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ABSTRACT 
 
Effective optimization of the Relay Node Placement (RNP) 
problem is a key to realize efficient deployment of 
WSNs.  Inefficiently addressing such a design problem would 
adversely impact the overall performance of WSNs in terms 
of many aspects including energy efficiency. In this paper, the 
RNP problem is addressed as a multi-objective optimization 
problem for improving network coverage, minimizing energy 
consumption, and maintaining low deployment cost. We 
considered unconstrained deployment of energy-harvesting 
RNs in pre-established stationary WSNs. The RNP problem 
was approached in this work using a novel Goal Programming 
(GP)-driven metaheuristic approach. It is based on 
formulating the optimization problem using the weighted-sum 
GP model and then applying the Analytical Hierarchy Process 
(AHP) method for effective assignment of the relative weights 
to the decision variables. To efficiently solve the 
GP-formulated optimization problem, we developed an 
enhanced GA model integrating a greedy technique. We 
focused our evaluation on experimentally investigating how 
good the AHP technique is in generating the parameters for 
the GP model considering the RNP problem. As the 
evaluation results indicated, our GP-driven greedy-enhanced 
GP optimization model provided a highly comparable 
solution quality to that of the multiobjective GA model. It 
even outperformed the multiobjective GA model in those 
RNP problems with relatively small scale setups. 
 
Key words: Wireless Sensor Network, Goal Programming, 
Analytical Hierarchy Process, Metaheuristics.  
 
1. INTRODUCTION 
 
Wireless Sensor Networks (WSNs) have emerged as one of 
the key established technologies for a wide range of 
applications in many domains such as industry, healthcare, 
surveillance, agriculture, and utilities. In such applications, a 
 

 

number of small-sized sensor nodes of limited computing, 
energy, and communication resources are placed over 
varying-scale deployment areas for long-term operation. They 
typically participate in sensing surrounding environments and 
communicating captured sensor data using low-power 
wireless communication technologies. 
Realizing efficient deployment of WSNs is challenging unless 
careful design of different networking aspects is 
accomplished. One of the key design principles in WSNs is 
the deployment of additional nodes, the Relay Nodes (RNs), 
in a higher tier of the network architecture to interconnect and 
relay the traffic of the sensor nodes. These are mains-powered 
or energy-harvesting networking devices of higher computing 
capabilities. This is important to alleviate the strict limitations 
of the resource-limited sensor nodes and improve network 
lifetime. However, there is a critical need to identify the 
optimal number and best locations of RNs to be deployed for 
efficiently covering the network area with cost-effective and 
energy-efficient deployment. Inefficiently addressing such a 
design problem would impact the overall performance of 
WSNs in terms of energy efficiency, deployment cost, and 
network coverage. 
This is known as the Relay Node Placement (RNP) problem 
which is one of the critical design problems in WSNs. It is a 
Non-Deterministic Polynomial-time (NP)-hard optimization 
problem. It can be efficiently addressed to successfully meet 
design requirements and achieve multiple optimization 
objectives. A number of conflicting objectives can be 
formulated in single problem definition. These could include 
network connectivity, area coverage, energy efficiency, 
overall performance, and cost effectiveness. 
This would entail the need for metaheuristics to have a 
polynomial time methods providing near optimal solutions. 
However, deterministic approaches can also be considered to 
establish the optimization solution. In general, establishing an 
efficient solution to this kind of problem would revive the 
potentiality of improving WSN deployment. The outcome of 
this work will contribute to the acceleration of WSN 
development for a wide range of applications. 
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In this paper, the RNP problem is addressed as a 
multi-objective optimization problem considering 
unconstrained deployment of energy-harvesting RNs in 
pre-established stationary WSNs. Different optimization 
criteria were considered in our objective functions for 
improving network coverage, minimizing energy 
consumption, and maintaining deployment cost. To 
efficiently address such an optimization problem, we propose 
the development of a novel Goal Programming (GP)-based 
metaheuristic approach. It is based on weighted-sum GP 
formulation of the RNP problem to determine each objective 
by certain goals estimated based on realistic setups of 
different WSN applications. As there are conflicting 
optimization objectives, the Analytical Hierarchy Process 
(AHP) method is integrated to realize an efficient approach 
for successfully weighting the objectives. An enhanced GA 
model integrating a greedy technique is then developed to 
solve the optimization problem which incorporates the GP 
goals as constraints in addition to the AHP weight 
configurations. In addition, this work will present a more 
practical contribution with the implementation of the 
proposed approach. As indicated by the experimental results, 
the solution quality provided by our GP-driven 
greedy-enhanced GP optimization model was highly 
comparable to that of the multiobjective GA model. 
Moreover, as the RNP problem scaled down, it achieved 
better performance than the multiobjective GA model 
considering varying sets of preferences to the considered 
objectives. 
The rest of the paper is structured as follows: Section2 
presents related research efforts. In Section 3 and 4, we 
present the problem formulation and search space processing, 
respectively. Section 5 describes the proposed optimization 
approach. In Section 6, the evaluation setup is described and 
the experimental results are discussed. The conclusion is 
presented in Section 7. 

2. RELATED WORK  

WSNs are typically characterized by their strictly limited 
resources considering many aspects such as computing 
capacity, communication capabilities, and power supply. 
Therefore, there have been significant research efforts 
devoted to address related optimization problems in WSN. 
Examples are energy efficiency, network routing, security, 
clustering, and mobility support [1]-[5]. Considering the 
complete WSN deployment cycle which goes through 
different phases, most of these problems are considered in the 
post-deployment and redeployment phases [6]. Other WSN 
problems including the RNP problem need to be addressed 
during the pre-deployment and deployment phases. The RNP 
problem is one of the key design problems in WSNs which 
has been addressed as a challenging NP-Hard optimization 
problem. 
A number of optimization techniques have been adopted to 
address the different optimization problems in WSNs. It has 
been a common practice to approach such a complex problem 
using metaheuristics [7]. However, deterministic algorithms 

such as GP [8] can also be of great use to provide efficient 
optimal solutions using simple formulation. It provides a 
feasible analytical approach providing a mathematical 
programming-based classical scalarization method [1]. 
GP was originally proposed by Charnes et al. in [9] and then 
further extended in [10]-[12]. It is one of the early developed 
methods to support multi-objective optimization problems. In 
contrast to other conventional optimization methods, GP is 
based on a flexible model to reflect real operation conditions 
using simple formulation. Thus, it provides an effective 
approach for enabling linear and non-linear programming to 
optimize multi-objective optimization problems in a simple 
and flexible manner. GP is based on having a user-specified 
target value assigned for each objective and incorporated into 
the problem definition as additional constraints. The main 
working principle of GP is then based on maximizing the 
achievement of the corresponding targets simultaneously. 
This is based on using an achievement function to minimize 
the total of the absolute deviations from the target values of 
the conflicting objective. Thus, the deviations determine the 
objectives of the optimization problem. There are different GP 
approaches including Archimedean (weighted-sum) GP, 
lexicographic (preemptive) GP, multichoice GP, and 
Chebyshev (MINMAX) GP [13]. For example, the 
Archimedean GP model is based on minimizing the weighted 
sum of the deviations whereas the maximum deviation is 
minimized in the Chebyshev GP model. 
Therefore, GP has been successfully applied to a variety of 
multi-objective optimization problems in the domain of 
WSNs. For example, the GP algorithm was adopted in [14] to 
address arbitrary static network deployment in the context of 
Wireless Multimedia Sensor Networks (WMSNs). The focus 
was on optimizing two conflicting objectives: maximizing 
network lifetime while improving the overall network 
throughput to meet the requirements of multimedia services in 
WMSNs applications. The evaluation results showed how 
applicable and feasible the goal programming technique to 
meet the network performance and lifetime requirements of 
real-problems. In [15], a GP-based approach was proposed to 
address energy-efficient event recognition in WSNs. This was 
based on finding the optimal number of active sensor nodes to 
achieve satisfactory recognition performance while ensuring 
lower energy consumption. Therefore, two conflicting 
objectives were considered: improving pattern recognition 
success and minimizing energy consumption. 
In [16], a GP-based approach was proposed to optimize a 
Distributed Denial of Service (DDoS) attack detection scheme 
for WSNs. The optimization was achieved by addressing the 
optimal configuration of a network parameter known as 
application aspect ratio based on two conflicting objects: 
attack detection rate and energy decay rate. The empirical 
analysis of the proposed GP-based approach indicated its 
effectiveness in finding the optimal options for the detection 
scheme. In [17], GP was adopted for addressing the negative 
effects of hidden terminals in Wireless Mesh Sensor 
Networks (WMSNs) running the IEEE 802.15.5 standard, in 
particular, its Asynchronous Energy Saving (ASES) mode. 
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This phenomenon causes message collisions and leads to 
increasing retransmissions and packet loss across the network. 
As a result, the overall performance of the network would 
degrade and energy consumption would increase. The hidden 
terminals problem was formulated as a multi-objective 
optimization problem defining two objectives: maximizing 
network lifetime and minimizing the aggregate message 
collision time. Such a multi-objective formulation was then 
addressed using a GP-based algorithm. 
GP has also been considered for other optimization problems 
in the general field of computer networking. In [18], a 
GP-based approach was proposed to address optimal network 
topology design problems in a remote patient monitoring 
system. The approach integrated a GP variant, namely the 
multi-choice GP, with a S-shaped penalty method, arbitrary 
piece- wise linear utility functions, and trapezoidal utility 
functions. Qualitative and quantitative objectives were 
considered to address the establishment of a complete 
topology network to increase citizen satisfaction under a 
limited budget. In [19], the optimization problem of Quality 
of Service (QoS)-oriented resource allocation in energy 
harvesting systems was addressed. The focus was on limiting 
the impact of uncertainty of harvested energy on QoS 
provisioning. GP was adopted to formulate the problem 
towards minimizing user dissatisfaction while allocating 
resources effectively. Accordingly, two schemes were 
developed for this problem to address offline and online 
resource allocation using a dual decomposition algorithm and 
dynamic programming, respectively. 
There have also been some attempts to address effective 
network deployment using approaches that incorporate 
GP-based formulation into evolutionary algorithms such as 
the Genetic Algorithm (GA). In [20], optimized deployment 
of wireless access points was addressed towards optimal 
wireless LAN design. An integrated optimization approach 
integrating a GP-based problem modelling and a GA scheme 
was proposed. GP was adopted for identifying the target 
subjects of multiple objectives. These include minimizing 
deployment cost, maximizing network coverage, balancing 
access load, and reducing interference. The results 
demonstrated the feasibility and stability of the proposed 
approach to optimize access points deployment considering 
large-scale problems. In [21], the focus was on fault-tolerant 
RN deployment in WSNs to minimize the number of RNs 
while maximizing the connectivity among the RNs and sensor 
nodes. Such an optimization problem was formulated using 
Linear Programming (LP) to identify certain connectivity 
constraints. The GA was then incorporated to find the least 
number of deployment positions that ensure k-connectivity. 
Some researchers have applied Analytic Hierarchy Process 
(AHP) [22] in different WSNs optimization problems 
[23]-[25]. In this paper, we propose a more effective approach 
to formulate the RNP problem using the weighted-sum GP 
model and apply an enhanced GA scheme to optimize 
multiple objectives. These include minimizing deployment 
cost, maximizing network coverage, and improving energy 
efficiency. Moreover, applying the AHP provides an effective 
approach to determine the relative weights for decision 
variables in the optimization problem. It enables effective 

logical computation of the different weights assigned to each 
objective. In order to further enhance our optimization 
approach, we apply AHP to develop a more effective 
weighted-sum GP model. To the best of our knowledge, our 
proposal is the first to consider AHP for calculating weights in 
a weighted-sum GP model. Though we apply this model to 
solve the RNP problem, we expect that other multi-objective 
problems can be solved effectively using this model.  

3.  GP-DRIVEN FORMULATION FOR THE RNP 
PROBLEM 

We construct a weighted-sum goal programming 
formulation [26] for our RNPP problem considering (i) the 
number of RNs, (ii) the distance from each sensor node to its 
nearest RN, and (iii) the energy consumed by each sensor 
node. We express each of these properties as an objective 
function as follows: 

(i) Cost: the cost associated with the procurement, 
installment, and maintenance of RNs that are suggested in a 
candidate solution. Let, max be an integer that we assume to 
be an upper bound for the expected number of RNs. We obtain 
this number by a greedy algorithm described in Section 4. For 
any candidate solution, let rcandidate  be the number of RNs to 
solve a RNP problem, where rcandidate  max. We compute 
cost as the ratio between rcandidate and max. This is a 
minimization objective.  

                              (1) 

As we mentioned above, we computed max by a greedy 
algorithm. We found it as a near optimal number of relay 
nodes experimentally. We expect that if  rcandidate ≥ 0.8max 
then it should be very promising. So our corresponding goal is 
described below. 

pcost = f1 - 0.80 

 (ii) Coverage: the fraction of sensor nodes that can 
communicate with at least one RN. Let s' be the number of 
sensor nodes that can communicate with at least any RN for a 
given solution. This is a maximization objective. 

                                    (2) 

We set a threshold value of 0.97 on the expected lower bound 
on the value of f2. So the corresponding goal is described 
below. 

ncoverage = 0.97 - f2 

 (iii) Energy: Let the maximum distance possible for a 
sensor to reach the nearest RN is limited by c units. Let the 
sum of distances traveled by the sensor nodes, which has the 
nearest RN in c units, be Distance. We compute energy as the 
ratio between Distance and s*c. This is a minimization 
objective. 

                                (3) 

We set a threshold value of 0.50 on the expected lower bound 
on the value of f3. So the corresponding goal is described 
below. 

penergy = f3 - 0.5 
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So the objective function F of our weighted-sum goal 
programming model is formulated as follows: 

F = αcoverage ncoverage + ߚenergy penergy + ߚcost pcost  

where the parameters αcoverage, ߚenergy, ߚcost are the 
corresponding weight factors. These will be computed by 
using AHP. The choice of these parameters can be determined 
by AHP based on users’ perspectives and preferences.  
After that, we use an enhanced GA algorithm to minimize F. 
We understand that there exist a number of powerful 
meta-heuristic algorithms in the literature and complex 
mathematical models to explain RNP problems. However, we 
focus on our primary aim to investigate how good AHP 
techniques are in generating the parameters in GP for RNP 
problems. Our enhanced approach is based on integrating GA 
with a greedy algorithm to effectively determine the upper 
bound on the number of RNs and locate the hotspots in the 
search space. The technique of integrating a greedy algorithm 
with a simple meta-heuristic algorithm can be equally 
applicable to other powerful meta-heuristic algorithms. We 
did our experimentations on a very simple mathematical 
model to represent the RNP problem. We assume that a near 
optimal solution suggested by our solution to this simple 
model should be also a near-optimal solution to a relatively 
complex model. Algorithm 1 OBJECTIVE describes our 
weighted-sum GP approach.  

4.  SEARCH SPACE PROCESSING   

The mathematical model of our RNP problem is completed by 
preprocessing the search spaces, which is described in 
subsection 4.1. Accordingly, the locations of both sensor and 
relay nodes are redefined, and this procedure is explained in 
subsection 4.2. 
 

4.1 Search Space Preprocessing 
Input to RNPP is a list of sensors, each of which is described 
by a point. The list of points is drawn from a 2-D space. We 
will consider this as the search space associated with the given 
RNP problem. The unit of our search space is arbitrary. We 
limit this search space by computing both maximum and 
minimum values in both X and Y direction. The solution to 
RNP problem is also a set of points, each of which describes 
the location of a RN. It should be noted that both input and 
output data are supposed to be continuous variables. This 
makes a RNP problem computationally hard as the optimal 
points can have arbitrary precision during the optimization 
process. To overcome this situation, we build a mathematical 
model of our problem which deals with only integers while 
describing the locations of both sensors and relay nodes.  
Let d be a small value such that if a sensor or relay node’s 
location is moved d units in X or Y direction, it causes 
negligible effect on our near-optimal solution, and the 
distance between any two sensor nodes is more than d. Let 
(xmin, ymin), (xmax, ymin), (xmax, ymax), and (xmin, ymax) be the four 
corners of the smallest rectangle of our search space such that 
all input points (locations of sensors) are inside of it and the 
distance from any sensor to any side of the rectangle is more 
than d. For simplicity, let the length of each side of the 
rectangle be a multiple of d. We divide the rectangle by ( (xmax 
- xmin)/d - 1) straight lines that are parallel to Y and  ((ymax - 
ymin)/d - 1) straight lines that are parallel to X. These two 
groups of straight lines will divide the rectangle in such a way 
that it will have ((xmax - xmin)/d ) * ((ymax - ymin)/d ) number of 
squares, each of the squares has area d2 units. This makes the 
discretization of any point in the search space straight 
forward, which can be described as follows: Let (xi, yi) be a 
point in our search space. This point is located in the square 
marked by a pair of two integers (floor(xi/d), floor(yi/d)).  
The above procedure redefines not only the sensor nodes’ 
positions but also the search space itself. Our new search 
space becomes a grid having ceil((xmax- xmin)/d) and ceil( 
(ymax- ymin)/d) squares in X and Y direction respectively.  In 
this new search space, our computation involves integers only 
considering the locations of sensor and relay nodes.  
The output to our optimization approach will be a set of pairs 
of integers. Each pair defines a particular square in the search 
space, into which we can place a RN. The actual position of 
the RN should not affect our near-optimal solution according 
to the definition of d. 

4.2 Redefinition of Points in Search Space Domain 
Let m = ceil((xmax- xmin)/d) and n = ceil( (ymax- ymin)/d). Now 
the sensor nodes can be described by S, a zero-one matrix of 
order m and n, where  

    

We define s as the total number of sensor nodes. Clearly, 
. 

Q, is a list of s unique pairs of integers, such that each pair 
(i, j) describes a square in which a particular sensor node is 
located, where S[i][j] = 1. 

Algorithm 1 OBJECTIVE 
Input:  Pcandidate, αcoverage, ߚenergy, ߚcost, rcandidate 
Output: a real value that is the evaluation of Pcandidate 
Begin  
1:  total_cost = cost* rcandidate 
2:  pcost = (total_cost/(max*cost)) – 0.8 
3:  coverred_sensor = 0 
4:  total_distance = 0 
5:  total_dist_coverred = 0 
6:  for each pair (i, j) in Q do 
7:        (a, b) =  closest(Pcandidate , (i, j))     
           //closest() finds RN at (a,b) from Pcandidate closest to (j,j) 
8:        total_distance += distance (a, b) to (i, j)  
9:        if distance (a, b) to (i, j) < c then 
10:            ++coverred_sensor 
11:             total_dist_coverred += distance (a, b) to (i, j) 
12:       end if 
13:  end for 
14:  penergy = (total_distance/(s*c)) – 0.5 
15:  ncoverage = 0.97 - (coverred_sensor/s) 
16:  return (ncoverage * αcoverage + penergy * ߚenergy + pcost * ߚcost) 
End 
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Let w be a value such that a sensor node’s signal can travel 
at best. Let c = floor(w/d). It means that a sensor node can 
communicate with a RN if and only if the distance between 
them is at most c square units. In other words, if the nearest 
RN of a sensor node is c squares away from it in both X or Y 
direction, the sensor node cannot communicate with it. 
We also define R as a zero-one matrix of order m and n to 
store the positions of RNs, as follows: 

  

Let r be the total number of RNs, which we expect to find by 
our solution. Clearly, . 
The output of our solution is P, a list of r unique pairs of 
integers, where each pair (i, j) describes a square in our search 
space in the 2-D space, where R[i][j] = 1. We consider P as a 
near-optimal solution to the RNP problem. 

5. ENHANCED METAHEURISTIC OPTIMIZATION  
After formulating our RNP problem using the weighted-sum 
GP model, our proposed solution then proceeds into three 
stages, as follows: 

(i) we compute αcoverage, ߚenergy, ߚcost using AHP.  
(ii) we apply a greedy algorithm to find out some squares 

on the search space in which we observe signals from a 
maximum number of sensor nodes. In other words, the 
greedy algorithm tries to place relay nodes to reduce 
the energy consumption by sensor nodes. As the greedy 
algorithm is used to accelerate the convergence in the 
meta-heuristic algorithms, we are not looking for any 
complete solution from it.  

(iii) we instrument and execute the meta-heuristic algorithm 
to solve the weighted-sum GP with the help of that list 
of squares returned from the greedy algorithm.  

The following subsections provide descriptions of each of 
these three stages.  

5.1 Analytical Hierarchy Process 

AHP is one of multi-criteria decision making method that was 
originally developed by Prof. Thomas L. Saaty [20]. It is a 
method to derive ratio scales from paired comparisons. The 
input to AHP method can be obtained by answering the 
following questions. These questions can be asked to the 
people who want to work with our RNP problem can be: 

a) How much importance do you want to put on cost 
over network coverage? 

b) How much importance do you want to put on cost 
over energy consumption? 

c) How much importance do you want to put on energy 
consumption over network coverage? 

The answer should be in any of the following integer values 
between 1 to 9 or its reciprocal as follows 

a) Equally important (equivalent numeric value is 1) 
b) Moderately important (equivalent numeric value is 3) 
c) Strongly important (equivalent numeric value is 5) 
d) Very strongly important (equivalent numeric value is 7) 
e) Extremely important (equivalent numeric value is 9) 

Any even value (specifically the values: 2, 4, 6, 8) in the 
above list is treated as an intermediary value. For example, let 
cost be moderately important (numerical value 3) than energy. 
Then the importance of energy over cost can be expressed by 
a numeric value of ⅓. 
Once all the comparisons among our objective criterions are 
accomplished, we can apply AHP techniques to compute 
normalized (between [0, 1]) principal Eigenvector. The 
corresponding values will be taken as weights in Algorithm 1.  

5.2 The Greedy Algorithm 

We need to list the following notations in order to explain the 
working principle of our greedy algorithm.  
Let Rgreedy be a zero-one matrix of order m and n, where: 

 
Let rgreedy be the total number of RNs that our greedy 
algorithm suggests to be placed across the search space. It is 
clear that . 

In the greedy algorithm, we assume that each sensor node 
can connect to a RN if the distance between them is equal or 
smaller than cgreedy squares. cgreedy is an artificial value such 
that cgreedy > c. It is expected that rgreedy is inversely 
proportional to the value of cgreedy.. 

Our greedy algorithm is explained with the 
ComputingInfluence and GREEDY algorithm as presented in 
Algorithm 2 and 3, respectively. The input to 
ComputingInfluence is a set of sensor nodes, G. The output of 
this algorithm is I, an integer matrix of order m and n. I[i][j] is 
the number of sensor nodes from G whose signal can be 
reached at square (i, j) assuming that the signal from each 
sensor node can be propagated cgreedy squares in all directions. 
The GREEDY algorithm is an iterative algorithm. The input 
to this algorithm is Q, which is the set of all sensor nodes. In 
each iteration, it computes I using ComputingINfluence. It 
then finds the maximum value in I. Let I[i][j] contains 
maximum value, it then updates with R[i][j] = 1 and deletes 
the sensor nodes which could be served by placing a RN at (i, 
j) before starting the next iteration (if any). 
 
Algorithm 2  ComputingInfluence 
Input:  Set G 
Output:  Matrix I of order m and n 
Begin 
1:  Create a zero matrix I of order m and n 
2:  for each sensor node g in G; where g is at (i, j) do 
3:       for each square (x, y) in I do  
4:               if distance from (i, j) to (x, y) ≤ cgreedy then 
5:                   I[x][y] = I[x][[y]+1 
6:               end if 
7:        end for 
8:  end for 
9:  return I 
End 
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5.3 The Meta-Heuristic Algorithm 

We developed an effective optimization approach by 
having a greedy algorithm integrated with a meta-heuristic 
algorithm. Although this can be equally applicable to other 
powerful meta-heuristic algorithms, we adopted the GA in 
this study. The GA is executed once the greedy algorithm 
completes its execution. We achieve two very important 
information from the greedy algorithm:  

(i) the approximate number of RN that can be used to serve 
all sensor nodes  

(ii) the squares in the search space where sensor nodes are 
more likely to be placed.  

These two outputs are then used to effectively configure the 
GA to solve our RNP problem.  
From the GA, we are expecting two kinds of RNs, as follows: 

(i) rfirstKind: First Kind RNs are the relay nodes that are being 
tried to place near to the squares suggested by the 
greedy algorithm. To describe this kind of RNs, we 
need to introduce another artificial communication 
range couterCircle, where cgreedy > couterCircle > c. In total, 
GA will try to place rgreedy number of RNs of this kind. 
The range of each of the RN’s coordinate values is by 
both adding and subtracting cgreedy with the 
corresponding coordinate positions from greedy 
algorithm. The main purpose of these RNs is to 
increase the coverage metric. During the convergence 
phase of GA, a RN will be considered for fitness value 
if it is, by random choice, not more than couterCircle away 
from the position suggested by the greedy algorithm. 
This technique gives us the flexibility for our GA on 
the number of RNs. We use rfirstKind, to represent the 
total number of RNs of first kind. 

(ii) rsecondKind: Second Kind RNs are the RNs that are being 
tried to place anywhere in the search space. To describe 
this kind of RNs, we need to introduce mouterBox, nouterBox, 
where mouterBox > m and nouterBox > n. The GA will try to 

place a number of RNs of second kind. The range of 
coordinates of each RN is defined as (0, mouterBox) and 
(0, nouterBox). The main purpose of these RNs is to get rid 
of local optima that might be caused by those of first 
kind. The number of RNs of second kind will depend 
on the complexity of RNPP. If the solution from the 
GA algorithm is not satisfactory considering energy 
consumption and network coverage, it can be 
increased. During the convergence phase of the GA, a 
RN will be considered for fitness value if it is, by 
random choice, placed in the legal boundary of the 
search space. This technique gives us the flexibility for 
our GA on the number of RNs. We use rsecondKind, to 
represent the total number of RNs of second kind. 

6. EVALUATION 

6.1 Evaluation Setup 

Effective evaluation of the proposed approach was carried out 
using an experimental dataset which represents multiple RNP 
problem instances with complex and challenging WSN 
setups. In all the instances, we considered unconstrained 
deployment of RNs in a stationary WSN implemented with a 
moderate number of sensor nodes. Sensor nodes were 
considered to be deployed with a random distribution in a 
square-shaped area. We set the same communication range 
and d for the sensor nodes and RNs to be 30m and 3m, 
respectively, for all the experiments. The values of the weight 
factors, αcoverage, ߚenergy, ߚcost, were computed using the AHP 
method. Different sets of weights were generated assuming 
different preferences for varying WSN applications. For 
example, the network coverage was significantly prioritized 
in some of the setups thus AHP gave a weight value to this 
objective higher than those assigned to the energy 
consumption and cost objectives. In other setups, minimizing 
energy consumption was prioritized over the other objectives. 
The main details for the setup of each experiment are given in 
Table 1. 
The implementation and evaluation were accomplished using 
MATLAB R2018b over a system with an Intel Core i5, 2.5 
GHz CPU, 4 GB RAM, and Mac OS. For all the experiments, 
the basic parameters of the GA were configured similarly. 
However, a different initial population was considered in each 
experiment according to the area size of the given problem. 
The number of RNs is provided by the greedy algorithm as an 
input to the GA process. The crossover rate was set to 8%. The 
stall generation and function tolerance value were configured 
to be 50 and 1e-3, respectively. 
To mitigate the randomness effect in such optimization 
processes, each experiment was run for at least 10 times 
independently. Then, the collected results were averaged for 
each experiment. In all the experiments, a confidence level of 
95% was considered. 
To demonstrate its efficiency, a comparison was established 
between the proposed GP-driven GA approach and the pareto 
front generated by a multi-objective GA model. The 
comparison was carried out considering the solution quality 

Algorithm 3   GREEDY 
Input:  Set Q 
Output:   Rgreedy 
Begin 
1:  Set Q1 = Q 
2:  Create a zero matrix Rgreedy of order m and n 
3:  While Q1 ≠ null do  
4:      I = ComputingInfluence(Q1)  
5:      I(i,j) = max(I) 
6:      Rgreedy[i][j] = 1 
7:      for each sensor g in Q1; where g is at (x, y) do   
8:             if distance from (x, y) to (i, j) ≤ cgreedy then  
9:                    delete g from Q1 
10:           end if 
11:     end for 
12: end while 
13: return Rgreedy 
End 
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which was indicated by the values of the objectives: network 
coverage, energy consumption, and cost. We configured the 
multi-objective GA implementation provided in MATLAB to 
find the pareto front for the given RNP problem. The obtained 
pareto fronts for all the three instances are presented in Figure 
1-3. This MATLAB function is also configured in such a way 
that it can take advantage of our greedy algorithm. The 
objective function is developed for our multi-objective 
genetic algorithm in such a way that all three priorities are 
given equal importance. 

Table 1: Details of the Experimental Setups 

Exp.  Size (m2) s r αcoverage ߚenergy ߚcost 

Exp1 500×500 250 50 0.59 0.33 0.08 
Exp2 500×500 250 50 0.33 0.08 0.59 
Exp3 500×500 250 50 0.08 0.59 0.33 
Exp4 600×600 300 63 0.59 0.33 0.08 
Exp5 600×600 300 63 0.33 0.08 0.59 
Exp6 600×600 300 63 0.08 0.59 0.33 
Exp7 800×800 400 91 0.59 0.33 0.08 
Exp8 800×800 400 91 0.33 0.08 0.59 
Exp9 800×800 400 91 0.08 0.59 0.33 

 
Figure 1: The Pareto Front for the Instance of size 500×500 m2 

 
Figure 2: The Pareto Front for the Instance of size 600×600 m2 

 
Figure 3: The Pareto Front for the Instance of size 800×800 m2 

 

6.2 Results and Discussion  

The collected results indicating the solution quality based 
on the main considered optimization objectives are listed in 
Table 2 for all the experiments. It is evident that the proposed 
GP-driven greedy-enhanced GP optimization model provided 
a highly comparable solution quality to that of the 
multiobjective GA model. In the case of Exp1 where the 
network coverage was more preferable, for example, both 
models achieved a high rate of more than 92%. In another 
example where minimizing energy consumption was 
prioritized, the rate was minimized to less than 55% by both 
models in Exp6. It was also achievable to reduce deployment 
cost by more than 12% in all the experiments where the cost 
objective was given higher weight value by AHP (Exp2, 
Exp5, Exp8). All these achievements were made possible by 
the proposed approach irrespective of the scale of the RNP 
problem. 

Table 2: Results of the Proposed GP-driven 
greedy-enhanced GA Model   

Exp.  
Network 
Coverage 

Rate 

Energy 
Consumption 

Rate 

Cost 
Rate 

Exp1 95.2 55.8 96.0 

Exp2 84.8 61.5 86.0 

Exp3 83.2 51.2 88.0 

Exp4 92 59.9 96.82 

Exp5 86.7 62.8 85.7 

Exp6 81.8 52.8 95.2 

Exp7 83.0 63.7 97.8 

Exp8 76.8 64.2 86.8 

Exp9 73.5 53.2 97.8 
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Moreover, our proposed model was able to achieve 
relatively better solution quality compared to the 
multiobjective GA model. This is more evident in all the 
experiments with relatively small-scale RNP problem 
(Exp1-6). For instance, it is clear in Exp5 that all the 
performance considering all the objectives were improved by 
2-13%. In another example, improvements of 3-12% on all 
the rates were achieved by the proposed model in Exp3. It can 
be seen that our GP-based optimization approach was able to 
even improve the solution quality provided by the 
multiobjective GA model as the problem scale is relatively 
small. However, it still provides a highly comparable solution 
quality to that of the multiobjective GA model as the problem 
scales up.     

7. CONCLUSION 
A mathematical model which optimizes multiple objectives 
for effective deployment of energy-harvesting RNs in 
pre-established stationary WSNs was introduced in this paper. 
The focus was on maximizing network coverage, improving 
energy efficiency, and minimizing deployment cost. To this 
end, a novel Goal Programming (GP)-driven optimization 
approach was proposed. Problem formulation was achieved 
using the weighted-sum GP model integrated with an 
Analytical Hierarchy Process (AHP) method for effectively 
assigning weights to the decision variables. A GA model 
enhanced with a greedy technique was then developed to 
solve the GP-formulated RNP problem. To evaluate our novel 
approach, experimental investigation of the effectiveness of 
the AHP technique in generating the parameters for the GP 
model was carried out. It is evident from the evaluation results 
that, our GP-driven greedy-enhanced GP optimization model 
provided a highly comparable solution quality to that of the 
multiobjective GA model. It also was able to outperform the 
multiobjective GA model in the relatively small-scaled RNP 
problems, considering all the different combinations of the 
AHP-assigned weights. As a future research work, we can 
validate our integrated approach further by applying it for 
some other multi-objective optimization problems that have 
more conflicting objectives. In such cases, applying AHP to 
generate weights would become more challenging. We then 
suggest to check the validity of AHP model carefully by 
comparing between Consistency Index and Random 
Consistency Index.  
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