
Markad Ashok Vitthalrao et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6653 – 6659

6653


ABSTRACT

Vulnerabilities in security are the main issues in computer
security. Throughout recent years, several strategies have
been used to minimize the risk of software vulnerabilities due
to their high severity impacts. Machine-learning and
data-mining techniques are among other solutions to
investigate such issues in different environments. In this
research, we investigate a comprehensive investigation and
analysis of the several approaches which work for
vulnerability assessment using machine learning as well as
data mining techniques in the field of software vulnerability
analysis and discovery. The work proposed software bug
classification and vulnerability identification form completed
software code using machine learning techniques. Various
pre-processing and natural Language Processing (NLP)
techniques have been used to extract the features from the
heterogeneous dataset and generate normalized feature
vectors. Those vector passes to the training module and
generates Background Knowledge (BK) respectively. Three
different machine learning algorithms like SVM, ANN,
Random Forest have used to detect the bugs and evaluated
proposed system effectiveness with some existing researches.
Finally, we conclude system provides drastic supervision and
better detection accuracy which is most effective and better
than other machine learning algorithms.

Key words : Machine Learning, RNN, Random Forest,
Natural Language processing, classification, Bug
classification, Vulnerability assessments.

1. INTRODUCTION

The Vulnerabilities in software include Program errors. Bugs
are coding errors that cause undesirable action on the system.
All software has some form or something of bugs. Many bugs
cause the device to break, some cause networking to crash,
some prevent a person from logging in and some cause
scanning to fail. Many bugs establish leakage of information
or increase user rights, or otherwise grant unauthorized

access. There are vulnerabilities to protection. When all
software has bugs and certain bugs naturally become
vulnerabilities to security, all technology will have
weaknesses in data protection. Each year lots of security
issues are detected throughout production software.
Weaknesses often manifest in subtle ways that are not evident
to either the code reviewers or the developers. With the wealth
of open-source software accessible for analysis, there's an
experience to study the patterns of bugs that can lead directly
from data to security vulnerabilities. In essence software
vulnerabilities are defined as system operating systems
defects being exploited illegally by unauthorized personnel.
In the information engineering domain device vulnerability
identification is an important area of study. This is partly
because security vulnerabilities are continually disclosed.
While previous studies show the utility of using multiple
detection methods, models, and frameworks to identify
software vulnerabilities, enhancing the efficacy of these
detection models and tools remains a major challenge for
researchers and practitioners alike. In this work, we present a
data-driven security vulnerabilities detection approach using
deep learning. Motivated by the effectiveness of the model in
these fields of study, we use a theoretical framework to
investigate its feasibility within the vulnerability detection
domain. Dynamic analytics tools rely on detailed monitoring
of runtime properties, including log files and memory, and
require a wide range of representative test cases for the
application to be used. Therefore, a standard practice still
relies heavily on domain knowledge to identify the most
vulnerable part for intensive security inspection of a software
system. Machine learning techniques are a common approach
to building vulnerability prediction models. Several software
codes representing functions are selected for use as
vulnerability predictors. The most common features used in
previous work are software metrics (e.g. code size, number of
dependencies, and complexity of code functions), code churn
metrics (e.g. number of lines of code changed), and developer
activity. However, those features cannot distinguish code
regions from different semantics. For certain instances, two
pieces of code can have the same complexity metrics but have
different behaviour’s and therefore have different
susceptibility to attack.

Software Vulnerability Classification based on Machine

Learning Algorithm
Markad Ashok Vitthalrao1, Mukesh Kumar Gupta2

1Department of Computer Science & Engineering, School of Engineering & Technology, Suresh Gyan Vihar
University, Jagatpura, Jaipur, India, ashok.markad@gmail.com

2Department of Computer Science & Engineering, School of Engineering & Technology, Suresh Gyan Vihar
University, Jagatpura, Jaipur, India, mukeshkr.gupta@gyanvihar.org

ISSN 2278-3091
Volume 9, No.4, July – August 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse358942020.pdf

https://doi.org/10.30534/ijatcse/2020/358942020

Markad Ashok Vitthalrao et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6653 – 6659

6654

2. LITERATURE SURVEY

Based on the study, vulnerabilities in software allow
around 30% of all successful attacks. This percentage is
highly significant, as it implies the loss of billions of dollars
due to whatever is mostly an avoidable problem. Below we
review some existing systems that various authors have tried
to deliver similar approaches to eliminate the vulnerabilities.

Marian Gawron et. Al.[1], has proposed a way to manual
sorting, as the number of bugs found every day can no longer
be managed manually. They have introduced two separate
approaches that can automatically detect potential risks on an
overview of the weakness. They assessed our strategies using
the methodologies Neural Networks and Naive Bayes,
respectively, based on widely known vulnerabilities.

Andrej Queiroz. Al. [2] illustrates a Support Vector
Machine (SVM) prediction models, utilizing Twitter
messages (tweets) as a guide to sorting weakness-based
knowledge applicable to particular applications. Tweets
deemed relevant for the paper will be those alerting about new
potential vulnerabilities (being exploited or not), and posting
alerting users to security updates and patches. Non-relevant
information will be known as non-warning information, i.e.:
the message of opinion, general discussion, and non-warning
subjects. Through utilizing simple features including word
frequency (unigram and bigram), the suggested framework
reached a precision of 94%. The attractive class values
showed adequate standards of recall and precision for the
same simple features as, respectively, 68% and 46%. Such
research paves the way for future study of the interaction of
how the protection department addresses information security
warnings and social networking updates..

And Jacob A. Harer. Al. [3] used machine learning to
implement a vulnerability detection approach powered by
data. They then combined hundreds of open-source functions
marked with feedback from a static analyzer. We then
compare methods applied directly to source code with
methods applied to objects derived from the build phase,
seeking a better output of the models based on the source. We
also compare the implementation of deep neural network
models with more conventional models like random forests
and consider the best output is by integrating features learned
from deep networks with tree-based networks. Our
best-performing model ultimately achieves an area below the
0.49 precision-recall curve and an area below the 0.87 ROC
curve.

Jeesoo Jurn, et. Al.[4], introduced a trend in automated
vulnerability detection techniques and tools and remediation.
We propose an automated vulnerability detection method
based on the analysis of binary complexities to prevent a
zero-day attack. We also introduce an automated patch
generation process by modifying the PLT table to respond to
zero-day vulnerabilities.

Detecting software vulnerabilities (or short vulnerabilities)

is a significant problem that has yet to be resolved, as reflected
in many of the vulnerabilities published daily, says Zhen Li et
al[5]. Learning methods must have automatic vulnerability
detection. Deep learning is good for this case since it doesn't
require humans to manually define features. Despite the
tremendous success of deep learning in other domains, its
applicability is not systematically understood for vulnerability
detection. They propose the first systematic framework of
using deep learning to detect vulnerability. The framework,
dubbed Syntax-based, Semantics-based, and Vector
Representations (SySeVR), focuses on getting program
representations that can accommodate syntax and semantic
information relevant to vulnerability.

By Sabetta Antonino, et. Al.[6], an approach that uses
machine learning to test repositories with source code and to
automatically identify commits related to security (i.e.
vulnerability-sensitive ones). They consider the
improvements made by commits to the source code as
documents written in a natural language, classifying them
using standard methods for document classification. Our
method can deliver high accuracy (80%) while ensuring
acceptable recall (43%) by combining independent classifiers
using information from various facets of commitments. Use
information extracted from source code enhancements
provides considerable improvement over the best-known
state-of-the-art methodology while offering a significantly
reduced amount of training data and utilizing a simpler
architecture.

Tamas, Abraham, et. Al. [7] not only explores new
methods but also helps SVR practitioners simplify and
optimize their processes. Given the variety of applications
currently in evidence, we believe that ML will continue to
provide support for SVR in the future as new areas of use are
explored and updated algorithms become available to
improve existing functionality.

Hoa Khanh et. Al. [8], Defined a new approach focused on
the powerful Long-Term Short-Term Memory Model for
automated learning of both semantic and syntactic language.
Our research on 18 Android applications and the Firefox
framework shows that the predictive strength of our learned
apps is stronger than what is accomplished with
state-of-the-art security vulnerabilities computer models for
both in-project prediction and bridge-project prediction.

According to Rebecca L. Russell et.al.[9], amounts of
software bugs are discovered annually, whether publicly
reported or internally identified under proprietary code. This
can pose vulnerabilities a major risk of violence, leading to
system breaches, information leaks, or service denial. They
implemented the enormous amount of open source code
accessible from various files to build a large scale
vulnerability detection system that uses machine learning.
They collected and labeled a massive dataset of millions of
open-source functions to complement existing vulnerability
databases labeled with carefully selected results from three

Markad Ashok Vitthalrao et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6653 – 6659

6655

separate static analyzer’s suggesting possible exploits.
Dataset labeling can be found in https:/osf.io / d45bw/. Using
these datasets they created a fast and scalable vulnerability
detection tool focused on learning the profound
representation of features that interprets fixed source code
directly. We checked both the individual software packages
and the benchmark dataset for NIST SATE IV on our
application platform. Our findings indicate that deep feature
representation learning on source code is a viable candidate
for automatic vulnerability detection software.

Ren jiadong, et. el. [10], Suggested use of software metrics
and a decision tree algorithm to assess system buffer overflow
susceptibility. First, the software metrics were retrieved from
the source code of the program, and data was obtained at the
document level through data analysis from the flexible data
stream. Second, a model was developed to calculate different
forms of directory traversal deficiencies at the functional level,
based on a decision tree algorithm. Finally, the experimental
results showed that our program was running in less time than
the algorithms of the SVM, Bayes, Adaboost, and random
forest and achieved 82.53% and 87.51% accuracy in two
different time frames. The method explored in this paper
predicts exactly system buffer overflow bugs in applications
such as C , C++, and Java.

Ashok M and Dr. Mukesh Gupta proposed [11] software
vulnerability classification using a deep learning approach,
various NLP techniques have used to extract the different
features and train modules accordingly. All deep learning
algorithm they have evaluated like DNN, RNN, PNN, etc and
shows the best classification results.

Hajah T. Sueno, Bobby D. Gerardo, Ruji P. [12] proposed
the improved Naïve Bayes vectorization used Laplace
smoothing to ensure that posterior probabilities are never zero
and logarithmic function to solve the result of the probability
calculation that is too small that cannot be represented. The
text classification algorithms based on the vector space model,
such as the Support Vector Machine (SVM), use this
probability distribution as the vectors to represent the
document that is used to classify the documents. To validate
the improvement of the Naïve Bayes vectorization technique,
the results are compared to TF-IDF vectorization.
H. D. Gadade, Dr. D.K.Kirange [13] have modeled a system
for automatic feature extraction and classification. We have
evaluated the performance of the system using different
performance measures to conclude with appropriate features
set and classification technique for tomato leaf disease
classification. The experimental results validate that Gabor
features effectively recognize different types of tomato leaf
diseases. Accuracy of SVM is better as compared to other
classification techniques but the execution time are more.

3. RESEARCH METHODOLOGY

Social The function is compiled with actual data, the
Proposed method tests the exact behaviour of run-time

Technology. Dynamic analysis can be as quick as the
execution of the program, whereas static analysis Typically
more computation time is needed to obtain Pretty decent
performance. The principal challenge in dynamics Research
methods perform whatever execution is necessary System
routes, and all vulnerabilities disabled in Those itineraries. In
reality, the acquisition of proper test data Set, which will
make the curriculum more diverse, is a Problem regarding
those methods. The most important of these
The weakness of complex analytical methods is that they
cannot guarantee an overview of all the feasible Places to
execute. The dynamic analysis, therefore, isn't Visual and
often used to demonstrate the presence of Relevant
Programming vulnerabilities. The Power Methods are
divided into two main groups. Methods and methods using
symbolic input values and using the real input values
(concrete) to check the Schedule. Cantered on recent complex
advances Methods of analysis, we classify those methods into
three Classes by type of input values applied: Concrete results,
symbolic execution, and the console The execution
methodologies (tangible + meaningful). Examples are
Subgroups that define each class in many more details.

3.1 Concrete Execution
The function is compiled with real statistics in this method, as
well as its behaviour is analysed for vulnerability detection.
During the analysis, there are four methods of dynamic
analysis that use actual data to execute the program: fault
infusion, mutation suitable starting, dynamic taint
assessment, and dynamic system check.

3.2 Fault Injection
In this approach, the software is injected with external faults
to analyse its actions. The external faults exploit the internal
faults and trigger inappropriate behaviours within the system
according to our interpretation. In other words, internal faults
are triggered by the external fault and propagated to meet the
limits of the system. The inability to control external defects
can, therefore, expose a flaw within the system

3.3 Mutation Based Analysis
Acquisition of appropriate tests, as mentioned before Data is a
subject for complex analysis. When it's the plan that has
normal behaviour during the test phase, that means If the
software does not pose any vulnerability or the test The data
do not disclose software vulnerabilities. In the latter case, the
data set is not sufficiently large to turn the vulnerabilities on.
The mutation is a method of Concerned with the
improvement of data set during the analysing dynamics.
Specific vulnerabilities In this method Are intentionally
inserted into the software code. The existing collection of data
does not detect the inserted one vulnerability; related
vulnerabilities will not be contained in the Initial Computer
Edition. In this way, the analyser increases the data set to
detect the Fragility. A version of a system which contains a
specific Vulnerability is established, Mutant is named. For
instance, In mutations, the strncpy() (function is replaced

Markad Ashok Vitthalrao et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6653 – 6659

6656

with strcpy) makes it vulnerable to buffer overflows. A strong
one Test data collection makes a distinction between the
mutants and the original Application version and kills them.
When there's no test case Kills the mutants, and raises the
data collection.

3.4 Dynamic Model Checking
The resultant behaviour of both the program is evaluated by
monitoring and reviewing and its atmosphere, e.g. registers
and stack, for each random input and schedule choice. Here
every state contains the set state of the system. When the
execution enters a state in which the configuration is violated,
the corresponding input value and the option of schedule are
viewed as counterexamples

3.5 Vulnerability Forecasting
Fault prediction is commonly used for predicting the nature or
quantity of the faults left in the File System and will be
enabled in the future. Essentially, it is concerned with the
latest reliability figures of the Device and predicted its
reliability for the future. That's it. Predictions may be either
largely qualitative. The qualitative prognosis describes and
Ranks futures modes of failure. The case is also Combinations
are established which lead to failures.

3.6 Hybrid analysis
In existing, a lot of research groups combined those other
methods, to make up for them in different ways Weaknesses
on each other. For instance, combine static and dynamic XSS
detection analysis with Security flaws of SQL injection in
PHP applications. The method proposed initially analyses the
code statically and removes the operations in the power flow
diagram. Then these graphs are connected to get a Diagram of
the inter-procedural control flow graph (iCFG). The iCFG
Analysed to extract paths from contaminated Sources in it to
sinks. For every laver, backward Slicing is used to detect
declarations affecting the Muddled argument. These
statements are tracked in the Long run. By using a corrupted
attribute in a drain, the Monitoring protocol shall move it to
an oracle to check if it is that vulnerability can be exploited.
The oracle has a database of Known patterns of attack used to
exploit oracle for MySQL query execute a syntactically
limited Review and checks on the SQL queries Protagonists in
unsafe roles tainted. In the process, various weaknesses are
assumed for the disinfecting processes. For instance, the
enforced various techniques have been used over the last
decades Presented to mitigate vulnerabilities of Software. Full
classification of the methods proposed Helps to get a general
understanding of this Zone of research. We described
Software in this paper Vulnerability, as a fault within. By
taking applications into account we listed failure as the type of
fault Method of vulnerability mitigation based on the general
principle Classification of the strategies for reducing faults.
We extended the general list of mitigating faults Methods,
described in the Computer sense Vulnerability, and the
addition of more detailed subclasses. We have classified risk
reduction strategies into four Key classes: Prevention of

vulnerability, vulnerability Tolerance, the elimination of
vulnerability, and vulnerability Prediction. The methods for
preventing vulnerabilities Test to prevent software from
happening Fragility. Security of Software and secure coding
Examples of those initiatives are best practices. The
avoidance of vulnerability still creating efforts,
vulnerabilities.

4. PROPOSED SYSTEM DESIGN

This section describes the actual working of the proposed
system. Here the different methods to analyze whether the
cloned code can be refactored or not has been described in
detail. Moreover, after the analysis, some algorithms are
explained in detail which performs the function of refactoring
of code. Thus the brief process of vulnerability assessment
and bug triage is explained in this section.

Figure 1: Proposed System Architecture Design

The above figure 2 shows a system overview of execution
process flow, and how it works with different algorithms.
Initially, we have a dataset of various software codes that
contain numerous functions as well as procedures. The data
set has processed buy Natural Language Processing with
some basic algorithms, tokenization husband to splitting the
data into separate words. Stop word removal is another
algorithm that has used to eliminate stop words that are
already available in programming functions or procedures.
Porter stemmer algorithm has used to extract features and
finally, we use filtration technique for eliminates
misclassified instances or null values. The TF-IDF features
extracted based on the density of respective tokens; this is the
technique for feature extraction used in training as well as
testing respectively. The vector space model has generated for
feature selection purposes and boosting with information gain
to get the best feature from the vector space model. Three
different machine learning algorithms have been illustrated
all training as well as testing. Once training has done system
automatically generates some background knowledge
according to a supervised learning strategy. This technique
has been applying to test data set and classify detection
accuracy for heterogeneous data on different platforms.

Markad Ashok Vitthalrao et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6653 – 6659

6657

5 ALGORITHM DESIGN

The below algorithms has used during the features extraction
with NLP, entire NLP features not sufficient for classification
and generates the train modules. Using below algorithms we
extract some features and some NLP features will provide
better vector space for selected features.

Algorithm for find edges from each tree node
This algorithm is responsible to find the clone opportunities.
Input: each class as TreeNode
Output: Find all similar edges Treenodelist from TreeNode
Array list=Treenodelist;
Step 1: Read each Link from Treenode
Step 2: if (Treenode.pattern (Linknodepattern))
Step 3: Treenodelist  Treenode
 End for
Step 4: execute step 1 on all TreeNode

Algorithm for finding clones from master class
This algorithm is responsible for finding out the clones from
the possible opportunities of clones detected in previous step.
Input: Master class M with multiple subclass
Output: Classified clones viz (Type1, Type2, Type3)
Temporary variables: Reader, ArrayList T1, T2, T3
Step 1: read each line data= Reader. Line ()
Step 2: check pattern from (data)
 if (clone.Node.mapped.single (data))
 T1= data. Node
 Else if (clone.Node.mapped.double (data))
 T2=data. Node
 Else if (clone.Node.mapped.tripple (data))
 T3=data. Node
Step 3: consider as mapped node of (T1, T2, and T3)
Step 4: classify all clones as Type(1)…….Type(3)
Step 5: Show all clones
 End for

Algorithm for Precondition violation checking
This algorithm is for checking out the precondition violation.
If one precondition is not violated then that clone is
considered as refactorable clone opportunity, otherwise it will
be not processed further to find a refactorable clone. This will
give us possible refactorable clone.

Input each class C with nodes
Output: Boolean 1 if violet else 0

Step 1: Read each line from data=reader.read©
Step 2: if(data.contains(break,control) || SubClass.Type ||
Param name diff || does not have void Type || continue, break
|| conditional(return) || Equals (break,continue))
 Early stop, violation
Step 3: end for

Algorithm A statement mapping process based on nesting
structure.
This algorithm gives us refactorable clones form possible
refactorable opportunities.
Input: two isomorphic NSTs
Output: the final mapping solution
Step 1: SetLength = NSTi.Length +NSTJ.Length
Step 2: while level SetLength !=0 do
Step 3: cpNodesi = nodes at level of NSTi
Step 4: cpNodesj = nodes at level of NSTj
Step 5: for each cpi 2 cpNodes i do
Step 6: SimScore =Mapping (NSTi, NSTj)
Step 7: if (SimScore ==0)
 Count ++
End for
Step 8: if(Count>1)
 Display to as refactoring possible.
Step 9: end procedure

6. RESULTS AND DISCUSSIONS

The implementation of the proposed system has been
completed for the training module. As per our first module,
we have used standard data from various .java classes set of
1000 files for the dataset. The below figure 2 shows the time
required during the processing of whole data

Figure 2 : Time required in seconds for data processing using
proposed techniques

In the actual classification base, experimental analysis has
done with various cross-fold validations. From 1000
heterogeneous class files have distributed in different code
packages which contain different vulnerabilities and
violations of code permissions. All data have evaluated with
given three algorithms, the achieve results shows in below
figures.

Figure 3: Classification accuracy of all machines learning
algorithm on different dataset

Markad Ashok Vitthalrao et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6653 – 6659

6658

According to above figure 3 we conclude on machine
learning, classification algorithms provide a better
classification accuracy on heterogeneous data set Moreover
out of three algorithms support vector machine provide the
best classification algorithms then artificial neural network
and random forest. Three different cross-validation
techniques evaluated 0with all the algorithms and SVM
provides better around 91.0% classification and detection
accuracy in each iteration.

7. CONCLUSION

Vulnerabilities in security are defined as system defects
that are illegally exploited by unauthorized personnel.
Thousands of safety problems are found in production
software each year. Vulnerabilities sometimes appear in
hidden forms that Software testers can’t identify or left.
Machine learning algorithms are a popular method for
developing predictive models of vulnerability, authors add.
They suggest the data-driven method of finding weaknesses
utilizing deep learning is a possible solution. In this work, we
will develop a cost-effective tool for developing
heterogeneous vulnerability assessment and bug triage on
windows as well as a web platform. Many tools don’t support
for a web-based application to detect code vulnerability. The
system can work different datasets to extract the features and
detect the vulnerability. SVM provides a better classification
than the other two machine learning classifiers. In future
developers to be needed is that to detect for code triage
runtime mobile-based application programs so existing tools
do not supports mobile application programs. Now a day’s
need is that in software engineering code clone management.
Good quality of design achieved with the help of bugs free
code clone in developing software. With the help of good
quality of software improve the productivity of the software.
Some several programmers are to be used in the future
research management scope are as following.

 Improve the code clone detection system
 Visualization of clones
 Automating Refactoring Systems.

REFERENCES
1. Gawron, Marian, Feng Cheng, and Christoph Meinel.

Automatic vulnerability classification using machine
learning. In International Conference on Risks and
Security of Internet and Systems, pp. 3-17. Springer,
Cham, 2017S.
https://doi.org/10.1007/978-3-319-76687-4_1

2. Queiroz, Andrei, Brian Keegan, and Fredrick Mtenzi.
Predicting Software Vulnerability Using Security
Discussion in Social Media, (2017).

3. Harer, Jacob A., Louis Y. Kim, Rebecca L. Russell, Onur
Ozdemir, Leonard R. Kosta, Akshay Rangamani, Lei H.
Hamilton et al. Automated software vulnerability

detection with machine learning, arXiv preprint
arXiv:1803.04497 (2018).

4. Jurn, Jeesoo, Taeeun Kim, and Hwankuk Kim. An
Automated Vulnerability Detection and Remediation
Method for Software Security. Sustainability 10, no. 5
(2018): 1652.

5. Li, Zhen, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu,
Zhaoxuan Chen, Sujuan Wang, and Jialai Wang.
SySeVR: A Framework for Using Deep Learning to
Detect Software Vulnerabilities. arXiv preprint
arXiv:1807.06756 (2018).

6. Sabetta, Antonino, and Michele Bezzi. A Practical
Approach to the Automatic Classification of
Security-Relevant Commits. In 2018 IEEE
International Conference on Software Maintenance and
Evolution (ICSME), pp. 579-582. IEEE, 2018.
https://doi.org/10.1109/ICSME.2018.00058

7. Han, Yi, Benjamin IP Rubinstein, Tamas Abraham,
Tansu Alpcan, Olivier De Vel, Sarah Erfani, David
Hubczenko, Christopher Leckie, and Paul Montague.
Reinforcement learning for autonomous defence in
software-defined networking. In International
Conference on Decision and Game Theory for Security,
pp. 145-165. Springer, Cham, 2018.
https://doi.org/10.1007/978-3-030-01554-1_9

8. Dam, Hoa Khanh, Truyen Tran, Trang Thi Minh Pham,
Shien Wee Ng, John Grundy, and Aditya Ghose.
Automatic feature learning for predicting vulnerable
software components. IEEE Transactions on Software
Engineering (2018).
https://doi.org/10.1109/TSE.2018.2881961

9. Russell, Rebecca, Louis Kim, Lei Hamilton, Tomo
Lazovich, Jacob Harer, Onur Ozdemir, Paul Ellingwood,
and Marc McConley. Automated vulnerability
detection in source code using deep representation
learning. In 2018 17th IEEE International Conference
on Machine Learning and Applications (ICMLA), pp.
757-762. IEEE, 2018.
https://doi.org/10.1109/ICMLA.2018.00120

10. Ren, Jiadong, Zhangqi Zheng, Qian Liu, Zhiyao Wei,
and Huaizhi Yan. A Buffer Overflow Prediction
Approach Based on Software Metrics and Machine
Learning. Security and Communication Networks 2019
(2019).
https://doi.org/10.1155/2019/8391425

11. Markad Ashok Vitthalrao and Mukesh Kumar Gupta
Software Vulnerability Classification Based On Deep
Neural Network, International Journal of Engineering
and Advanced Technology (IJEAT) ISSN: 2249 – 8958,
Volume-9 Issue-1, October 2019
https://doi.org/10.35940/ijeat.A9746.109119

12. Hajah T. Sueno, Bobby D. Gerardo, Ruji P. Multi-class
document classification using SVM Based on
improved Naive Bayes Vectorisation Techniques,
International Journal of Advanced Trends in Computer
Science and Engineering, pp. 3937-3943 ,Volume 9,
No.3, 2020.

Markad Ashok Vitthalrao et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6653 – 6659

6659

https://doi.org/10.30534/ijatcse/2020/216932020
13. H. D. Gadade, Dr. D.K.Kirange, Machine Learning

Approach towards Tomato Leaf Disease
Classification, International Journal of Advanced
Trends in Computer Science and Engineering,
pp.490-495, Vol.9 , No.1,2020.

 https://doi.org/10.30534/ijatcse/2020/67912020

