step 
Afterward, the clustering coefficient is represented as the 

highest value obtained in the sum of each evaluated function 
multiplied per its weight, as is indicated by (5). 

௜௞ߪ = ∑ ௝݂
௞(ݔ௜௝)௡

௝ୀଵ .  ௝ (5)ߟ
 

3.2 Parameters 
The parameters used were obtained from the OEFA Technical 
Supervision Report (0391-2019-DSEM-CMIN) [9] and are 
listed below: 

 Electric Conductivity (C1): It is the range for the 
subcategory	ܣଷ, however it is not specified in the law; 
therefore it was stablished as 1700 µS/cm assuming a 
continue succession. 

 Dissolved Oxygen (C2): The values in the law were not 
modified. 

 PH (C3): The law establishes a range at which its value 
is acceptable. However, in order to establish a fixed 
value, the variation of the highest boundary in the range 
respect to the neutral value (pH=7) was used. 

 Total Arsenic (C4): The law does not contemplate 
different values for the subcategories ܣଶand	ܣଷ. For this 
reason, the limit of the subcategory ܣଶwas calculated 
with the mean between the limits in the sub categories 
 .ଷܣ	ଵandܣ

 Total Iron (C5): The values in the law were not 
modified. 

 Total Cadmium (C6): The values in the law were not 
modified. 

 Total Lead (C7): The law does not contemplate different 
values for the subcategories ܣଶ and	ܣଷ. For this reason, 
the limit of the subcategory ܣଶ was calculated with the 
mean between the limits in the sub categories ܣଵ 
and	ܣଷ. 
 

4. CASE STUDY 
 
Water quality assessment in areas surrounding Toquepala 
mine was conducted through eight monitoring points. It is 
important to mention that Toquepala mine is in the middle of 
the area and it could be possible to cause a variation in the 
components of these waters. 
Finally, the information to be used was obtained from 
Environmental Assessment and Control Agency (OEFA by its 
Spanish acronym). Data were collected from a public report 
N° 0391-2019-DSEM-CMIN, published on 2019 [9]. In this 
way, it is proposed to evaluate whether the water is suitable 
for human consumption or an advanced purification treatment 
is needed. 

4.1 Context Description 
The study area belongs to the Locumba river basin, located in 
the region Tacna, south of Peru (as seen in Figure 2). 
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Figure 2: Areas surrounding Toquepala mine and monitoring points 

(modified from Google Earth) 
 
Eight monitoring points were chosen to analyze the water 
quality in areas surrounding Toquepala mine. Table 1 details 
the monitoring points corresponding to the referring areas. 
 

Table 1: Monitoring points in areas surrounding Toquepala mine 

Body Monitoring 
Points Code 

UTM 
coordinates 

North East 

Suches Lagoon ESP-AS-01(
*) L1-1 8 127 

956 
349 
434 

Suches Lagoon ESP-AS-02(
*) L1-2 8 126 

652 
351 
954 

Catchment area ESP-AS-03(
*) P 8 080 

391 
311 
227 

Aricota Lagoon ESP-AS-04(
*) L2-1 8 081 

335 
364 
376 

Aricota Lagoon ESP-AS-05(
*) L2-2 8 080 

159 
360 
088 

Southern 
Trough 

ESP-AS-06(
*) A1 8 018 

166 
294 
535 

Locumba River ESP-AS-07(
*) R 8 019 

134 
292 
580 

Northern 
Trough 

ESP-AS-08(
*) A2 8 019 

280 
292 
062 

4.2 Toquepala Mine 
Toquepala mine is located 150km from Tacna, in the south of 
Peru. The unit is between 1200 and 3600 m.a.s.l. The main 
commodities are copper and molybdenum which are 
processed in a concentrator plant of 12000 tons/day [14]. 
Two main areas of influence have been identified for the 
purpose of this study. First, the social influence involves the 
surrounding communities, such as Ilabaya and Locumba in 
Tacna and Moquegua district in Moquegua. Secondly, the 
environmental influence involves the change in water quality 
and the soils composition in the areas surrounding mine. 

4.3 Calculations 
The parameters used were defined based on the environmental 
and health problems that they produce. One set of parameters 
(see Table 2 for details) were defined for the CTWF analysis 
of each monitoring point. 
 

Table 2: Parameters considered for the present study 
Parameter Symbol Code 

Electric conductivity σ ܥଵ 
Dissolved oxygen O ܥଶ 

Hydrogen Potential pH ܥଷ 

Arsenic As ܥସ 

Iron Fe ܥହ 

Cadmiun Cd ܥ଺ 

Lead Pb ܥ଻ 
 
These parameters were used as they provide the necessary 
information to determine the quality of the waters in which the 
Toquepala mine could have influence if gathered.Electrical 
conductivity is the measure of the ability of water to conduct 
an electric current. This property is affected by the presence of 
inorganic dissolved solids such as chloride, nitrate, sulfate 
anions or metal cations [15]. For this reason, conductivity is a 
general indication of quality. 
Likewise, oxygen dissolved is a key factor for aquatic life and 
plant life, it is an indirect measure of the river or lake quality. 
Consequently, its concentration reflects the influence of other 
parameters that allow us to determine water quality. 
Furthermore, this parameter could be used for routine 
monitoring, since a study in Nepal showed that, only by 
analyzing dissolved oxygen, the quality results can be 
approximated in a large percentage to the quality results 
obtained with other parameters [16]. 
Ph is the measure of acidity of water. Water with more free 
hydrogen ions is acidic, meanwhile with more free hydroxyl 
ions is basic. The pH is altered when chemicals enter and 
change the composition of the water and therefore it is a good 
indicator of contamination. Additionally, it is an indicator of 
solubility and, for example, metals are more soluble at a lower 
pH, which can increase their toxicity [17].  
On the other hand, arsenic is a highly toxic element and very 
harmful to human health. Its concentration depends on 
anthropogenic sources and natural sources; therefore, its 
analysis in water quality studies is crucial, especially if the 
water is evaluated to be potable [18]. 
Fe is one of the main components of acid mine drainage and is 
an indicator of this type of contamination [19]. For this 
reason, it is an important parameter for measuring water 
quality. Furthermore, in Peru one of the main problems 
caused by mining is the contamination of rivers by acid 
drainage [20]. Heavy metals like Cd and Pb belong to a group 
of metal and metalloid elements that have a high density 
between 3.5 and 7 g/cm3. These metals are toxic, poisonous 
and harmful to humans, even in low concentrations, mainly 
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because they are not biodegradable and can be concentrated in 
water [21]. They are found in the crust, but the most notable 
contamination has been from anthropogenic activities such as 
mining in the case of Pb [22]. Furthermore, Cd is not an 
important metal for biological systems and has almost no 
benefits for the ecosystem, highlighting its harmful effects 
[21]. 
These parameters will be evaluated in comparison with 
Peruvian law DS 004-2017-MINAM [10] in order to 
determinate if the quality of the water belongs to the category 
1, subcategory A that indicates the level of the potability. 
Which, it also includes three categories itself:ܣଵ, ܣଶand ܣଷ 
which are defined by ܣ௝௞ 	(݇ = 1, 2, 3). 

A. First Step 
Table 3 shows the non-dimensioned standard values and 

Table 4 the non-dimensioned values for the monitoring 
points. 

Table 3: Non-dimensioned standard values 

Parameters Grey Classes 
 ૜࡭ ૛࡭ ૚࡭

 ૚ 0.9375 1.0000 1.0625࡯
 ૛ 1.2000 1.0000 0.8000࡯
 ૜ 0.8571 1.0000 1.1429࡯
 ૝ 0.1250 1.0000 1.8750࡯
 ૞ 0.1429 0.4762 2.3810࡯
 ૟ 0.5000 0.8333 1.6667࡯
 ૠ 0.3333 1.0000 1.6667࡯
Table 4: Non-dimensioned monitoring data values 

Parameters L2-2 A1 R A2 
 ૚ 1.1769 4.0063 1.5875 2.5375࡯
 ૛ 2.0920 2.3100 1.6580 1.6960࡯
 ૜ 0.9600 0.8286 0.8800 0.1543࡯
 ૝ 8.7588 1.6669 8.3516 6.9644࡯
 ૞ 0.0286 0.2190 4.0476 0.0190࡯
 ૟ 0.0033 0.0050 0.0400 0.0233࡯
 ૠ 0.0010 0.0023 0.4927 0.0010࡯

B. Second Step 
Using values from Table 3, the CTWF equations are 

calculated. 
As example, equations of CTWF from parameter iron (C5) 

are show in (6) – (8).  

ହ݂
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⎩
⎪
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⎪
⎧
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Table 5 shows the values of the CTWF equation from all 
parameters in each one of the eight monitoring points. 

 
Table 5: CTWF values of each monitoring point 

L1-1 ࢌ૚ ࢌ૛ ࢌ૜ 
 ૚ 1.0000 0.0000 0.0000࡯
 ૛ 1.0000 0.0000 0.0000࡯
 ૜ 0.4000 0.6000 0.0000࡯
 ૝ 0.9073 0.0927 0.0000࡯
 ૞ 1.0000 0.0000 0.0000࡯
 ૟ 1.0000 0.0000 0.0000࡯
 ૠ 1.0000 0.0000 0.0000࡯

Results 0.9375 0.0835 0.0000 
L1-2 ࢌ૚ ࢌ૛ ࢌ૜ 
 ૚ 1.0000 0.0000 0.0000࡯
 ૛ 1.0000 0.0000 0.0000࡯
 ૜ 0.0000 0.0000 1.0000࡯
 ૝ 0.8633 0.1367 0.0000࡯
 ૞ 1.0000 0.0000 0.0000࡯
 ૟ 1.0000 0.0000 0.0000࡯
 ૠ 1.0000 0.0000 0.0000࡯

Results 0.9020 0.0165 0.1676 
P ࢌ૚ ࢌ૛ ࢌ૜ 
 ૚ 0.0000 0.0000 1.0000࡯
 ૛ 0.3400 0.6600 0.0000࡯
 ૜ 1.0000 0.0000 0.0000࡯
 ૝ 1.0000 0.0000 0.0000࡯
 ૞ 1.0000 0.0000 0.0000࡯
 ૟ 1.0000 0.0000 0.0000࡯
 ૠ 1.0000 0.0000 0.0000࡯

Results 0.9299 0.0795 0.1803 
L2-1 ࢌ૚ ࢌ૛ ࢌ૜ 
 ૚ 0.0000 0.0000 1.0000࡯
 ૛ 1.0000 0.0000 0.0000࡯
 ૜ 0.7600 0.2400 0.0000࡯
 ૝ 0.0000 0.0000 1.0000࡯
 ૞ 1.0000 0.0000 0.0000࡯
 ૟ 1.0000 0.0000 0.0000࡯
 ૠ 1.0000 0.0000 0.0000࡯

Results 0.5948 0.0289 0.2825 
L2-2 ࢌ૚ ࢌ૛ ࢌ૜ 
 ૚ 0.0000 0.0000 1.0000࡯
 ૛ 1.0000 0.0000 0.0000࡯
 ૜ 0.2800 0.7200 0.0000࡯
 ૝ 0.0000 0.0000 1.0000࡯
 ૞ 1.0000 0.0000 0.0000࡯
 ૟ 1.0000 0.0000 0.0000࡯
 ૠ 1.0000 0.0000 0.0000࡯

Results 0.5705 0.0867 0.2825 
A1 ࢌ૚ ࢌ૛ ࢌ૜ 
 ૚ 0.0000 0.0000 1.0000࡯
 ૛ 1.0000 0.0000 0.0000࡯
 ૜ 1.0000 0.0000 0.0000࡯
 ૝ 0.0000 0.2379 0.7621࡯
 ૞ 0.7714 0.2286 0.0000࡯
 ૟ 1.0000 0.0000 0.0000࡯
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 ૠ 1.0000 0.0000 0.0000࡯
Results 0.5376 0.0865 0.2582 

R ࢌ૚ ࢌ૛ ࢌ૜ 
 ૚ 0.0000 0.0000 1.0000࡯
 ૛ 1.0000 0.0000 0.0000࡯
 ૜ 0.8400 0.1600 0.0000࡯
 ૝ 0.0000 0.0000 1.0000࡯
 ૞ 0.0000 0.0000 1.0000࡯
 ૟ 1.0000 0.0000 0.0000࡯
 ૠ 0.7610 0.2390 0.0000࡯

Result 0.2643 0.0481 0.3630 
A2 ࢌ૚ ࢌ૛ ࢌ૜ 
 ૚ 0.0000 0.0000 1.0000࡯
 ૛ 1.0000 0.0000 0.0000࡯
 ૜ 1.0000 0.0000 0.0000࡯
 ૝ 0.0000 0.0000 1.0000࡯
 ૞ 1.0000 0.0000 0.0000࡯
 ૟ 1.0000 0.0000 0.0000࡯
 ૠ 1.0000 0.0000 0.0000࡯

Results 0.6069 0.0000 0.2825 

C. Third Step 
The weight of each parameter in each grey class is 

calculated using (4). The results obtained are shown in Table 
6.  

Table 6: Clustering weight values of each parameter 

Parameters Weight of Grey Classes 
 ૜࡭ ૛࡭ ૚࡭

 ૚ 0.0462 0.1205 0.1803࡯
 ૛ 0.0361 0.1205 0.2395࡯
 ૜ 0.0506 0.1205 0.1676࡯
 ૝ 0.3468 0.1205 0.1022࡯
 ૞ 0.3035 0.2530 0.0805࡯
 ૟ 0.0867 0.1446 0.1150࡯
 ૠ 0.1301 0.1205 0.1150࡯

D. Fourth Step 
Using the clustering coefficient of each parameter and (5), 

the class of each monitoring point is defined. The results are 
presented in Table 7, in which we can appreciate the 
maximum value highlighted with the purpose to have 
visualization understanding regarding the class obtained. 

 
Table 7: Coefficient and class category of each point 

Monitoring 
points 

Subcategory A Class ࡭૚ ࡭૛ ࡭૜ 
L1-1 0.9705 0.0112 0.0000 ܣଵ 
L1-2 0.9566 0.0165 0.0000 ܣଵ 

P 0.9358 0.0795 0.1907 ܣଵ 
L2-1 0.6399 0.0000 0.2988 ܣଵ 
L2-2 0.6399 0.0000 0.2988 ܣଵ 
A1 0.5763 0.0865 0.2731 ܣଵ 
R 0.2032 0.0288 0.5035 ܣଷ 

A2 0.6399 0.0000 0.2988 ܣଵ 
 

 
5. RESULTS AND DISCUSSION 
 

5.1 About the Case Study 
After processing the data of each monitoring point, results are 
shown in Table 8 and will be analyzed in the following lines. 
 

Table 8: Processed data results 

Body Monitoring 
Point Code Class 

Suches 
Lagoon ESP-AS-01(*) L1-1 A1 

Suches 
Lagoon ESP-AS-02(*) L1-2 A1 

Catchment 
area ESP-AS-03(*) P1-3 A1 

Aricota 
Lagoon ESP-AS-04(*) L2-1 A1 

Aricota 
Lagoon ESP-AS-05(*) L2-2 A1 

Southern 
Trough ESP-AS-06(*) A1 A1 

Locumba 
River ESP-AS-07(*) R A3 

Northern 
Trough ESP-AS-08(*) A2 A1 

 
From the results shown in the Table 8, it is obtained that 
points L1-1 and L1-2, which correspond to Suches lagoon, 
belong to subcategory ܣଵ according to Peruvian Law, since 
all the parameters analyzed show concentrations equal or 
lower than the limit established in it. In 2009, INGEMMET 
[23] carried out hydrochemical studies in the Locumba River 
Basin whose results are in agreement with the ones presented 
in this paper. According to the INGEMMET in 2009 and the 
results obtained in the present paper, the water from Suches 
lagoon could be used for the human consumption after a 
simple and regular disinfection process. 
Likewise, point P1-3 is classified in the subcategory  
ଵܣ  of the Peruvian law. However, it has high levels of 
electrical conductivity and intermediate concentrations (less 
than the proposed limit for ଵܣ ) of oxygen dissolved. 
Regarding the other parameters, it has been probed that they 
are found in an optymal state of quality. This point is located 
in the Quebrada Honda sub-basin of the Locumba River basin, 
which had relatively low levels of electrical conductivity 
(around 400 µS / cm, 2009 values) [23], compared to what 
was recorded in this study (2019 value); which indicates that 
the levels of electrical conductivity have increased over the 
last 10 years. 
According to the hydrochemical analysis of the Quebrada 
Honda sub-basin by INGEMMET in 2009, Pampa Sitana 
presented high values of electrical conductivity (around 4800 
µS/cm) with a pH greater than 8; this has indicated a high 
content of salts and gypsums in the underground levels and in 
the outcrops of that sector [3]. Likewise, in 2010, DIGESA 
detected high concentrations of heavy metals in the waters 
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that filter from the Quebrada Honda Tailings Reservoir (north 
of Pampa Sitana) to the Pampa Sitana sector, where the water 
is used for agriculture [2]. Furthermore, according to the 
INGEMMET analysis of 2009, this sector does not have 
natural arsenic refills, but it was above the permitted values. 
However, point P1-3, which connects the mine with the 
reservoir, presents heavy metal values below standards that 
may indicate the remediation has already been carried out or 
there is underground infiltration of contaminated water of the 
tailings reservoir that resurfaces in the Pampa Sitana sector. 
According to chapter 2 of the Toquepala Closure Plan [14], 
the tailings of Quebrada Honda are mainly composed of 
copper, iron, sulfur, molybdenum sulfide, aluminum oxide 
and silica, so that in case that an analysis is carried out in the 
Pampa Sitana surface waters, these elements and compounds 
should be in high concentrations. 
Points L2-1 and L2-2, which correspond to a natural 
waterbody (Aricota lagoon), show a similar pattern in the 
parameters analyzed above. On the one hand, oxygen 
dissolved, iron, cadmium and lead show concentrations 
inferior than the lower limit established in the subcategory  
 ଵ (water that can be made drinkable with disinfection). Onܣ
the other hand, values of arsenic and electric conductivity are 
considerably elevated, even higher than the upper limit of the 
subcategory ܣଷ (water that need an advanced treatment to be 
drinkable). These results agree with the ones obtained by the 
INGEMMET in 2009 [23], when the Locumba River Basin 
was characterized. They found high concentrations of arsenic 
and boron, as well as high conductivity in waters located in 
the southern part of Callazas River and Calientes Sub Basins 
due to the presence of the Yucamane and Tutupaca 
Volcanoes. Thus, the elevated arsenic concentration and 
conductivity values obtained in the lagoon might be explained 
by its effluent rivers, which flows through the basins 
previously mentioned. 
Based on the results obtained by the grey clustering method, 
the sample taken from the Locumba River, which corresponds 
to point R of sampling, is the only one that is in subcategory 
ଷܣ . This point is located 100 m from the entry of the Ite 
tailings deposit, which used to receive all the tailings from the 
Toquepala and Cuajone mines some years ago and, when 
deposited, expanded the coastal perimeter causing problems 
of contamination and ecosystem imbalance [2]. The low water 
quality at this point could be attributed to that fact since the 
filtration of contaminants in the old tailings deposit can affect 
the surrounding areas. Furthermore, a study in the area [4] 
showed that the part of the central delta, where the deposition 
of heavier and thicker sulfides took place, contains 
approximately 4% pyrite and traces of chalcopyrite, 
molybdenite and chalcocite-covelite. These results support 
the high Fe content of sample 7, which was taken nearby. 
Points A1 and A2 (troughs) also belong to this ancient tailing 
area, reason for which it was expected to have a poor water 
quality; however, both of them belong to subcategoryܣଵ . 
These results can be attributed to the fact that Southern Peru 
Copper Corporation (SPCC) carried out a remediation by 
installing a wetland cover on 80% of the affected area, with 

the exception of the central and near-shore areas [4]. These 
two points are in the north and south areas of the tailings 
deposit, so according to the results of these points this 
remediation would have been successful and beneficial. 
The arsenic present at points L2-1 and L2-2 has a natural 
origin [23], which may be the explanation for the high content 
at points A1, R and A2. However, the 2009 INGEMMET 
analysis indicates that there is a high arsenic content in Pampa 
Sitana which is located in an area not influenced by high 
concentrations of arsenic indicating anthropogenic 
contamination. For this reason, it is possible that the arsenic in 
points A1, R and A2 is a product of the lack of remediation of 
the Ite wetland. Likewise, it is worth mentioning that the 
arsenic content decreases as the surface waters move away 
from points L2-1 and L2-2 [23], so the high content in Pampa 
Sitana, at points A1, R and A2 is unlikely to come from these 
sources rich in arsenic. 
Despite the subcategories assigned in the present study using 
the grey clustering method, it has been identified that water in 
the Ite district needs an advanced treatment to be made 
drinkable (which makes it belongs to subcategory ܣଷ) due to 
the elevated arsenic concentrations found in the area [23]. 
This discrepancy in the results might be caused due to the 
maximum weight to each parameter assigned according with 
Peruvian law.  
Only based on DIGESA report, it is not possible to identify if 
current activities of the mining company have a negative 
impact on water quality of Ite district. Therefore, it is 
necessary to analyze intermediate points at Pampa Sitana in 
order to establish a causal relationship. Furthermore, more 
parameters as sulfate and total suspended solids should be 
measured in all points for this purpose. For example, sulfate 
concentrations have been successfully combined with other 
parameters to correlate the impact of acid mine drainage on 
water quality of nearby areas [24], [25]. 

5.2 About the Methodology 
Grey Clustering is a useful mathematical method that enables 
us to classify and weight the sampling data according to the 
standards of the Peruvian law (and therefore its different 
subcategories ଵܣ	 , ଶܣ	  and ଷܣ	 ). According to other authors 
such as [7], [11]it is an optimal method to study the 
environmental impact on the quality of surface waters. 
Furthermore, the method can detect negative anomalies as it 
was observed in the difference between the score of points 
L1-1, L1-2 and P with the rest of the monitoring points. 
Additionally, the pollutions caused by high concentrations of 
arsenic could be identified. However, it does not show a 
difference between values a little or slightly above the 
established by the lowest quality class, even if in the reality a 
different water treatment must be needed. 
 
6. CONCLUSIONS 
 
The results obtained in this study provide a broad overview of 
the effects of the Toquepala mine on water resources that are 
around it or under its influence. As a result, we could observe 
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that the water from Suches lagoon (represented by points L1 
and L2) can be used for human consumption, after the 
respective treatment. The Catchment area (point P1-3) that is 
between the mine and the current tailings deposit also 
complies with the ܣଵ  standard but shows an increase in 
electrical conductivity over the last 10 years, which must be 
taken into consideration. The natural water of Aricota lagoon 
(points L2-1 and L2-2) is suitable for human consumption; 
however, treatment must consider the high values of arsenic 
and electrical conductivity, which are probably due to the 
influence of effluents from nearby volcanoes. Water of 
LocumbaRiver (point R), at least, in the location of the point 
studied, is not suitable for human consumption as the values 
analyzed did not meet the ܣଵ standard and its proximity to the 
Ite tailings deposit was not completely remedied. Finally, the 
troughs (points A1 and A2) belonged to the ܣଵ standard, but 
since they are in the Ite tailings area, other uses should be 
assigned for them. 
Regarding the methodology, Grey Clustering method is very 
effective and practical to classify and weight the sampling 
data according to the standards of the Peruvian law. Also, 
despite the fact that most of the parameters are positive, the 
method is able to detect the negative anomalies presented. For 
this reason, despite the fact that points L2-1, L2-2, A1 and A2 
belong to subcategory ܣଵ of Peruvian law, these presented a 
lower score than points L1-1, L2-2 and P indicating the 
presence of a parameter with values above the standards. 
Based on the notable difference in quality at points P (near the 
nowadays mining operations) and R (near the ancient 
tailings), as well as the huge distance that separates them and 
contaminated upwelling at Pampa Sitana, intermediate 
sampling points should be considered in future analysis in 
order to determinate if an actual contamination caused by the 
mining company exists. Likewise, the same points could be 
reanalyzed measuring sulfate, since it is a strong indicator of 
the presence and evolution of acid mining drainage (AMD) in 
water bodies. Furthermore, due to water close to the informal 
agricultural area is polluted (point R), both the soil and 
agricultural products in this zone must be analyzed. 

REFERENCES 
1. MINEM, Reglamento para la protección ambiental en 

la actividad minero - metalúrgica, 1993. 
2. S. Pérez-Jiménez, Impacto ambiental de la Compañía 

minera Southern Perú Cooper Corporation en 
América Latina: Una aproximación histórica de 
comienzos del siglo XX a la actualidad, Rev. 
Geográfica América Cent., vol. 3, no. 61E, pp. 489–503, 
2018. 

3. A. Churata Neira, Historia de la contaminación de la 
bahía de Ite por la empresa minera Southern Perú, La 
Vida la Hist., vol. 6, no. 10, pp. 70–79, 2019. 

4. N. Diaby, B. Dold, E. Buselli, and R. Vicetti, Effects on 
element mobility by the construction of a wetland on 
the marine shore porphyry copper tailings deposit, 
Bahía de Ite, Peru, 7th Int. Conf. Acid Rock Drain. 

2006, ICARD - Also Serves as 23rd Annu. Meet. Am. 
Soc. Min. Reclam., vol. 1, pp. 498–506, 2006. 
https://doi.org/10.21000/JASMR06020498 

5. R. Pajuelo, Publicidad de minera Southern no dice 
toda la verdad sobre los humedales de Ite, Diario La 
República, 2015. 

6. A. Delgado and I. Romero, Environmental conflict 
analysis using an integrated grey clustering and 
entropy-weight method: A case study of a mining 
project in Peru, Environ. Model. Softw., vol. 77, pp. 
108–121, Mar. 2016. 

7. J. Wang et al., Application of Grey Clustering Method 
Based on Improved Analytic Hierarchy Process in 
Water Quality Evaluation, MATEC Web Conf., vol. 
246, pp. 3–7, 2018. 
https://doi.org/10.1051/matecconf/201824602004 

8. S. Liu and Y. Lin, Grey Systems Theory and 
Applications, vol. 53. Berlin, Heidelberg: Springer 
Berlin Heidelberg, 2010. 

9. OEFA, Reporte Público de Supervisión, 2019. 
10. MINAM, Ministerio del Ambiente (MINAM). 

Estándares de Calidad Ambiental para Agua (ECA), 
El Peru., pp. 6–9, 2017. 

11. X. Q. Fu and Z. H. Zou, Water Quality Evaluation of 
the Yellow River Basin Based on Gray Clustering 
Method, IOP Conf. Ser. Earth Environ. Sci., vol. 128, no. 
1, 2018. 

12. A. Delgado, A. Espinoza, P. Quispe, P. Valverde, and C. 
Carbajal, Water quality in areas surrounding mining: 
Las Bambas, Peru, Int. J. Innov. Technol. Explor. Eng., 
vol. 8, no. 12, 2019. 

13. A. Delgado, D. Vriclizar, and E. Medina, Artificial 
intelligence model based on grey systems to assess 
water quality from Santa river watershed, in 2017 
Electronic Congress (E-CON UNI), 2017, pp. 1–4. 

14. Southern, Plan de Cierre de Minas a Nivel de 
Factibilidad del Proyecto Ampliación de la 
Concentradora Toquepala y Recreciemiento del 
Embalse de Relaves de Quebrada Honda, 2015. 

15. EPA, Water: Monitoring and Assessment, United 
States Environmental Protection Agency, 2012. . 

16. P. R. Kannel, S. Lee, Y. S. Lee, S. R. Kanel, and S. P. 
Khan, Application of water quality indices and 
dissolved oxygen as indicators for river water 
classification and urban impact assessment, Environ. 
Monit. Assess., vol. 132, no. 1–3, pp. 93–110, 2007. 
https://doi.org/10.1007/s10661-006-9505-1 

17. USGS, pH and Water, 2002. . 
18. R. Singh, S. Singh, P. Parihar, V. P. Singh, and S. M. 

Prasad, Arsenic contamination, consequences and 
remediation techniques: A review, Ecotoxicol. 
Environ. Saf., vol. 112, pp. 247–270, 2015. 

19. A. Akcil and S. Koldas, Acid Mine Drainage (AMD): 
causes, treatment and case studies, J. Clean. Prod., vol. 
14, no. 12-13 SPEC. ISS., pp. 1139–1145, 2006. 

20. A. Bebbington and M. Williams, Water and Mining 
Conflicts in Peru, Mt. Res. Dev., vol. 28, no. 3/4, pp. 
190–195, Aug. 2008. 
https://doi.org/10.1659/mrd.1039 



     Alexi Delgado et al.,  International Journal of Advanced Trends in Computer Science and  Engineering, 9(4),  July – August  2020, 6660 –  6668 

6668 
 

 

21. R. K. Gautam, S. K. Sharma, S. Mahiya, and M. C. 
Chattopadhyaya, CHAPTER 1. Contamination of 
Heavy Metals in Aquatic Media: Transport, Toxicity 
and Technologies for Remediation, Heavy Met. Water, 
no. October, pp. 1–24, 2014. 

22. G. Livingstone, Peru’s children hit by metal poisoning, 
BBC News, 2018. 

23. G. Cotrina, Y. Olarte, F. Peña, V. Vargas, M. Sánchez, 
and W. Pari, Hidrología de la cuenca del Río Locumba, 
2009. 

24. C. Candeias, P. F. Ávila, E. F. Da Silva, A. Ferreira, A. R. 
Salgueiro, and J. P. Teixeira, Acid mine drainage from 
the Panasqueira mine and its influence on Zêzere 
river (Central Portugal), J. African Earth Sci., vol. 99, 
no. PA2, pp. 705–712, 2014. 
https://doi.org/10.1016/j.jafrearsci.2013.10.006 

25. J. A. Galhardi and D. M. Bonotto, Hydrogeochemical 
features of surface water and groundwater 
contaminated with acid mine drainage (AMD) in coal 
mining areas: a case study in southern Brazil, 
Environ. Sci. Pollut. Res., vol. 23, no. 18, pp. 
18911–18927, 2016. 
https://doi.org/10.1007/s11356-016-7077-3 
 


