
G.Vamsi Krishna et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4409 – 4413

4409


ABSTRACT

The automated analysis of source code quality can help the
developers to decrease the potential source code anomalies
without the help of a peer reviewer. This paper analyses
current tools that are being used for source code analysis and
also proposes a method to use classification and cyclomatic
complexity to predict the quality of the source code by giving
public data sets as input. This automated prediction of source
code quality will help the developer in providing feedback
during the development life cycle without the help of a peer
reviewer.

Key words: Source Code Analysis Cyclomatic Complexity,
Classification.

1. INTRODUCTION

Predicting the quality of source code was a fascinating topic
for many years, a wide range of algorithms and solutions are
developed in this field. But many of those solutions' objective
is to only focus on fault prediction in the source code.
Prediction of source code quality before performing testing
can reduce the cost and time required to test the application.
Quality of the source code depends on many factors including
complexity, functional requirements, and structure of the
code. Prediction of source code quality in the early stages of
the development life cycle can help the developers to reduce
the potential source code anomalies which may generate field
failures. [7] Source code quality must be checked and
reviewed as it is one of the important mechanisms for quality
assurance in the software development life cycle. Reviewing
the quality of source code has the potentiality to provide
feedback to the developer and helps the developer to avoid
introducing new bugs. The underlying problem in reviewing
the quality of the source code is that not all reviewers can
understand the minute changes that can affect the
functionality of the application. Throughout the sense of
software engineering, the quality of the software may be
specified as well as how well the software fulfills the user

needs and the specifications on which it is built.[6] The most
powerful indicators of the quality of the source code is the
complexity of the code which can be found by using
cyclomatic complexity. Cyclomatic Complexity is the
software utilized and is developed by Thomas J, McCabe Sir
in the year 1976 by utilizing the complication of the program.
It will be a quantitative measure of the multifaceted nature of
modifying guidelines. It specifically measures that number of
linearly autonomous ways through a program’s source code.
Cyclomatic Complexity is a product metric which gives
quantitative measurements of a system's legitimate
multifaceted nature. This research was focused on learning
both programming languages and written languages in their
complexities. A code smell is an indication that software can
contain a potential problem. Software smells typically aren't
glitches since they are technologically right and don't hinder
the system from running. Rather they show a deficiency in the
architecture or a growing possibility of potential failures.
Bloasters in the source code must be handled before
deployment to increase the performance of the system.[1].
The ability of the program usually degenerates as the program
undergoes improvements over its lifespan. Successfully
managing such a program means that current code, in
addition to incorporating new features, needs to be constantly
refactored, i.e. enhanced without incorporating features. They
classified related bad smells and carried out an observational
analysis that established an initial connection between the
code smells.

2. RELATED WORK

Previous studies have examined the possible solutions to
predict the quality and reliability of the source code. The agile
analysis explores the code of the software and explanations
behind any potential problems that could arise during the
runtime. Defaults in applications can be detected using
methods focused on static analysis. Recent advancements in
technologies have put in devices to do deeper analyzes and
uncover more flaws and create a small number of false alarms
meaning only that are absolutely accurate and needed. The
purpose of Ivo Gomes et al. work is to explain briefly static
code analysis, its features and possibilities, giving an

Prediction of Source Code Quality Using Cyclomatic
Complexity and Machine Learning

G.Vamsi Krishna, M.Chaitanya Meher, Khushboo Jain, D.Nagamallesawari

Department of Computer Science and Engineering,
KoneruLakshmaiah Education Foundation,

Guntur, Vaddeswaram, A.P., India

ISSN 2278-3091
Volume 9, No.4, July – August 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse34942020.pdf

https://doi.org/10.30534/ijatcse/2020/34942020

G.Vamsi Krishna et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4409 – 4413

4410

overview of the principles and technologies behind this
method of software development approach, as well as the
methods that enable the use of code review tools to help
programmers create applications which provide the
developers a platform to improve the source code and correct
errors during the development life cycle[2]

Figure 1: Traditional Peer Review

The list of components in a traditional peer review report
shown in Figure 1 contains: checklist which should test and
reflect on all products, list in defects detected, list of
participants, examination indicators, state of the item being
examined. Alberto et al.[3] After conducting extensive
experiments reported on CodeFlow that reviewing the quality
of code at earlier stages in the development life cycle has the
potentiality to provide feedback to the developer and helps the
developer to avoid introducing new bugs. CodeFlow is a
shared code review tool that enables users to annotate source
code directly in their viewer and to engage in a live chat
environment with the analysis participants. CodeFlow stores
all the code feedback details on a database repository. This
provides an additional data source that we used to analyze
commentary on real code review without the Hawthorne
effect.

Figure 2: CodeFlow automated testing tool

CodeFlow is used by developers at Microsoft as the main
review to tool to find the quality of the source code in the early
stages of the development life cycle.

3. OUR APPROACH

Our approach is to use cyclomatic complexity and
classification in machine learning to predict the quality and
reliability of the source code whether it well written or badly
written. Prediction of source code quality before performing
testing can reduce the cost and time required to test the
application. Quality of the source code depends on many
factors including complexity, functional requirements, and
structure of the code.

3.1. Classification

In machine learning, classification is the process of defining
which class belongs to a new and unlabeled object, based on
prior knowledge. Methods used for text classification and
static analysis include Bayesian classification, n-gram,
Vector Machine Help (SVM) and Decision Tree.[4]

 Figure 3: Classification of Source Code
Classification is the method of defining the category to which
a new instance belongs, utilizing only the training data given.
The methods can be described by using the metrics produced
from the static analysis and the training data available as
shown in Figure 3.

Table 1: Example of Classification of Public Data Set Promise

G.Vamsi Krishna et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4409 – 4413

4411

In the Table 1, prediction of the source code quality is
obtained after combining selected features from
C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11.But there are more,
we have six more features adding to the list
C12,C13,C14,C15.

Table 2: Selected Features and their description

3.2. Cyclomatic Complexity

Cyclomatic Complexity is a metric utilized and developed by
Thomas J, McCabe Sir in the year 1976 by utilizing the
complication of the program. It will be a quantitative measure
of the multifaceted nature of modifying guidelines. It
specifically measures that number of linearly autonomous
ways through a program’s source code. Cyclomatic
Complexity is a product metric which gives quantitative
measurements of a system's legitimate multifaceted nature.
Cyclomatic Complexity Number M for any source program
can be calculated theoretically using the formula,

Step 1: A graph has to be constructed from the skeleton source
program
Step 2: Independent Paths, Nodes, and edges are to be
identified
Step 3: From the number of independent paths the cyclomatic
complexity can be calculated.

Figure 4: Example of Flow Graph

The Properties of Cyclomatic complexity are listed below: V
(G) is the maximum number of independent paths in the
graph
V (G) must be greater than or equal to one
The graph will have only one path if the formula

V (G)=E-N+2P generates 1
The cyclomatic complexity number must be minimized 10 for
optimal results

Table 3: Complexity Number and its description

3.3. Architectural overview

In order to even further examine the prediction capacity of
approach, we concentrated on using both cyclomatic
complexity and the classification methods. JHawk produces
the static analysis for the source code, and the module
produces the required metrics C1,C2,C3,… ,C14,C15. The
Architectural overview is shown in Figure 5

G.Vamsi Krishna et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4409 – 4413

4412

Figure 5: Architectural overview

The source code of which the quality is to be predicted is given
as input to the database along with the training data sets using
jhawk plugins classification is done and the quality of the
source code is generated.

4. EMPIRICAL STUDY
In this section, we conduct an empirical study to answer the
research questions that are listed below. All the experiments
are performed on a Custom Desktop Computer with AMD
Ryzen Threadripper 3960X Processor and Adata XPG
Gammix D30 16GB (16GBX1) DDR4 RAM clocked at
3200MHz and Lenovo Laptop with Intel Core i7-8565U
processor overclocked to 4.60 GHz speed processor and a
Samsung Single Channel 8GB DDR4 RAM at 2133MHz.

Tools: MySql Database
Classification Methods: K nearest neighbor (KNN), Naive
Bayes (NB), and Decision tree (DTree).
Programming Language: Python
Data Sets: PROMISE1: which is public dataset available in
PROMISE workshop website
Link: https://datahub.io/machine-learning/jm1
PROMISE2: Public dataset jm1 dataset
Link:https://datahub.io/machine-learning/jm1

Q1) Is it possible to predict the source code quality using
classification methods?

Pre=Precision, Rec=Recall

Table 4: Prediction of Source code after classification

The classification of the public data sets PROMISE1 and
PROMISE2 was done by using KNN(k nearest neighbor),
Decision Tree, and NB (naïve Bayes). When we take a look at
the prediction Table 4 it might look like Naïve Bayes has the
best results with 80.72 % on the dataset with value by using 15
features. If we perform an in-depth analysis on Pre(Precision)
and Rec(Recall) the result might not seem like naïve Bayes
performance is the best out of all three including KNN and
Decision Tree. When using the PROMISE1 data set the KNN
classification potential was 22.7% and 90.3% for badly
written methods and well-written methods respectively. The
Decision Tree classification on the PROMISE1 data set was
able to classify 37.4% of the badly written methods with good
precision and 84.9% of the well-written methods with good
precision. When using PROMISE1 data set the naïve
classification was able to classify 8.7% of the badly written
methods with good precision and 97.2% of the well-written
methods with good precision. For the PROMISE2 dataset
using naïve Bayes classification, there was a trade-off
between the precision for badly written methods and
well-written methods. In Table 4 we can clearly see that the
Pre for the badly written method was increased whereas the
Pre of the well-written methods were decreased, that kind of
trade-off in performance needs analyzing. When using
PROMISE2 data set the naïve Bayes classification was able to
predict with an all time low,52.3% of the badly written
methods. On the other hand classification rate of well-written
methods with good precision is about 73.3% which is a huge
drop off when compared to PROMISE1 dataset.

5. CONCLUSION
Machine learning and cyclomatic complexity have proved to
predict the quality of the source code precisely. In this paper,
we proposed an approach to predict the quality of the source
code using machine learning and cyclomatic complexity
using public data sets PROMISE1 and PROMISE2.KNN,

G.Vamsi Krishna et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4409 – 4413

4413

decision tree, and naïve Bayes were the classification methods
used on the public data sets, naïve Bayes was able to perform
better than KNN and decision tree. The public data sets
contained more well-written methods than badly written
methods so the classifiers identified well-written code when
compared to badly written code. We conclude that predicting
the source code quality accurately using classification is
possible.

REFERENCES

1) Mantyla, Mika, Jari Vanhanen, and Casper Lassenius. "A
taxonomy and an initial empirical study of bad smells in
code." International Conference on Software Maintenance,
2003. ICSM 2003. Proceedings. IEEE, 2003.

2) Gomes, I., Morgado, P., Gomes, T., & Moreira, R. (2009). An
overview on the static code analysis approach in software
development. Faculdade de Engenharia da Universidade do
Porto, Portugal.

3) Bacchelli, Alberto, and Christian Bird. "Expectations,
outcomes, and challenges of modern code review." 2013
35th International Conference on Software Engineering
(ICSE). IEEE, 2013.
https://doi.org/10.1109/ICSE.2013.6606617

4) Barstad, Vera, Morten Goodwin, and Terje Gjøsæter.
"Predicting Source Code Quality with Static Analysis and
Machine Learning." NIK. 2014.(should keep somewhere)

5) Graylin, J. A. Y., et al. "Cyclomatic complexity and lines of
code: empirical evidence of a stable linear relationship."
Journal of Software Engineering and Applications 2.03
(2009): 137.(should keep near cyclomatic complexity)
https://doi.org/10.4236/jsea.2009.23020

6) Chaitanya Krishna, B., Yeshwanth Srinath, A., Bhavani, N.,
& Jaya Sai, G. (2018), ”Analysing software quality using
CMMI-2 with agile-scrum framework”. International
Journal of Engineering and Technology(UAE), 7(1.1 Special
Issue 1), 290-293.
https://doi.org/10.14419/ijet.v7i1.1.9704

7) D. Binkley, Source code analysis: A road map, “Future of
Software Engineering FOSE”, vol. 7, pp. 104{119, 2007.
https://doi.org/10.1109/FOSE.2007.27

8) “Design of data acquisition process and its validation
through statistical approaches”, Naga Malleswari, D.,
Subrahmanyam, K. ,International Journal of Recent
Technology and Engineering (2019)

9) “Analysis of risk in information system using cyclomatic
complexity “,Naga Malleswari, D., Bhaskar, K., Monica, A.,
Venkat Vinay, B., Sai Anirud Varma, U. (2019),
International Journal of Recent Technology and Engineering

10) “SIS framework for risk assessment through quantitative
analysis”, NagaMalleswari, D., Subrahmanyam, K. ,(2019)
International Journal of Engineering and Technology(UAE)

11) “Validation of SIS framework using ASP/JSP based
information system”, NagaMalleswari, D., Subrahmanyam,
K. (2019) International Journal of Innovative Technology and
Exploring Engineering

12) "A Security Approach for File Management System
using Data Encryption Standard (DES)
algorithm", Irma T. Plata Edward B.
Panganiban; Bryan B. Bartolome (2019) International
Journal of Advanced Trends in Computer Science and
Engineering

13) "A Fuzzy Analytic Hierarchy Process for Security
Risk Assessment of Web based Hospital Management
System", Intisar Shadeed Al-Mejibli; Nawaf Rasheed
Alharbe (2019) International Journal of Advanced
Trends in Computer Science and Engineering

14) "Information Security Using Hilbert With Hash
Value",Koduru Prasada Rao; Dr G Lavanya Devi;
(2019) International Journal of Advanced Trends in
Computer Science and Engineering

15) "A Comprehensive Survey on Vertical Handover
Security Attacks during Execution Phase",Omar
Khattab (2019) International Journal of Advanced
Trends in Computer Science and Engineering

