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 
ABSTRACT 
 
The automated analysis of source code quality can help the 
developers to decrease the potential source code anomalies 
without the help of a peer reviewer. This paper analyses 
current tools that are being used for source code analysis and 
also proposes a method to use classification and cyclomatic 
complexity to predict the quality of the source code by giving 
public data sets as input. This automated prediction of source 
code quality will help the developer in providing feedback 
during the development life cycle without the help of a peer 
reviewer. 
 
Key words: Source Code Analysis Cyclomatic Complexity, 
Classification. 
 
1. INTRODUCTION 
 
Predicting the quality of source code was a fascinating topic 
for many years, a wide range of algorithms and solutions are 
developed in this field. But many of those solutions' objective 
is to only focus on fault prediction in the source code. 
Prediction of source code quality before performing testing 
can reduce the cost and time required to test the application. 
Quality of the source code depends on many factors including 
complexity, functional requirements, and structure of the 
code. Prediction of source code quality in the early stages of 
the development life cycle can help the developers to reduce 
the potential source code anomalies which may generate field 
failures. [7] Source code quality must be checked and 
reviewed as it is one of the important mechanisms for quality 
assurance in the software development life cycle. Reviewing 
the quality of source code has the potentiality to provide 
feedback to the developer and helps the developer to avoid 
introducing new bugs. The underlying problem in reviewing 
the quality of the source code is that not all reviewers can 
understand the minute changes that can affect the 
functionality of the application. Throughout the sense of 
software engineering, the quality of the software may be 
specified as well as how well the software fulfills the user 
 

 

needs and the specifications on which it is built.[6] The most 
powerful indicators of the quality of the source code is the 
complexity of the code which can be found by using 
cyclomatic complexity. Cyclomatic Complexity is the 
software utilized and is developed by Thomas J, McCabe Sir 
in the year 1976 by utilizing the complication of the program. 
It will be a quantitative measure of the multifaceted nature of 
modifying guidelines. It specifically measures that number of 
linearly autonomous ways through a program’s source code. 
Cyclomatic Complexity is a product metric which gives 
quantitative measurements of a system's legitimate 
multifaceted nature. This research was focused on learning 
both programming languages and written languages in their 
complexities. A code smell is an indication that software can 
contain a potential problem. Software smells typically aren't 
glitches since they are technologically right and don't hinder 
the system from running. Rather they show a deficiency in the 
architecture or a growing possibility of potential failures. 
Bloasters in the source code must be handled before 
deployment to increase the performance of the system.[1]. 
The ability of the program usually degenerates as the program 
undergoes improvements over its lifespan. Successfully 
managing such a program means that current code, in 
addition to incorporating new features, needs to be constantly 
refactored, i.e. enhanced without incorporating features. They 
classified related bad smells and carried out an observational 
analysis that established an initial connection between the 
code smells. 
 
2. RELATED WORK 
 
Previous studies have examined the possible solutions to 
predict the quality and reliability of the source code. The agile 
analysis explores the code of the software and explanations 
behind any potential problems that could arise during the 
runtime. Defaults in applications can be detected using 
methods focused on static analysis. Recent advancements in 
technologies have put in devices to do deeper analyzes and 
uncover more flaws and create a small number of false alarms 
meaning only that are absolutely accurate and needed. The 
purpose of Ivo Gomes et al. work is to explain briefly static 
code analysis, its features and possibilities, giving an 
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overview of the principles and technologies behind this 
method of software development approach, as well as the 
methods that enable the use of code review tools to help 
programmers create applications which provide the 
developers a platform to improve the source code and correct 
errors during the development life cycle[2] 

 
Figure 1: Traditional Peer Review 

 
The list of components in a traditional peer review report 
shown in Figure 1 contains: checklist which should test and 
reflect on all products, list in defects detected, list of 
participants, examination indicators, state of the item being 
examined. Alberto et al.[3] After conducting extensive 
experiments reported on CodeFlow that reviewing the quality 
of code at earlier stages in the development life cycle has the 
potentiality to provide feedback to the developer and helps the 
developer to avoid introducing new bugs. CodeFlow is a 
shared code review tool that enables users to annotate source 
code directly in their viewer and to engage in a live chat 
environment with the analysis participants. CodeFlow stores 
all the code feedback details on a database repository. This 
provides an additional data source that we used to analyze 
commentary on real code review without the Hawthorne 
effect. 

 
Figure 2: CodeFlow automated testing tool 

CodeFlow is used by developers at Microsoft as the main 
review to tool to find the quality of the source code in the early 
stages of the development life cycle. 
 
3.  OUR APPROACH 
 
Our approach is to use cyclomatic complexity and 
classification in machine learning to predict the quality and 
reliability of the source code whether it well written or badly 
written. Prediction of source code quality before performing 
testing can reduce the cost and time required to test the 
application. Quality of the source code depends on many 
factors including complexity, functional requirements, and 
structure of the code.  
 
3.1. Classification  
 
In machine learning, classification is the process of defining 
which class belongs to a new and unlabeled object, based on 
prior knowledge. Methods used for text classification and 
static analysis include Bayesian classification, n-gram, 
Vector Machine Help (SVM) and Decision Tree.[4]  

 
    Figure 3: Classification of Source Code   
Classification is the method of defining the category to which 
a new instance belongs, utilizing only the training data given. 
The methods can be described by using the metrics produced 
from the static analysis and the training data available as 
shown in Figure 3. 

 
Table 1: Example of Classification of Public Data Set Promise 
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In the Table 1, prediction of the source code quality is 
obtained after combining selected features from 
C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11.But there are more, 
we have six more features adding to the list 
C12,C13,C14,C15. 

 
Table 2: Selected Features and their description 

 

 
3.2. Cyclomatic Complexity 
 
Cyclomatic Complexity is a metric utilized and developed by 
Thomas J, McCabe Sir in the year 1976 by utilizing the 
complication of the program. It will be a quantitative measure 
of the multifaceted nature of modifying guidelines. It 
specifically measures that number of linearly autonomous 
ways through a program’s source code. Cyclomatic 
Complexity is a product metric which gives quantitative 
measurements of a system's legitimate multifaceted nature. 
Cyclomatic Complexity Number M for any source program 
can be calculated theoretically using the formula, 

 
Step 1: A graph has to be constructed from the skeleton source 
program  
Step 2: Independent Paths, Nodes, and edges are to be 
identified  
Step 3: From the number of independent paths the cyclomatic 
complexity can be calculated. 

 
Figure 4: Example of Flow Graph 

 
The Properties of Cyclomatic complexity are listed below: V 
(G) is the maximum number of independent paths in the 
graph  
V (G) must be greater than or equal to one  
The graph will have only one path if the formula  

V (G)=E-N+2P generates 1  
The cyclomatic complexity number must be minimized 10 for 
optimal results 

 
Table 3: Complexity Number and its description 

 
3.3. Architectural overview  
 
In order to even further examine the prediction capacity of 
approach, we concentrated on using both cyclomatic 
complexity and the classification methods. JHawk produces 
the static analysis for the source code, and the module 
produces the required metrics C1,C2,C3,… ,C14,C15. The 
Architectural overview is shown in Figure 5 
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Figure 5: Architectural overview 

 
The source code of which the quality is to be predicted is given 
as input to the database along with the training data sets using 
jhawk plugins classification is done and the quality of the 
source code is generated. 

4. EMPIRICAL STUDY 
In this section, we conduct an empirical study to answer the 
research questions that are listed below. All the experiments 
are performed on a Custom Desktop Computer with AMD 
Ryzen Threadripper 3960X Processor and Adata XPG 
Gammix D30 16GB (16GBX1) DDR4 RAM clocked at 
3200MHz and Lenovo Laptop with Intel Core i7-8565U 
processor overclocked to 4.60 GHz speed processor and a 
Samsung Single Channel 8GB DDR4 RAM at 2133MHz. 
 
Tools: MySql Database 
Classification Methods: K nearest neighbor (KNN), Naive 
Bayes (NB), and Decision tree (DTree). 
Programming Language: Python 
Data Sets: PROMISE1: which is public dataset available in 
PROMISE workshop website 
Link: https://datahub.io/machine-learning/jm1 
PROMISE2: Public dataset jm1 dataset 
Link:https://datahub.io/machine-learning/jm1 
 
Q1) Is it possible to predict the source code quality using 
classification methods? 
 

Pre=Precision, Rec=Recall 
 

Table 4: Prediction of Source code after classification 

 
The classification of the public data sets PROMISE1 and 
PROMISE2 was done by using KNN(k nearest neighbor), 
Decision Tree, and NB (naïve Bayes). When we take a look at 
the prediction Table 4 it might look like Naïve Bayes has the 
best results with 80.72 % on the dataset with value by using 15 
features. If we perform an in-depth analysis on Pre(Precision) 
and Rec(Recall) the result might not seem like naïve Bayes 
performance is the best out of all three including KNN and 
Decision Tree. When using the PROMISE1 data set the KNN 
classification potential was 22.7% and 90.3% for badly 
written methods and well-written methods respectively. The 
Decision Tree classification on the PROMISE1 data set was 
able to classify 37.4% of the badly written methods with good 
precision and 84.9% of the well-written methods with good 
precision. When using PROMISE1 data set the naïve 
classification was able to classify 8.7% of the badly written 
methods with good precision and 97.2% of the well-written 
methods with good precision. For the PROMISE2 dataset 
using naïve Bayes classification, there was a trade-off 
between the precision for badly written methods and 
well-written methods. In Table 4  we can clearly see that the 
Pre for the badly written method was increased whereas the 
Pre of the well-written methods were decreased, that kind of 
trade-off in performance needs analyzing. When using 
PROMISE2 data set the naïve Bayes classification was able to 
predict with an all time low,52.3% of the badly written 
methods. On the other hand classification rate of well-written 
methods with good precision is about 73.3% which is a huge 
drop off when compared to PROMISE1 dataset. 

5. CONCLUSION 
Machine learning and cyclomatic complexity have proved to 
predict the quality of the source code precisely. In this paper, 
we proposed an approach to predict the quality of the source 
code using machine learning and cyclomatic complexity 
using public data sets PROMISE1 and PROMISE2.KNN, 
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decision tree, and naïve Bayes were the classification methods 
used on the public data sets, naïve Bayes was able to perform 
better than KNN and decision tree. The public data sets 
contained more well-written methods than badly written 
methods so the classifiers identified well-written code when 
compared to badly written code. We conclude that predicting 
the source code quality accurately using classification is 
possible. 
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