
 Ismail NADIM et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7116– 7123

7116

ABSTRACT

Entity Linking (EL) is an important tool for many researches
including the Internet of Things (IoT). Particularly, it helps to
automate the annotation of the IoT devices and services with
semantic vocabulary. This semantic annotation improves the
interoperability between IoT devices during services
discovery and composition. This paper describes an EL-
based semantic annotation framework. The latter processes a
web table to extract the mentions, generates candidate
entities from the Knowledge base (KB) for each mention and
then disambiguates the mentions to the correct entry in the
KB. The main contribution of this paper is the use of both
genetic algorithm (GA) and Artificial Bee Colony (ABC) to
handle the combinatorial problem of the collective
disambiguation. The proposed framework implements, in
addition, some text preprocessing techniques such as the bag
of words (BoW) model and provides a tool for IoT data
collection. The framework is a first step to demonstrate how
swarm intelligence (SI) can exceed the numerical approaches
and even some meta-heuristic techniques like the
probabilistic based ones.

Key words: Artificial Bee Colony, Entity Linking, Genetic
Algorithm, Semantic Web of Things

1. INTRODUCTION

The Internet of Things (IoT) [1] is a system of connected
objects leveraging the information and communication
technologies (ICT). The Web of Things (WoT) [2] brings the
IoT to the Web in order to improve the interoperability
between the IoT devices. For this end, the WoT leverages
well-known Web technologies such as HTTP and Web APIs
to publish the IoT devices as Web resources. Furthermore,
the semantic Web of Things (SWOT) is a combination
between the WoT and the semantic web [3] that attempts to
describe the WoT resources with semantic vocabulary in
order to reach the semantic interoperability between the
devices. The semantic interoperability [4] which means the
ability for the IoT devices to exchange comprehensible data
is crucial to minimize the human intervention in IoT systems.
The task of describing WoT resources with meaningful
vocabulary leveraging semantic Web technologies such as
ontologies is known as the semantic annotation [5].

Practically, the semantic annotation should be automatic
because of the huge number of the WoT data to be annotated.
For this end, the famous Entity linking (EL) [6] task is used.
EL task consists in linking a piece of data called mention
from a source document to the entity it represents in a
knowledge base (KB) through three steps. Given a source
document, the first step is the detection of the mentions to be
annotated. Once the mentions are defined, the second step
consists in generating a set of candidate entities for each
mention. Finally, to be able of selecting the correct entity of a
mention a third step is necessary: the disambiguation. The
disambiguation consists in ranking the discovered candidate
sets using some features in order to map each mention to the
entity it represents the best in the KB [7].
The remaining of this paper is organized as follows: in
Section 2, a general overview of the problem is presented.
Section 3 describes the data pre-processing task. Section 4
details the join inference of the disambiguation task based on
the swarm intelligence techniques. Section 5 discusses the
obtained results. And Section 6 provides conclusions and
work perspectives.

2. POBLEM DESCRIPTION

Formally, given a text document D, a knowledge base KB and
N mentions M={݉ଵ,݉ଶ,...,݉ே}, M in D. The EL task consists
in identifying a set of entities ܧ={݁ଵ,݁ଶ,...,݁ே}, ܧin KB such as
: ݁ represents the reference entity of the mention ݉, in
[1,N].
The disambiguation process can be considered as the most
difficult step of the EL task, because through it a decision
should be made. Two disambiguation approaches are worth
to site here; the first is the local disambiguation [8] which
ranks the candidate entities using some features. After that,
the best-ranked entities are mapped to their corresponding
mentions. This approach does not consider the
interdependencies between the candidate entities. The second
is the global or collective disambiguation [9], which
considers that the correct disambiguation entities are not only
the most similar to their corresponding mentions but further
are the most “coherent” concepts. This approach has many
advantages, especially if the data to be annotated are stored
in form of tables with rows and columns [10][11]. However,
the most important drawback of the collective
disambiguation remains the hard combinatorial problem that
will be generated during the inference of the reference

Ismail NADIM1, Yassine El Ghayam2, Abdelalim Sadiq3
1Ibn Toufail University Faculty of science Kenitra, Morocco, ismail.nadim.gi@gmail.com

2SMARTiLab EMSI Rabat Honoris Universities, Morocco, yassine.elgh@gmail.com
3Ibn Toufail University Faculty of Science Kenitra, Morocco, a.sadiq@uit.ac.ma

Application of the Swarm Intelligence for
the Semantic Annotation of the Web of Things

ISSN 2278-3091
Volume 9, No.5, September - October 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse34952020.pdf

https://doi.org/10.30534/ijatcse/2020/34952020

 Ismail NADIM et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7116– 7123

7117

 entities. This problem can be tackled basing on numerical

approaches by computing and comparing all the possible
solutions. However, in most cases, a brute force approach to
finding the optimal combinations is not feasible because of
the complexity of the optimization problem to be resolved.
For this reason, metaheuristic techniques like swarm
intelligence [12] and evolutionary algorithms [13] could be
preferred to face the complexity of this inference problem.
Genetic algorithm (GA) is a heuristic search that is inspired
by Charles Darwin's theory of natural evolution. This
algorithm reflects the process of natural selection where the
fittest individuals are selected for reproduction in order to
produce offspring of the next generation. Swarm intelligence
is also similar to real nature, because large number of simple
organisms like bees are performing some simple task in order
to get a complex task accomplished with ease. Metaheuristic
techniques are, in general, faster and more robust solutions to
solve complex set of problems in different domains.
Particularly, such techniques would give a boost to the
emerging IoT ecosystems, improve the consumer experience
of IoT applications and services [14].

This paper looks into the application of these techniques in
the semantic annotation of the Web of Things (WoT) data.
Particularly, this paper describes a global disambiguation
approach (Figure 1). The latter processes a WoT table (a
table containing WoT data) to extract the mentions
leveraging the classical text preprocessing techniques
(stemming, normalization, tokenization, stop words). It
generates candidate entities from the Knowledge base for
each mention based on numerous features (string similarity,
popularity, entity type, etc.) and then disambiguates these
extracted mentions to the correct entries in the given
knowledge base leveraging the semantic relatedness and the
context similarities. The main contribution of this paper is
the use of both genetic algorithm (GA) and Artificial Bee
Colony (ABC) to resolve the combinatorial inference
problem of the disambiguation modelled as a Travelling
Salesman Problem (TSP).

The details of the framework structure and implementation is
presented in what follows:

Figure 1: The Framework Overview

3. DATA PREPROCESSING

3.1 WoT Data

The framework is a Java web application intended for the
domain of smart irrigation. However, it is designed to host all
kind of IoT devices having web APIs such as smart parking
or green energy devices. The web application is used to
populate relational tables with IoT devices data and services.
An example of the attributes of the central table are
presented in Table 1. Each of these attributes is briefly
described and manually annotated with Dbpedia vocabulary.

The manual annotation of the header is justified by two
assumptions: (1) the manual annotation is not anymore a
tedious task when the number of the data to be annotated is
reasonable (2) the manual annotation is safer when the data
to be annotated are used as an important context to annotate
other data. For example: the location (place), the type
(sensor, actuator), the property observed or acts on, the unit
of measurement, the value of properties for a given WoT
device are important contextual data. Furthermore, the
complete manual annotation of these data may guarantee a
well construction of the KB, and helps in search and mash
ups [15].It is worth to note that different ontologies like the
Semantic Sensor Network (SSN) ontology [16] can be used
instead of Dbpedia. After annotating the WoT schema
manually with the appropriate entities and properties from
ontologies. The next step is the mentions detection from the
content of the cells. As already mentioned, a text
preprocessing is needed. This latter is described below:

3.2 Mentions Detection

After populating the WoT table with the data, the next step is
the mentions detection. The goal of this process is to find the
most relevant mentions for the annotation task by removing
irrelevant, redundant and noisy data. Indeed, before
extracting the mentions, it is required to preprocess the text
of each row. The preprocessing task adopted by the
framework involves two steps: the tokenization and the stop
words removal. In addition, the bag of words model (BoW)
is used to propose the most suitable words for the annotation.

Figure 2: The mentions detection using the BoW model

 Tokenization
The tokenization consists of splitting the text into words
(tokens) separated by whitespaces or punctuation characters.

 Ismail NADIM et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7116– 7123

7118

 The result of this operation is a set of words. Numerous NLP

(Natural Language Processing) libraries in many
programming languages can be used. The current framework
uses The Apache OpenNLP library [17], which is a machine
learning based toolkit for the processing of natural language
text.

 Removing the Stop-words
Stop-words like pronouns, articles and prepositions and other
words are used frequently in the text but they are few
significant. That is why all stop words are removed before
the annotation process.

 Bag of Words
A bag of words model is a representation of text that
describes the occurrence of words within a document. The
framework uses the BoW to choose a set of mentions that
may deserve a semantic annotation. To be able of applying
the BoW, the data of the processed row is gathered in one
text document. Then, the BoW sorts the words of the row in

the order of descending relevance (occurrence, length,
etc.). In general, the number of mentions have to be limited
to a maximum value (e.g. 20) for computing reasons.
Therefore, if the number of the words of the BoW is lower
than this value all the words will used as mentions otherwise
the framework choose the most relevant ones. The Figure 2
illustrates the mentions detection task of one row.

3.3 Candidate Entities Generation

The search or the candidate entity generation is the process
of generating a set of candidate entities for each mention
from the KB. This process is very important for at least two

reasons; the first is when a mention have no reference entity
on the target KB (no-annotation), it will be removed from the
mentions list which will reduce the computation time. The
second and according to [18] consists in capturing the most
probable entities to link the mention while maintaining a
small set of candidates. Consequently, to take the most of
this step, the framework leverages the following features.

Table 1: WoT table header annotation

 Attribute name Description Annotation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Device_id
Name
Description
Country
Spot
Region
Latitude
Longitude
Elevation
Height
Organization
Type
unit
provider
Tags
property
sensorType

The ID of the device
The name of the device
The description of the device
The country of the device
The spot of the device
The city of the device
The latitude of the device
The longitude of the device
The elevation of the device
The height from the ground
The owner of the device
Sensor or actuator
The unit of measurement of the property
The manufacturer of the device
Some tags for indexing purposes
The property measured by the device
The type of the sensor

ttp://dbpedia.org/ontology/id
http://dbpedia.org/ontology/Name
http://dbpedia.org/ontology/description
http://dbpedia.org/ontology/Country
http://dbpedia.org/ontology/Location
http://dbpedia.org/ontology/City
http://dbpedia.org/ontology/Latitude
http://dbpedia.org/ontology/Longitude
http://dbpedia.org/ontology/Elevation
http://dbpedia.org/ontology/Height
http://dbpedia.org/ontology/Organisation
http://dbpedia.org/ontology/type
http://dbpedia.org/page/Units_of_measurement
http://dbpedia.org/ontology/manufacturer
http://dbpedia.org/ontology/tag
http://dbpedia.org/property
http://dbpedia.org/ontology/type

Table 2: Example of Sparql query and its result

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbo:<http://dbpedia.org/ontology/>
PREFIX vrank:<http://purl.org/voc/vrank#>
SELECT ?p ?c substr(?d, 0, 200) as ?d
FROM <http://dbpedia.org>
FROM <http://people.aifb.kit.edu/ath/#DBpedia_PageRank>
WHERE {
?p rdf:type dbo:Place.
?p vrank:hasRank/vrank:rankValue ?c.
?p dbo:abstract ?d .
?p rdfs:label ?x .
?x bif:contains "(Rabat)" .
Filter regex (str(?p),"resource").
}
ORDER BY DESC(?c) LIMIT 20

http://dbpedia.org/resource/Rabat41.0279 ……………
http://dbpedia.org/resource/Rabat 41.0279 …………...
http://dbpedia.org/resource/Rabat 41.0279 …………..
http://dbpedia.org/resource/Rabat 41.0279 ……………
http://dbpedia.org/resource/Rabat 41.0279 ……………
http://dbpedia.org/resource/Rabat 41.0279 ……………
http://dbpedia.org/resource/Rabat 41.0279 ……………
http://dbpedia.org/resource/Rabat 41.0279 ……………
http://dbpedia.org/resource/Victoria,_Gozo 4.6521 ……
http://dbpedia.org/resource/Victoria,_Gozo 4.6521 ……
http://dbpedia.org/resource/Victoria,_Gozo 4.6521 ……
http://dbpedia.org/resource/Rabat,_Malta 4.23087 ……
….

 Ismail NADIM et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7116– 7123

7119

 String similarity: indicates how similar is the query

mention to the title of the candidate entity.
 Prior Popularity: indicates how “famous” is a

candidate entity in the KB.
 Entity Type: indicates the coherence between the

mention and the candidate entity types (location,
etc.)

 Context: indicates how similar is the contextual
texts of the mention and the candidate entity.

 Semantic coherence: measures the semantic
relatedness between the candidate’s entities by
using the table header, which is already annotated as
context when querying the KB.

This approach allows to obtain a matrix of candidate entities
which is formalized for later use. The Table 2 shows the
result of a Sparql query against Dbpedia to generate 20 top
candidate entities to the mention “Rabat”. The example uses
the surface form, the entity type “Place” and the entity
popularity features.

The use of these three features is explained below:

 The surface form: the individuals of the knowledge
base Dbpedia which contain the string “Rabat” will
be chosen.

 The entity type: the individuals which have the
entity type "http://dbpedia.org/ontology/Place" will
be privileged.

 The entity popularity: the filtered individuals and
which are the best ranked -in terms of presence in
the knowledge base- will be chosen. For example,
the candidate "http://dbpedia.org/resource/Rabat"
having the rank 41.0279 has more chance to be the
reference entity of the mention "Rabat" than the
candidate
"http://dbpedia.org/resource/Victoria,_Gozo" which
has only the rank 4.6521.

The candidate entities of each mention are stored in a text
document forming a disambiguation matrix. The important
elements of this matrix are the mentions, the candidate
entities URLs and a description of each candidate. This
matrix may contain a score column representing a ranking
score for each candidate. The role of this matrix is to prepare
all the data helping to take the decision of the reference
entities during the disambiguation task. The disambiguation
matrix will be mainly used by two modules; the local and the
global disambiguation processes. Figure 3 shows how such a
matrix looks like.

3.4 Local Disambiguation

To re-rank the disambiguation matrix based on the features
previously discussed, the framework leverages a SVM
(Support vector machine) classifier. The used classifier is
open-sourced [19] and it is trained on a set of string
similarity and entity popularity metrics as its feature vectors
similarly to [5]. The final result of the local disambiguation

is a set of re-ranked candidate entities. The different steps
of this process are detailed in a previous work [7].

Figure 3: Example of the disambiguation matrix

4. GLOBAL DISAMBIGUATION APPROACH

The method leverages genetic algorithm as well as artificial
bee colony to jointly infer the target entities.

Figure 4: GA Steps Organigram

4.1 Genetic Algorithm (GA)
GA is an iterative process where each iteration is called a
generation. Each generation concerns a population composed
of individuals or chromosomes. The fitness of a population
calculates the quality of the chromosomes and remains stable
for a number of generations before a superior chromosome
appears. A common practice is to terminate a GA after a
specified number of generations and then examine the best
chromosomes in the population. From a generation to
another the chromosomes selection, crossover, mutation and
fitness computing are applied. Finally, if no satisfactory

 Ismail NADIM et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7116– 7123

7120

 solution is found, the GA is restarted. The selection means

the use of the solutions with high fitness to pass on to next
generations. The crossover consists in swapping parts of the
solution with another in chromosomes or solution
representations. The main role is to provide mixing of the
solutions and convergence in a subspace. Finally, the
mutation is the change of parts of one solution randomly,
which increases the diversity of the population and provides
a mechanism for escaping from a local optimum. (Figure 4)

4.2 Join Inference Using GA
Given a WoT table, the approach attempts to execute the GA
as follows:

 GA initial parameters

The idea is to create chromosomes whose length of each is
equal to the number of mentions to be treated. Consequently,
the number of genes depends on the processed row. For
example, if for a given row only 5 mentions were detected,
each chromosome will be composed of 5 genes. However,
this number should be lower or equal to the maximum length
Q for performance purposes. Q could be simply the number
of the web table attributes (Ideally Q=20). As far as the
population size K is concerned, it will be the number of
candidate entities (for example K=100). In the case where
the set of the generated candidates for a given mention is too
small, then the last generated candidate for this mention is
duplicated many times until reaching K. The crossover
probability ܲ is preferred to be high (e.g. ܲ= 0.75) and the
mutation to be very low or null (ܲ= 0).

 First Generation
Instead ofrandomly generating the initial population of
chromosomes. We choose the first generation of size K:
ଵܺ,Xଶ,...,X. such as ଵܺ = ൫11ܩ,G12,...,Gଵொ൯; ܺଶ =
൫21ܩ,G22,...,Gଶொ൯; …; ܺ = ൫ܩଵ,Gଶ,...,GKQ൯ where ܩij is the
candidate entity of mention of index i and of rank j. In the
example mentioned in Figure 5, the first population is
composed of 4 chromosomes with 5 genes each.

Figure 5: First GA generation example (K=4, Q=5)

 Fitness Function
The fitness function to measure the performance of each
combination (chromosome) is defined as follows:

where S is a similarity function between two given
candidate entities.

 Fitness Computing
Calculating the fitness of each individual chromosome:
݂(ଵܺ),f(ܺଶ),...,f(ܺ) is equivalent of finding the optimal
order of the genes which minimize f. This can be viewed as a
travelling salesman problem (TSP). The TSP is a problem in
which a sales person has to visit certain cities following
some path, such that each city is visited only once and then
reach back to the place he started from. The travelling person
should travel in such a way that his travelling cost (distance)
is minimum. In the context of this paper, finding the shortest
path of the TSPis equivalent of finding the set of genes
(candidate entities) which are the most semantically related
to each other. For instance the TSP for the chromosome
ଵܺ = .is represented in the graph in figure 3 (G12,...,G15,11ܩ)

And a possible solution of this example is
 .(G13,G15,G12,G14,11ܩ)

Figure 6: TSP illustration (Q=5)

However, the TSP (Figure 6) is a complex combinatorial
optimization problem that is difficult to solve with numerical
approach. To illustrate this, with only 20 cities and even if
we could evaluate 1 million paths per second, examining all
20! Possible paths would require more than 77,000 years.
Therefore, the paper addresses the TSP leveraging the
Artificial Bee Colony (ABC) algorithm. The method is
explained as follows:

4.3 Artificial Bee Colony (ABC)

 ABC Overview

The ABC is a widely used technique in many research fields
namely to address combinatorial problem such as the
travelling salesman problem [20]. Bees by nature are
organized into groups of active, inactive and scout bees.
Active bees travel to a food source, examine neighbour food
sources, gather food and return to the hive. Scout bees
investigate the area surrounding the hive looking for
attractive new food sources. Once food source is found
active and scout bees inform the others by waggle dance.

 Ismail NADIM et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7116– 7123

7121

 This dance conveys information to the inactive bees about

the location and quality of the food source. Inactive foragers
receive this food source information from the waggle dance
and may become active foragers. In general, an active
foraging bee continues gathering food from a particular food
source until that food source is exhausted, at which time the
bee becomes an inactive forager.

 ABC Application

The key concept in ABC algorithm is the idea that each
virtual food source that represents a solution has some sort of
neighbour solution. In the case of the TSP, where a solution
can be represented as an array of cities representing a path
from city to city, a natural neighbour solution relative to a
current solution is a permutation of the current solution
where two adjacent cities have been exchanged.
The Figure 7 shows an illustration of how the framework
apply the ABC algorithm for the chromosomes fitness
calculation.

Figure 7: ABC application example

1. Given a chromosome X as input, a number of active
bees (e.g. 100) is generated with random solutions
(combinations of the genes of X).

2. Initially, the number of the generated solutions is
equal to the number of the active bees.
Recruited active bees leave the hive to search for
neighbour food sources according to the solution
they have in their memories.

3. Each bee examines a set of neighbour solutions (as
defined previously) and updates its solution.
The framework leverages the context similarity
between two genes (candidates) by comparing their
contextual description, captured in the
disambiguation matrix, leveraging the BoW model
and the Jaccard similarity similarly to [21].
When a bee found a better solution than its, the new
solution is memorized, the bee returns to the hive
and inform inactive bees with the new solution.

4. After that, the hive global solution is updated as
well as the persuaded inactive bees’ solutions.
The active bees continue its search in neighbour
food sources, evaluate their fitness, update its
solution and inform inactive bees. In case where a
counter of the number of times a particular virtual
food source has been visited without finding a better
neighbour food source.

5. The bee returns to the hive and become inactive and
a randomly chosen inactive bee become an active
one.

6. A maximum number of cycles is used to define the
number of iterations of the ABC. One cycle
represents processing of each bee in the hive. When
this number is reached the ABC is ended and the
hive solution is returned.

5. RESULTS DISCUSSION

The present framework which is a Spring boot based web
application implements the different methods and algorithms
as explained in this paper using Java libraries like OpenNLP
and opensource code like for the SVM. The BoW model has
been used twice by the framework. The first time as a
mentions detection helper and the second to measure the
context similarity between the candidates leveraging the
Jaccard distance. The ABC implementation is inspired from
the simulated bee colony implemented by [22] in C#. The
evaluation of the framework is done at two levels: the
applicability and the efficiency. These two criteria will be
compared against a baseline join inference method using a
probabilistic graphical model (PGM). In what follows, the
authors give a brief overview of the PGM based approach
and an applicability comparison with the swarm intelligence
approach. After that the framework efficiency is discussed.

5.1 Baseline

During the last years, alternative approaches for semantic
annotation using the Entity Linking task and the collective
disambiguation were proposed. However, the join
disambiguation was handled leveraging, in most cases,
numerical computing. Recently, an approximate approach
based on probabilistic graphical models was used by different
researches. For instance, [9] have used three features in their
graphical model: the local similarities, the semantic relatedness
and the prior popularity of a candidate entity. [23] have
conducted a probabilistic approach which consists in
learning a conditional probability model from data and
employing approximate probabilistic inference in order to
find the maximum a posteriori (MAP) assignment [24].
Particularly to annotate web tables, [10] have used a
probabilistic method to annotate columns and cells values with
entities. Recently, [5] have provided a unified WoT Knowledge
Base construction framework. The EL framework they have
proposed, annotates entities, types and relations using features
from [20] . To infer the best disambiguation entities, they have
adopted an iterative message passing (IMP) algorithm from
[11]. The frequent idea of PGM, which was also First the

 Ismail NADIM et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7116– 7123

7122

 variable nodes of the graph are initialized with the candidate

entities. After that, the variable nodes in the graph send their
current assignment to the factor nodes they are connected to.

Once the factors receive the values of their neighboring
variable nodes, they calculate the agreement between the
received values using the function S. To decide if two values
agree or not the result of the function S is compared to a
threshold T. If the value of S satisfactory, the variable nodes
values are accepted else, they are rejected and the variables
receive a change message to update their assignments. The
algorithm converges when no variable node receives a
change message.

Figure 4: AWoT table represented as a Factor Graph

Accordingly, the authors shed light on the superiority of the
proposed swarm intelligence method compared with the
probabilistic based approach in terms of applicability. The
Table 3 below gives a summary of this comparison.

Table 3: Applicability comparison between GA and PGM based
approaches

 Probabilistic approach GA based approach

Convergence Not sure Generally convergent

Annotation All cells at the time Row by row

Applicability Hundreds of rows Illimited

Use of semantic
relatedness

Between rows and
columns cells

Only between one row cells

Dependence on
initial values

High dependence Medium dependence

5.2 Performance and Accuracy

As can be noted, the efficiency and the accuracy of the
framework depends on several criteria namely the initial
parameters of the GA and the ABC. For instance, annotating
a row containing only 5 extracted mentions is, in general,
faster that annotating a 12 mentions row. To evaluate the
relationship between the initial parameters and the performance
and accuracy a row containing exactly 20 mentions have been
suggested to the framework. 10 candidates were generated for
each mention. After that, the annotation process is run with
different ABC initial parameters. An augmentation of the

response time was noted by approximately three times in
function of the number of bees. However, when the annotation
process is re-executed for the same data (row), this
approximation changes. The authors conclude that since the
GA and ABC are approximate techniques, the static
relationship between number of bees and response time cannot
be given. However, intuitively augmenting the number of
active bees means that more solutions have to be evaluated and
the annotation process may be slower. The Table 4 below
shows the response time (RT1) in number of GA generations
for the first round as well as RT2 for the second round.

Table 4: Number of Bees and Response Time Relationship

 NB = 100 NB = 200 NB = 300 NB = 400

RT 1 3 9 24 37

RT 2 3 12 2 4

After the semantic annotation process was ended, the accuracy
of the results was checked and only 54% of the mentions were
correctly matched. Two reasons were suggested, the first is the
small number of candidate entities and the second is the
similarity measure. Therefore, a second round was performed
using the Normalize Google Distance (NGD) similarity [25].
The authors noted that the accuracy was improved to
approximatively 60%. However, the performance was
decreased and that was explained by the definition of the NGD
measure itself. The Table 5 shows the explained results.

Table 5: Accuracy and Time Response Approximations for Context
and NGD Similarities

 Context similarity NGD

Accuracy 54% 60%

Time response (generations) 3 9

Finally, the GA approach seems to be superior than [5] which
found the average time consumed in each annotation on the
WoT table equal to 4.1 s using a similar PGM approach. The
best result found for the proposed GA succeeded to annotate
a 20 mentions row in only three generations (nearly 5
seconds) which gives an average of 0.25 seconds (5/20) per
mention.

6. CONCLUSION
The paper describes a semantic annotation framework of
WoT tables. The current framework implements various
techniques and efficient algorithms for the EL task such as
the well-known text preprocessing tools for the mentions
detection task as well as swarm and evolutionary algorithms
for the disambiguation task. A relational database was
populated with WoT data and services. The annotation
performance and accuracy of the framework were captured.
Furthermore, a comparative study met the GA based
inference technique with the probabilistic graphical one, was
elaborated. In the future, a large scale evaluation of the
present framework will be performed and other high
computing techniques will be integrated [26][27]..

 Ismail NADIM et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7116– 7123

7123

 REFERENCES

1. L. Atzori, A. Iera, and G. Morabito, The Internet of

Things: A survey, Computer Networks, vol. 54, no. 15,
pp. 2787–2805, Oct. 2010.

2. D. Guinard, V. Trifa, F. Mattern, and E. Wilde, From the
Internet of Things to the Web of Things: Resource-
oriented Architecture and Best Practices, Architecting
the Internet of Things, pp. 97–129, 2011.

3. T. Berners-Lee, J. Hendler, and O. Lassila. The
semantic web. Scientific american, 284(5), 28-37. 2011.

4. M. Noura, M. Atiquzzaman, and M. Gaedke,
Interoperability in Internet of Things: Taxonomies
and Open Challenges, Mobile Networks and
Applications, vol. 24, no. 3, pp. 796–809, Jul. 2018.

5. Z. Wu, Y. Xu, Y. Yang, C. Zhang, X. Zhu, and Y. Ji,
Towards a Semantic Web of Things: A Hybrid
Semantic Annotation, Extraction, and Reasoning
Framework for Cyber-Physical System, Sensors, vol.
17, no. 2, p. 403, Feb. 2017.

6. W. Shen, J. Wang, and J. Han, Entity Linking with a
Knowledge Base: Issues, Techniques, and Solutions,
IEEE Transactions on Knowledge and Data
Engineering, vol. 27, no. 2, pp. 443–460, Feb. 2015.

7. I. Nadim, Y. El Ghayam, and A. Sadiq. Towards the
semantic annotation of Web of Things: A collective
disambiguation approach.In Proceedings of the 2nd
international Conference on Big Data, Cloud and
Applications (pp. 1-6). March 2017.

8. L. Ratinov, D. Roth, D. Downey, and M. Anderson.
Local and global algorithms for disambiguation to
wikipedia. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics:
Human Language Technologies-Volume 1 (pp. 1375-
1384). Association for Computational Linguistics.2011.

9. S. Rong, and M. Iwaihara. A collective approach to
ranking entities for mentions.2016 IEEE/ACIS 15th
International Conference on Computer and Information
Science (ICIS). 2016.

10. G. Limaye, S. Sarawagi, and S. Chakrabarti.
Annotating and searching web tables using entities,
types and relationships.Proceedings of the VLDB
Endowment, 3(1-2), 1338–1347. 2010.

11. V. Mulwad, T. Finin, and A. Joshi. Semantic message
passing for generating linked data from tables. In
International Semantic Web Conference (pp. 363-378).
Springer, Berlin, Heidelberg. October, 2013.

12. J. Kennedy. (2006). Swarm intelligence. In Handbook
of nature-inspired and innovative computing (pp. 187-
219). Springer, Boston, MA.

13. Mitchell, Melanie. An introduction to genetic
algorithms. MIT press, 1998.

14. T. Chakraborty, and S. K. Datta. Application of swarm
intelligence in Internet of Things. In 2017 IEEE
International Symposium on Consumer Electronics
(ISCE)(pp. 67-68). IEEE. November, 2017.

15. V. Mulwad, T. Finin, Z. Syed, and A. Joshi. Using
linked data to interpret tables. In Proceedings of the

First International Conference on Consuming Linked
Data-Volume 665 (pp. 109-120). November, 2010.

16. M. Compton, P. Barnaghi, L. Bermudez, R. Garcca-
Castro, O. Corcho, S. Cox, J. Graybeal, M. Hauswirth, C.
Henson, A. Herzog, V. Huang, K. Janowicz, W. D. Kelsey,
D. Le-Phuoc, L. Lefort, M. Leggieri, H. Neuhaus, A.
Nikolov, K. Page, A. Passant, A. Sheth, and K. Taylor, The
SSN Ontology of the W3C Semantic Sensor Network
Incubator Group, SSRN Electronic Journal, 2012

17. OpenNLP, A. (2011). Apache software foundation. URL
http://opennlp. apache. Org.

18. B. Hachey, W. Radford, J. Nothman, M. Honnibal,
and J.R. Curran. Evaluating entity linking with
Wikipedia.Artificial intelligence, 194, 130-150. 2013.

19. T. Joachims. Training linear SVMs in linear time. In
Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining (pp.
217-226). ACM. August, 2006.

20. D. Karaboga, and B. Gorkemli. A combinatorial
artificial bee colony algorithm for traveling salesman
problem.In 2011 International Symposium on
Innovations in Intelligent Systems and Applications(pp.
50-53). IEEE. June, 2011.

21. S. Niwattanakul, J. Singthongchai , E. Naenudorn, and
S. Wanapu. Using of Jaccard coefficient for keywords
similarity. In Proceedings of the international
multiconference of engineers and computer
scientists (Vol. 1, No. 6, pp. 380-384). March, 2013.

22. J. McCaffrey. Natural Algorithms: Use Bee Colony
Algorithms to Solve Impossible Problems. MSDN
Magazines, erişim linki: http://msdn. microsoft.
com/enus/magazine/gg983491. Aspx, 24. 2011.

23. O.-E. M. Ganea, A. Lucchi, C. Eickhoff, and T. Hofmann.
Probabilistic Bag-Of-Hyperlinks Model for Entity
Linking.Proceedings of the 25th International Conference
on World Wide Web - WWW ’16. 2016.

24. D. Koller, and N. Friedman. Probabilistic graphical
models: principles and techniques. MIT press. 2009.

25. R. L. Cilibrasi, and P. M. Vitanyi. The google similarity
distance. IEEE Transactions on knowledge and data
engineering, 19(3), 370-383. 2007.

26. S. B. J, Enhancing Performance of IoT Networks
through High Performance Computing, International
Journal of Advanced Trends in Computer Science and
Engineering, vol. 8, no. 3, pp. 432–442, Jun. 2019.

27. R. N. S., Optimal Reactive Power Control Using
Compensating Capacitor Based on Artificial Immune
System, International Journal of Advanced Trends in
Computer Science and Engineering, vol. 8, no. 1.3, pp.
381–386, Aug. 2019.

