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ABSTRACT 
 
Entity Linking (EL) is an important tool for many researches 
including the Internet of Things (IoT). Particularly, it helps to 
automate the annotation of the IoT devices and services with 
semantic vocabulary. This semantic annotation improves the 
interoperability between IoT devices during services 
discovery and composition. This paper describes an EL-
based semantic annotation framework. The latter processes a 
web table to extract the mentions, generates candidate 
entities from the Knowledge base (KB) for each mention and 
then disambiguates the mentions to the correct entry in the 
KB. The main contribution of this paper is the use of both 
genetic algorithm (GA) and Artificial Bee Colony (ABC) to 
handle the combinatorial problem of the collective 
disambiguation. The proposed framework implements, in 
addition, some text preprocessing techniques such as the bag 
of words (BoW) model and provides a tool for IoT data 
collection. The framework is a first step to demonstrate how 
swarm intelligence (SI) can exceed the numerical approaches 
and even some meta-heuristic techniques like the 
probabilistic based ones. 
 
Key words: Artificial Bee Colony, Entity Linking, Genetic 
Algorithm, Semantic Web of Things 
 

1. INTRODUCTION 
 
The Internet of Things (IoT) [1] is a system of connected 
objects leveraging the information and communication 
technologies (ICT). The Web of Things (WoT) [2] brings the 
IoT to the Web in order to improve the interoperability 
between the IoT devices. For this end, the WoT leverages 
well-known Web technologies such as HTTP and Web APIs 
to publish the IoT devices as Web resources. Furthermore, 
the semantic Web of Things (SWOT) is a combination 
between the WoT and the semantic web [3] that attempts to 
describe the WoT resources with semantic vocabulary in 
order to reach the semantic interoperability between the 
devices. The semantic interoperability [4] which means the  
ability for the IoT devices to exchange comprehensible data 
is crucial to minimize the human intervention in IoT systems.  
The task of describing WoT resources with meaningful 
vocabulary leveraging semantic Web technologies such as  
ontologies is known as the semantic annotation [5]. 
 

Practically, the semantic annotation should be automatic 
because of the huge number of the WoT data to be annotated.  
For this end, the famous Entity linking (EL) [6] task is used. 
EL task consists in linking a piece of data called mention 
from a source document to the entity it represents in a 
knowledge base (KB) through three steps. Given a source 
document, the first step is the detection of the mentions to be 
annotated. Once the mentions are defined, the second step 
consists in generating a set of candidate entities for each 
mention. Finally, to be able of selecting the correct entity of a 
mention a third step is necessary: the disambiguation. The 
disambiguation consists in ranking the discovered candidate 
sets using some features in order to map each mention to the 
entity it represents the best in the KB [7]. 
The remaining of this paper is organized as follows: in 
Section 2, a general overview of the problem is presented. 
Section 3 describes the data pre-processing task. Section 4 
details the join inference of the disambiguation task based on 
the swarm intelligence techniques. Section 5 discusses the 
obtained results. And Section 6 provides conclusions and 
work perspectives. 
 
2. POBLEM DESCRIPTION 
 
Formally, given a text document D, a knowledge base KB and 
N mentions M={݉ଵ,݉ଶ,...,݉ே}, M in D. The EL task consists 
in identifying a set of entities ܧ={݁ଵ,݁ଶ,...,݁ே}, ܧin KB such as 
: ݁  represents the reference entity of the mention  ݉,  in 
[1,N]. 
The disambiguation process can be considered as the most 
difficult step of the EL task, because through it a decision 
should be made. Two disambiguation approaches are worth 
to site here; the first is the local disambiguation [8] which 
ranks the candidate entities using some features. After that, 
the best-ranked entities are mapped to their corresponding 
mentions. This approach does not consider the 
interdependencies between the candidate entities. The second 
is the global or collective disambiguation [9], which 
considers that the correct disambiguation entities are not only 
the most similar to their corresponding mentions but further 
are the most “coherent” concepts. This approach has many 
advantages, especially if the data to be annotated are stored 
in form of tables with rows and columns [10][11]. However, 
the most important drawback of the collective 
disambiguation remains the hard combinatorial problem that 
will be generated during the inference of the reference 
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 entities. This problem can be tackled basing on numerical 

approaches by computing and comparing all the possible 
solutions. However, in most cases, a brute force approach to 
finding the optimal combinations is not feasible because of 
the complexity of the optimization problem to be resolved. 
For this reason, metaheuristic techniques like swarm 
intelligence [12] and evolutionary algorithms [13] could be 
preferred to face the complexity of this inference problem. 
Genetic algorithm (GA) is a heuristic search that is inspired 
by Charles Darwin's theory of natural evolution. This 
algorithm reflects the process of natural selection where the 
fittest individuals are selected for reproduction in order to 
produce offspring of the next generation. Swarm intelligence 
is also similar to real nature, because large number of simple 
organisms like bees are performing some simple task in order 
to get a complex task accomplished with ease. Metaheuristic 
techniques are, in general, faster and more robust solutions to 
solve complex set of problems in different domains. 
Particularly, such techniques would give a boost to the 
emerging IoT ecosystems, improve the consumer experience 
of IoT applications and services [14]. 

This paper looks into the application of these techniques in 
the semantic annotation of the Web of Things (WoT) data. 
Particularly, this paper describes a global disambiguation 
approach (Figure 1). The latter processes a WoT table (a 
table containing WoT data) to extract the mentions 
leveraging the classical text preprocessing techniques 
(stemming, normalization, tokenization, stop words). It 
generates candidate entities from the Knowledge base for 
each mention based on numerous features (string similarity, 
popularity, entity type, etc.) and then disambiguates these 
extracted mentions to the correct entries in the given 
knowledge base leveraging the semantic relatedness and the 
context similarities. The main contribution of this paper is 
the use of both genetic algorithm (GA) and Artificial Bee 
Colony (ABC) to resolve the combinatorial inference 
problem of the disambiguation modelled as a Travelling 
Salesman Problem (TSP). 

The details of the framework structure and implementation is 
presented in what follows: 

 
Figure 1: The Framework Overview 

3.  DATA PREPROCESSING 
 
3.1 WoT Data 
 
The framework is a Java web application intended for the 
domain of smart irrigation. However, it is designed to host all 
kind of IoT devices having web APIs such as smart parking 
or green energy devices. The web application is used to 
populate relational tables with IoT devices data and services. 
An example of the attributes of the central table are 
presented in Table 1. Each of these attributes is briefly 
described and manually annotated with Dbpedia vocabulary. 
 
The manual annotation of the header is justified by two 
assumptions: (1) the manual annotation is not anymore a 
tedious task when the number of the data to be annotated is 
reasonable (2) the manual annotation is safer when the data 
to be annotated are used as an important context to annotate 
other data. For example: the location (place), the type 
(sensor, actuator), the property observed or acts on, the unit 
of measurement, the value of properties for a given WoT 
device are important contextual data. Furthermore, the 
complete manual annotation of these data may guarantee a 
well construction of the KB, and helps in search and mash 
ups [15].It is worth to note that different ontologies like the 
Semantic Sensor Network (SSN) ontology [16] can be used 
instead of Dbpedia. After annotating the WoT schema 
manually with the appropriate entities and properties from 
ontologies. The next step is the mentions detection from the 
content of the cells. As already mentioned, a text 
preprocessing is needed. This latter is described below: 
 
3.2 Mentions Detection 
 
After populating the WoT table with the data, the next step is 
the mentions detection. The goal of this process is to find the 
most relevant mentions for the annotation task by removing 
irrelevant, redundant and noisy data. Indeed, before 
extracting the mentions, it is required to preprocess the text 
of each row. The preprocessing task adopted by the 
framework involves two steps: the tokenization and the stop 
words removal. In addition, the bag of words model (BoW) 
is used to propose the most suitable words for the annotation. 

Figure 2: The mentions detection using the BoW model 

 Tokenization 
The tokenization consists of splitting the text into words 
(tokens) separated by whitespaces or punctuation characters. 
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 The result of this operation is a set of words. Numerous NLP 

(Natural Language Processing) libraries in many 
programming languages can be used. The current framework 
uses The Apache OpenNLP library [17], which is a machine 
learning based toolkit for the processing of natural language 
text. 
 

 Removing the Stop-words 
Stop-words like pronouns, articles and prepositions and other 
words are used frequently in the text but they are few 
significant. That is why all stop words are removed before 
the annotation process. 
 

 Bag of Words 
A bag of words model is a representation of text that 
describes the occurrence of words within a document. The 
framework uses the BoW to choose a set of mentions that 
may deserve a semantic annotation. To be able of applying 
the BoW, the data of the processed row is gathered in one 
text document.  Then, the BoW sorts the words of the row in 

the order of descending relevance (occurrence, length, 
etc.). In general, the number of mentions have to be limited 
to a maximum value (e.g. 20) for computing reasons. 
Therefore, if the number of the words of the BoW is lower 
than this value all the words will used as mentions otherwise 
the framework choose the most relevant ones. The Figure 2 
illustrates the mentions detection task of one row. 
 
3.3 Candidate Entities Generation 
 
The search or the candidate entity generation is the process 
of generating a set of candidate entities for each mention 
from the KB. This process is very important for at least two 

reasons; the first is when a mention have no reference entity 
on the target KB (no-annotation), it will be removed from the 
mentions list which will reduce the computation time. The 
second and according to [18] consists in capturing the most 
probable entities to link the mention while maintaining a 
small set of candidates. Consequently, to take the most of 
this step, the framework leverages the following features. 

Table 1: WoT table header annotation 
 

 Attribute name Description Annotation 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

Device_id 
Name 
Description 
Country 
Spot 
Region 
Latitude 
Longitude 
Elevation 
Height 
Organization 
Type 
unit 
provider 
Tags 
property 
sensorType 
 

The ID of the device 
The name of the device 
The description of the device 
The country of the device 
The spot of the device 
The city of the device 
The latitude of the device 
The longitude of the device 
The elevation of the device 
The height from the ground 
The owner of the device 
Sensor or actuator 
The unit of measurement of the property 
The manufacturer of the device 
Some tags for indexing purposes 
The property measured by the device 
The type of the sensor 
 

ttp://dbpedia.org/ontology/id 
http://dbpedia.org/ontology/Name 
http://dbpedia.org/ontology/description 
http://dbpedia.org/ontology/Country 
http://dbpedia.org/ontology/Location 
http://dbpedia.org/ontology/City 
http://dbpedia.org/ontology/Latitude 
http://dbpedia.org/ontology/Longitude 
http://dbpedia.org/ontology/Elevation 
http://dbpedia.org/ontology/Height 
http://dbpedia.org/ontology/Organisation 
http://dbpedia.org/ontology/type 
http://dbpedia.org/page/Units_of_measurement 
http://dbpedia.org/ontology/manufacturer 
http://dbpedia.org/ontology/tag 
http://dbpedia.org/property 
http://dbpedia.org/ontology/type 

 
Table 2: Example of Sparql query and its result 

 
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX dbo:<http://dbpedia.org/ontology/> 
PREFIX vrank:<http://purl.org/voc/vrank#> 
SELECT ?p ?c substr( ?d, 0, 200 ) as ?d 
FROM <http://dbpedia.org> 
FROM <http://people.aifb.kit.edu/ath/#DBpedia_PageRank> 
WHERE { 
?p rdf:type dbo:Place. 
?p vrank:hasRank/vrank:rankValue ?c. 
?p dbo:abstract ?d . 
?p rdfs:label ?x . 
?x bif:contains "(Rabat)" . 
Filter regex (str(?p),"resource"). 
} 
ORDER BY DESC(?c) LIMIT 20 

http://dbpedia.org/resource/Rabat41.0279 …………… 
http://dbpedia.org/resource/Rabat   41.0279 …………... 
http://dbpedia.org/resource/Rabat   41.0279 ………….. 
http://dbpedia.org/resource/Rabat   41.0279 …………… 
http://dbpedia.org/resource/Rabat   41.0279 …………… 
http://dbpedia.org/resource/Rabat   41.0279 …………… 
http://dbpedia.org/resource/Rabat   41.0279 …………… 
http://dbpedia.org/resource/Rabat   41.0279 …………… 
http://dbpedia.org/resource/Victoria,_Gozo   4.6521 …… 
http://dbpedia.org/resource/Victoria,_Gozo   4.6521 …… 
http://dbpedia.org/resource/Victoria,_Gozo   4.6521 …… 
http://dbpedia.org/resource/Rabat,_Malta   4.23087 …… 
…. 
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  String similarity: indicates how similar is the query 

mention to the title of the candidate entity. 
 Prior Popularity: indicates how “famous” is a 

candidate entity in the KB. 
 Entity Type: indicates the coherence between the 

mention and the candidate entity types (location, 
etc.) 

 Context: indicates how similar is the contextual 
texts of the mention and the candidate entity. 

 Semantic coherence: measures the semantic 
relatedness between the candidate’s entities by 
using the table header, which is already annotated as 
context when querying the KB. 
 

This approach allows to obtain a matrix of candidate entities 
which is formalized for later use. The Table 2 shows the 
result of a Sparql query against Dbpedia to generate 20 top 
candidate entities to the mention “Rabat”. The example uses 
the surface form, the entity type “Place” and the entity 
popularity features.   
 
The use of these three features is explained below: 

 The surface form: the individuals of the knowledge 
base Dbpedia which contain the string “Rabat” will 
be chosen. 

 The entity type: the individuals which have the 
entity type "http://dbpedia.org/ontology/Place" will 
be privileged. 

 The entity popularity:  the filtered individuals and 
which are the best ranked -in terms of presence in 
the knowledge base- will be chosen. For example, 
the candidate "http://dbpedia.org/resource/Rabat" 
having the rank 41.0279 has more chance to be the 
reference entity of the mention "Rabat" than the 
candidate 
"http://dbpedia.org/resource/Victoria,_Gozo" which 
has only the rank 4.6521. 

 
The candidate entities of each mention are stored in a text 
document forming a disambiguation matrix. The important 
elements of this matrix are the mentions, the candidate 
entities URLs and a description of each candidate. This 
matrix may contain a score column representing a ranking 
score for each candidate. The role of this matrix is to prepare 
all the data helping to take the decision of the reference 
entities during the disambiguation task. The disambiguation 
matrix will be mainly used by two modules; the local and the 
global disambiguation processes. Figure 3 shows how such a 
matrix looks like. 
 
3.4 Local Disambiguation 
 
To re-rank the disambiguation matrix based on the features 
previously discussed, the framework leverages a SVM 
(Support vector machine) classifier. The used classifier is 
open-sourced [19] and it is trained on a set of string 
similarity and entity popularity metrics as its feature vectors 
similarly to [5]. The final result of the local disambiguation 

is a set of re-ranked candidate entities. The different steps 
of this process are detailed in a previous work [7]. 
 

 
Figure 3: Example of the disambiguation matrix 

 
4.  GLOBAL DISAMBIGUATION APPROACH 
 
The method leverages genetic algorithm as well as artificial 
bee colony to jointly infer the target entities. 

 
Figure 4: GA Steps Organigram 

 
4.1 Genetic Algorithm (GA) 
GA is an iterative process where each iteration is called a 
generation. Each generation concerns a population composed 
of individuals or chromosomes. The fitness of a population 
calculates the quality of the chromosomes and remains stable 
for a number of generations before a superior chromosome 
appears. A common practice is to terminate a GA after a 
specified number of generations and then examine the best 
chromosomes in the population. From a generation to 
another the chromosomes selection, crossover, mutation and 
fitness computing are applied. Finally, if no satisfactory 
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 solution is found, the GA is restarted. The selection means 

the use of the solutions with high fitness to pass on to next 
generations. The crossover consists in swapping parts of the 
solution with another in chromosomes or solution 
representations. The main role is to provide mixing of the 
solutions and convergence in a subspace. Finally, the 
mutation is the change of parts of one solution randomly, 
which increases the diversity of the population and provides 
a mechanism for escaping from a local optimum. (Figure 4) 
 
4.2 Join Inference Using GA 
Given a WoT table, the approach attempts to execute the GA 
as follows: 
 

 GA initial parameters 
 
The idea is to create chromosomes whose length of each is 
equal to the number of mentions to be treated. Consequently, 
the number of genes depends on the processed row. For 
example, if for a given row only 5 mentions were detected, 
each chromosome will be composed of 5 genes. However, 
this number should be lower or equal to the maximum length 
Q for performance purposes. Q could be simply the number 
of the web table attributes (Ideally Q=20). As far as the 
population size K is concerned, it will be the number of 
candidate entities (for example K=100). In the case where 
the set of the generated candidates for a given mention is too 
small, then the last generated candidate for this mention is 
duplicated many times until reaching K. The crossover 
probability ܲ is preferred to be high (e.g. ܲ= 0.75) and the 
mutation to be very low or null ( ܲ= 0). 
 
 First Generation 
Instead ofrandomly generating the initial population of 
chromosomes. We choose the first generation of size K: 
ଵܺ,Xଶ,...,X. such as ଵܺ = ൫11ܩ,G12,...,Gଵொ൯; ܺଶ =
൫21ܩ,G22,...,Gଶொ൯; …; ܺ = ൫ܩଵ,Gଶ,...,GKQ൯ where ܩij is the 
candidate entity of mention of index i and of rank j. In the 
example mentioned in Figure 5, the first population is 
composed of 4 chromosomes with 5 genes each. 

 
Figure 5: First GA generation example (K=4, Q=5) 

 
 Fitness Function 
The fitness function to measure the performance of each 
combination (chromosome) is defined as follows: 
 

 

where S is a similarity function between two given 
candidate entities. 
 
 Fitness Computing 
Calculating the fitness of each individual chromosome: 
݂( ଵܺ),f(ܺଶ),...,f(ܺ) is equivalent of finding the optimal 
order of the genes which minimize f. This can be viewed as a 
travelling salesman problem (TSP). The TSP is a problem in 
which a sales person has to visit certain cities following 
some path, such that each city is visited only once and then 
reach back to the place he started from. The travelling person 
should travel in such a way that his travelling cost (distance) 
is minimum. In the context of this paper, finding the shortest 
path of the TSPis equivalent of finding the set of genes 
(candidate entities) which are the most semantically related 
to each other. For instance the TSP for the chromosome 
ଵܺ =  .is represented in the graph in figure 3 (G12,...,G15,11ܩ)

And a possible solution of this example is 
 .(G13,G15,G12,G14,11ܩ)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: TSP illustration (Q=5) 
 
 
However, the TSP (Figure 6) is a complex combinatorial 
optimization problem that is difficult to solve with numerical 
approach. To illustrate this, with only 20 cities and even if 
we could evaluate 1 million paths per second, examining all 
20! Possible paths would require more than 77,000 years. 
Therefore, the paper addresses the TSP leveraging the 
Artificial Bee Colony (ABC) algorithm. The method is 
explained as follows: 
 
4.3 Artificial Bee Colony (ABC) 
 

 ABC Overview 
 
The ABC is a widely used technique in many research fields 
namely to address combinatorial problem such as the 
travelling salesman problem [20]. Bees by nature are 
organized into groups of active, inactive and scout bees. 
Active bees travel to a food source, examine neighbour food 
sources, gather food and return to the hive. Scout bees 
investigate the area surrounding the hive looking for 
attractive new food sources. Once food source is found 
active and scout bees inform the others by waggle dance. 
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 This dance conveys information to the inactive bees about 

the location and quality of the food source. Inactive foragers 
receive this food source information from the waggle dance 
and may become active foragers. In general, an active 
foraging bee continues gathering food from a particular food 
source until that food source is exhausted, at which time the 
bee becomes an inactive forager. 
 

 ABC Application 
 
The key concept in ABC algorithm is the idea that each 
virtual food source that represents a solution has some sort of 
neighbour solution. In the case of the TSP, where a solution 
can be represented as an array of cities representing a path 
from city to city, a natural neighbour solution relative to a 
current solution is a permutation of the current solution 
where two adjacent cities have been exchanged. 
The Figure 7 shows an illustration of how the framework 
apply the ABC algorithm for the chromosomes fitness 
calculation. 
 

Figure 7: ABC application example 
 
 

1. Given a chromosome X as input, a number of active 
bees (e.g. 100) is generated with random solutions 
(combinations of the genes of X). 

2. Initially, the number of the generated solutions is 
equal to the number of the active bees. 
Recruited active bees leave the hive to search for 
neighbour food sources according to the solution 
they have in their memories. 

3. Each bee examines a set of neighbour solutions (as 
defined previously) and updates its solution. 
The framework leverages the context similarity 
between two genes (candidates) by comparing their 
contextual description, captured in the 
disambiguation matrix, leveraging the BoW model 
and the Jaccard similarity similarly to [21]. 
When a bee found a better solution than its, the new 
solution is memorized, the bee returns to the hive 
and inform inactive bees with the new solution. 

4. After that, the hive global solution is updated as 
well as the persuaded inactive bees’ solutions.   
The active bees continue its search in neighbour 
food sources, evaluate their fitness, update its 
solution and inform inactive bees. In case where a 
counter of the number of times a particular virtual 
food source has been visited without finding a better 
neighbour food source. 

5. The bee returns to the hive and become inactive and 
a randomly chosen inactive bee become an active 
one. 

6. A maximum number of cycles is used to define the 
number of iterations of the ABC. One cycle 
represents processing of each bee in the hive. When 
this number is reached the ABC is ended and the 
hive solution is returned. 

5. RESULTS DISCUSSION 
 
The present framework which is a Spring boot based web 
application implements the different methods and algorithms 
as explained in this paper using Java libraries like OpenNLP 
and opensource code like for the SVM. The BoW model has 
been used twice by the framework. The first time as a 
mentions detection helper and the second to measure the 
context similarity between the candidates leveraging the 
Jaccard distance. The ABC implementation is inspired from 
the simulated bee colony implemented by [22] in C#.  The 
evaluation of the framework is done at two levels: the 
applicability and the efficiency. These two criteria will be 
compared against a baseline join inference method using a 
probabilistic graphical model (PGM). In what follows, the 
authors give a brief overview of the PGM based approach 
and an applicability comparison with the swarm intelligence 
approach. After that the framework efficiency is discussed. 
 
5.1 Baseline 
 
During the last years, alternative approaches for semantic 
annotation using the Entity Linking task and the collective 
disambiguation were proposed. However, the join 
disambiguation was handled leveraging, in most cases, 
numerical computing. Recently, an approximate approach 
based on probabilistic graphical models was used by different 
researches. For instance, [9] have used three features in their 
graphical model: the local similarities, the semantic relatedness 
and the prior popularity of a candidate entity. [23] have 
conducted a probabilistic approach which consists in 
learning a conditional probability model from data and 
employing approximate probabilistic inference in order to 
find the maximum a posteriori (MAP) assignment [24]. 
Particularly to annotate web tables, [10] have used a 
probabilistic method to annotate columns and cells values with 
entities. Recently, [5] have provided a unified WoT Knowledge 
Base construction framework. The EL framework they have 
proposed, annotates entities, types and relations using features 
from [20] . To infer the best disambiguation entities, they have 
adopted an iterative message passing (IMP) algorithm from 
[11]. The frequent idea of PGM, which was also First the 
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 variable nodes of the graph are initialized with the candidate 

entities. After that, the variable nodes in the graph send their 
current assignment to the factor nodes they are connected to.  
 
Once the factors receive the values of their neighboring 
variable nodes, they calculate the agreement between the 
received values using the function S. To decide if two values 
agree or not the result of the function S is compared to a 
threshold T. If the value of S satisfactory, the variable nodes 
values are accepted else, they are rejected and the variables 
receive a change message to update their assignments. The 
algorithm converges when no variable node receives a 
change message. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: AWoT table represented as a Factor Graph 

 
Accordingly, the authors shed light on the superiority of the 
proposed swarm intelligence method compared with the 
probabilistic based approach in terms of applicability. The 
Table 3 below gives a summary of this comparison. 
 

Table 3: Applicability comparison between GA and PGM based 
approaches 

 
 Probabilistic approach GA based approach 

Convergence Not sure Generally convergent 

Annotation All cells at the time Row by row 

Applicability Hundreds of rows Illimited 

Use of semantic 
relatedness 

Between rows and 
columns cells 

Only between one row cells 

Dependence on 
initial values 

High dependence Medium dependence 

 
5.2 Performance and Accuracy 
 
As can be noted, the efficiency and the accuracy of the 
framework depends on several criteria namely the initial 
parameters of the GA and the ABC. For instance, annotating 
a row containing only 5 extracted mentions is, in general, 
faster that annotating a 12 mentions row. To evaluate the 
relationship between the initial parameters and the performance 
and accuracy a row containing exactly 20 mentions have been 
suggested to the framework. 10 candidates were generated for 
each mention. After that, the annotation process is run with 
different ABC initial parameters. An augmentation of the 

response time was noted by approximately three times in 
function of the number of bees. However, when the annotation 
process is re-executed for the same data (row), this 
approximation changes. The authors conclude that since the 
GA and ABC are approximate techniques, the static 
relationship between number of bees and response time cannot 
be given. However, intuitively augmenting the number of 
active bees means that more solutions have to be evaluated and 
the annotation process may be slower. The Table 4 below 
shows the response time (RT1) in number of GA generations 
for the first round as well as RT2 for the second round. 
 

Table 4: Number of Bees and Response Time Relationship 
 

 NB = 100 NB = 200 NB = 300 NB = 400 

RT 1 3 9 24 37 

RT 2 3 12 2 4 

 
After the semantic annotation process was ended, the accuracy 
of the results was checked and only 54% of the mentions were 
correctly matched. Two reasons were suggested, the first is the 
small number of candidate entities and the second is the 
similarity measure. Therefore, a second round was performed 
using the Normalize Google Distance (NGD) similarity [25]. 
The authors noted that the accuracy was improved to 
approximatively 60%. However, the performance was 
decreased and that was explained by the definition of the NGD 
measure itself. The Table 5 shows the explained results. 
 

Table 5: Accuracy and Time Response Approximations for Context 
and NGD Similarities 

 Context similarity NGD 

Accuracy 54% 60% 

Time response (generations) 3 9 

 
Finally, the GA approach seems to be superior than [5] which 
found the average time consumed in each annotation on the 
WoT table equal to 4.1 s using a similar PGM approach. The 
best result found for the proposed GA succeeded to annotate 
a 20 mentions row in only three generations (nearly 5 
seconds) which gives an average of 0.25 seconds (5/20) per 
mention. 

6. CONCLUSION 
The paper describes a semantic annotation framework of 
WoT tables. The current framework implements various 
techniques and efficient algorithms for the EL task such as 
the well-known text preprocessing tools for the mentions 
detection task as well as swarm and evolutionary algorithms 
for the disambiguation task. A relational database was  
populated with WoT data and services. The annotation 
performance and accuracy of the framework were captured. 
Furthermore, a comparative study met the GA based 
inference technique with the probabilistic graphical one, was 
elaborated. In the future, a large scale evaluation of the 
present framework will be performed and other high 
computing techniques will be integrated [26][27].. 
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