
 Prakash B et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6569 – 6576

6569

Optimization of Test Cases: A Meta-Heuristic Approach

Prakash B1, Saleena B2, Shravan S3, Vijayanandh R4
1,2,3School of Computer Science and Engineering, VIT Chennai

4School of Information Technology,IBS University,Papua New Guinea

ABSTRACT

Software testing is considered as one of the most challenging
and time consuming activity involved in the software
development process. Testing involves the creation of test
cases that helps to explore the defects present in the software
system. Test cases play a major role in the testing process to
uncover the critical errors that exist in the system. Thus, it is
necessary to prioritize test cases for effective testing. This
paper aims at performing a comparative study for the
optimization of test cases involved in software development
using Meta-heuristic techniques. The weightage of each test
case is determined,which helps in optimizing the test cases.
The performance is evaluated by comparing two meta-
heuristic algorithms, namely Particle Swarm Optimization
(PSO) and Genetic Algorithm (GA).The result shows PSO
outperforms GA in terms of accuracy, error rate, and
execution time for the chosen test case optimization
problem.

Key words: Software Testing, Meta-Heuristic techniques,
Optimization.

1. INTRODUCTION

Software Testing is the most critical phase in software
development to deliver high quality software. Testing aims
at detecting the faults that exist in the software that results in
bad quality and poor customer satisfaction. At the same
time, testing is the most time consuming and expensive
process in software construction [1][2]. Almost 40% of the
projects’ budget, time, and effort spent on testing the
software system [3].The development team faces multiple
obstacles and impediments in completing the software
project demanded by the customer within the estimated cost
and stipulated time. With increased rapid development
methods and customer demands, it becomes necessary to
deliverthe software project with a minimal defect.

In the early days, testing was performed manually, whereas
in recent times the testing process is automated with the help
of software tools available. Since automated testing requires
less time and resources, it becomes a more preferred
approach among testing communities in organizations. The
success of testing is highly dependent on the test case
generated. Thus, it is very much important to optimize the

test case for performing the testing process. Meta-heuristic
algorithms are the most widely accepted approach in solving
optimization problems in the field of software development.
In general, meta-heuristic techniques are used to solve
complex problems to obtain near optimal solutions. In recent
times, many meta-heuristic algorithms were tried to solve
different optimization problems as part of software
development[4][5][6]. In this study, one such attempt has
been tried to understand the performance of two meta-
heuristic algorithms namely, Genetic Algorithm (GA) and
Particle Swarm Optimization (PSO) for prioritization of test
cases.

The main objective of this study is to:
 Implement GA and PSO algorithms for prioritizing the

test cases.
 Evaluate the performance of the algorithms based on

three criterion attributes namely, accuracy, error rate,
and execution time.

This paper is divided into 5 sections. Section 2 describes the
existing literature study, section 3 details about GA and PSO
algorithms for optimizing test cases. Section 4 represents the
results obtained along with the discussion and finally,
section 5 concludes the paper with direction for future study.

2. RELATED WORKS

In recent times, there are various studies focused on
applying different meta-heuristic techniques in the field of
prioritization. Among those, GA and PSO are the most
preferred approaches due to their minimal performance
tuning parameters and obtaining better optimal results.

Andreaset.al [7] proposed a systematic approach to automate
the process of test suite generation and optimization. The
authors in this study followed the testing approach
ofEvolutionary Structural Testing to automatically generate
the test cases to achieve high structural code coverage. A
fault-based regression test case prioritization using GA was
proposed by Arvinder et al., [8]. This study utilized the
evolutionary approach in specific, GA for prioritizing test
case suite based on total fault coverage with minimal
execution time. Rothermel et al., [9] introduced the
regression test case prioritization technique based on user-
defined criteria. Priyanka et al., performed a comparative
analysis of test case prioritization approaches in the field of

ISSN 2278-3091
Volume 9, No.4, July – August 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse346942020.pdf

https://doi.org/10.30534/ijatcse/2020/346942020

 Prakash B et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6569 – 6576

6570

regression testing [10]. The various methods of test case
prioritization such as total branch coverage and additional
branch coverage are utilized to improve fault detection [11].

Srivastava et al., introduced a prioritizationtechnique based
on the changes introduced in the program and focused on the
objective function of impacted block coverage [12]. The
prioritization of test case scenarios derived from Unified
Modeling Language (UML) diagrams by applying GA was
introduced by Sangeeta et al., [13]. In this study, the author
proposed prioritization of test case scenarios derived from
the activity diagram and state chart diagram of UML using
the concept of basic information flow (IF) metric, stack, and
GA.GA and PSO algorithms are applied in several
optimization problems for generating test cases for
functionality testing [14][15], structural testing [16][17],
regression testing [18] [19], and many other areas [20][21].

Based on the existing literature study, it is evident that even
though several attempts have been made to prioritize the test
cases using evolutionary algorithms, as per the author's
knowledge, a comparative study of GA with PSO in the field
of test case prioritization has not attempted so far.

3. PROPOSED APPROACH

3.1 Particle Swarm Algorithm (PSO)

This section details our proposed approach for test case
prioritization using PSO and GA techniques.PSO is a swarm
intelligence algorithm introduced by Kennedy and Eberhart
in the year 1995 [22]. PSO is mainly used to optimize a
problem through multiple iterations based on a random
search method. This means that the algorithm generates
candidate solutions randomly and alters these solutions
according to the quality measure of that candidate solution
as iteration progresses. PSO works by initializing candidate
solutions for the chosen test case optimization problem as
individual particles, each with their velocity, position, and
overall inertial weight. For each iteration, the fitness of the
particles is calculated. Based on this fitness score, the
position value and the velocity of that particular particle are
updated using‘update_position’ and ‘update_velocity’
functions respectively. The updation takes place with regard
to the personal best position of that particular particle and
the global best position of all particles in the solution space.
The fitness function for update velocity is:

풗풊(풕 + ퟏ) = 	풘.풗풊(풕) + 푨 + 푩																											(ퟏ)
풘풉풆풓풆	푨 = 풄ퟏ.풓ퟏ(풕)(풙풑푩풆풔풕(풕)− 	풙풊(풕))

														풂풏풅			푩 = 	풄ퟐ.풓ퟐ(풕)(풙품푩풆풔풕 − 	풙풊(풕))	

and the formula for update position is
																											풙풊	 = 	풙풊	+ 	풗풊 (2)
where vi (t+1) - velocity after update (at time t+1), vi (t) -
velocity of the particle before update (at time t), w - inertia
factor, set at initialization, c1 - constant, confidence of the
particle, c2 - constant, confidence of the swarm, r1, r2 -
random numbers (at time t), xpBest(t) - pBest value of particle
(at time t), xi(t) - current position of particle (at time t), xgBest

- gBest value of swarm, xi - position value of particle, vi -
velocity of particle.
After ‘n’ iterations, all particles tend to move towards the
optimum center of the entire swarm. If the termination
constraint is achieved the algorithm comes to a halt. The
global best (global optimal center) will be considered as the
optimal result for the optimization problem. Figure 1 gives a
pseudo code for the PSO algorithm.

Start
1. Define dimension of problem, solution

space and population size
2. Generate random solutions as particles

(based on pop, lb, ub)
3. Initialize particles with position, velocity.

Set gBest and pBest
4. For each iteration in max_iter:

 4.1 For each particle in pop:
 Evaluate fitness
 Update pBest
 4.2 Find gBest
 4.3 For each particle in pop:
 Update velocity
 Update position
 4.4 Evaluate

4.5 If termination condition met:
 break

4.6 Else:
Return to 4.

5. Return global optima
Stop

Figure 1: PSO pseudo code

3.2 Genetic Algorithm (GA)

Genetic Algorithm (GA) is a meta-heuristic algorithm
inspired by the working of natural selection, belonging to a
large list of evolutionary algorithms [23]. The algorithm is
based on the concepts of Darwin's Theory of Evolution,
which proves that the most powerful trait is handed down
generation-to-generation. Based on this theory, GA is
utilized to solve optimization problems by producing better
results after multiple generations of possible individual
solutions.

GA works by creating a population of possible solutions for
the problem and finding the best result after multiple
generations. At initialization, an entire population of
possible solutions (which act as the first generation) is
created. Each chromosome (or genomes) in a population has
its own unique set of traits (or genes). For the first iteration,
a set of chromosomes are chosen based on the fitness
function score. These chosen pairs of chromosomes are used
for the re-population of the solution pool for the next
generation. For each iteration, the best chromosomes act as
parents to re-populate the next generation. The population of
the successive generations is obtained by applying some
genetic operations on the parent chromosomes. The genetic
operations are crossover and mutation. Crossover is the
technique of generating new solutions for the successive

 Prakash B et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6569 – 6576

6571

generation by crossing over (or) interchanging individual
genes between two parent chromosomes. Figure 2 and 3
represents the difference in parent chromosomes before and
after crossover.

Figure 2: Parent chromosomes before Crossover

Figure 3:Children chromosomes obtained after crossover

Mutation is a technique of producing new solutions to the
successive generation by mutating the solution (or) by
altering the genes of the parent chromosome such that a new
solution is obtained. Figure4 gives a distinction between the
state of the chromosome before and after mutation.

Figure4:Difference in chromosome before and after mutation

There is a continuous choice-paring-population production
cycle occurring until the adequate size of the population for
the next generation is obtained. Once the termination
condition is achieved, the algorithm comes to a halt. The
result obtained from the algorithm will be the best result
from the final generation population with the highest fitness.
Figure 5represents a pseudo code of the GA algorithm.

Start
1. Define the dimension of the problem,

solution set,and population size
2. Generate random solutions as particles

(based on pop, lb, ub) as population
3. Set mutation rate and selective pressure
4. For each iteration in max_iter:

 4.1 For each chromosome in pop:
 Evaluate fitness
 4.2 Choose best chromosomes as parents
 4.3 For each pair in parents:
 Crossover
 Mutation
 4.4 Re-populate for next generation

4.5 If termination condition met:
 break

4.6 Else:
Repeat 4.

5. Return best chromosome & best fitness
Stop

Figure 5: GA Pseudo Code

3.3 Methodology

The system would use the Particle Swarm algorithm to
optimize the objective function and hence derive the
optimized test suite. The objective function would be the
mathematical representation of the “weightage” value found
for each test case. The meta-heuristic algorithms consider
this objective function to fit the particles or chromosome (in
PSO and GA, respectively) and optimize the value of this
function. Figure 6 and 7represents the process flow of PSO
and GAalgorithms for the test case optimization problem
respectively.

Figure 6: PSO Process Flow

Figure7:GA Process Flow

 Prakash B et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6569 – 6576

6572

Based on the best optimal values obtained, the dataset is re-
ordered. The test cases are arranged based on the difference
of the weightage value from the optimum obtained from the
meta-heuristic algorithm.

4. EMPIRICAL RESULTS

The performance tuning parameters and system
configuration used for execution of the system is illustrated
in Table1.

Table 1:System configuration for final results

4.1 PSO Output

Firstly, the PSO algorithm is used to optimize the test case.
The particle swarm optimizer is executed under a number of
parameters, which ensure the best possible results obtained.

The output from the algorithm will be the gBest X (global
best position) and gBest Y (global best fitness) values. The
gBest Y value (representing f(a), where f is the objective
function) represents the maximized result that can be
obtained as a result from the objective function when using
gBest X (representing a) as the input. The entire dataset is
rearranged based on the difference from the optimal fitness
and current weightage and the output will be the test suite

optimized by PSO. Figure8 represents the resultant test suite
obtained by optimization using Particle Swarm Optimizer.

Figure 8: Output from PSO

4.2 Consistency of PSO

To ensure that the right parameters and attributes are used
for the algorithm, the algorithm has been executed for‘m’
instances and the average fitness values and average
execution time are recorded. The best possible parameters
for PSO found in this study are represented in Table 3.

Table 2 :PSO constants for all instances

Constants for all instances

Dimensions 5
Particles 10

W 0.6
c1, c2 0.7

Table 3:PSO execution results

S. No Total no. of

executions
Average
gBest Y

Average
execution

time
1 10 229.0 0.00407
2 25 228.9 0.0038
3 50 229.0 0.0038
4 100 229.0 0.0038
5 200 229.0 0.0036

OS Linux
Software Jupyter Notebook,

Python

Dimension (objective

function)

5

Lower bound As per dataset

Upper bound As per dataset

For PSO

Particles (pop) 100

Max_iter 25

Inertia weight (w) 0.6

c1, c2 0.7

For GA

Max_gen 25

Population size 100

Parent pair number 4

Selective pressure 1.4

Mutation rate 0.2

 Prakash B et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6569 – 6576

6573

The sub-graphs of Figure 9 represents the execution
involved in PSO implementation.

Figure. 9 (a)

Figure. 9(b)

Figure. 9(c)

Figure. 9(d)

Figure. 9(e)

 Figure 9: Execution involved in PSO implementation

4.3 GA Output

The genetic algorithm is executed under certain operating
conditions and constraints which preferably provide the best
possible results.The algorithm is executed and the results
from the execution are recorded. The output from the
algorithm will be the best genome and best fitness values.
The best fitness value (representing f(a), where f is the
objective function) represents the maximized result which
can be obtained as a result from the objective function when
using the best genome (representing a) as the input. The
entire dataset is rearranged based on the difference from the
optimal fitness and current weightage and the output will be
the test suite optimized by GA. Figure 10 represents the
resultant test suite obtained by optimization using the
Genetic Algorithm.

Figure 10: Output from GA

4.4 Consistency Of GA

To ensure that the right parameters and attributes are used
for the algorithm, the algorithm has been executed form-
instances. The best possible parameters for GA found in this
study are represented in Table 4.

Table 4 :GA constants for all instances

Constants for all instances
Genome Length 5
Generations 10

Selective Pressure 1.4

Mutation Rate 0.2

Table 5:GA Execution Results

S. No Total no.
of

executions

Average
best fitness

Average
execution

time
1 10 213.6299 0.0680
2 25 213.4600 0.0720
3 50 209.8300 0.0703
4 100 209.7080 0.0671
5 200 212.0204 0.0677

 Prakash B et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6569 – 6576

6574

The sub-graphs of Figure 11 represent each of the
aforementioned instances.

Figure 11(a)

Figure 11(b)

Figure 11(c)

Figure 11(d)

Figure 11(e)
Figure 11: Each of the aforementioned instances.

4.5 Comparative Study

The comparison between the output from the meta-heuristic
algorithms takes place as the following steps:
● Check for equality between the two test suites obtained
● Determine the accuracy of the first meta-heuristic

algorithm
● Calculate the error rate of the first meta-heuristic

algorithm
● Determine the accuracy of the next meta-heuristic

algorithm
● Calculate the error rate of the next meta-heuristic

algorithm
● Compare the accuracy of the output test suites
● Compare the error rates for the output test suites
● Determine the difference between the times for

execution of the algorithm

Firstly, the resultant test suites from both the algorithms are
checked if they are equal. This equality might then influence
the similar efficiency of the algorithms. Then the accuracy of
the output test suites is determined. This is found from the
test case ranking obtained from the stakeholders. The
formula for accuracy is given by

푨풄풄풖풓풂풄풚	(%) 	= 	(푻푪풓풂풏풌풆풅	/	푻푪풕풐풕풂풍) 	 ∗ 	ퟏퟎퟎ							(ퟑ)
where TCranked - number of test cases which are in the
correct rank, TCtotal - total number of test cases in the
dataset. Based on this accuracy value, the value for error rate
is also determined using the formula

푬풓풓풐풓	풓풂풕풆	(%) 	= 	ퟏퟎퟎ%	 − 	%	풐풇	풂풄풄풖풓풂풄풚											(ퟒ)
After the accuracy and the error rates for both the
algorithms, their execution time is found. The results are
recorded in Table 6.

Table 6: Comparative Study

Iter.
No.

Meta-
heuristic
algorithm

Accuracy
%

Error
%

Execution
Time

1. PSO 85% 15% 0.41721
GA 83% 17% 0.41259

2. PSO 83% 17% 0.41567
GA 83% 17% 0.40447

3. PSO 84% 16% 0.399785
GA 82% 18% 0.412262

 Prakash B et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6569 – 6576

6575

These values are used to determine the efficiency of the
meta-heuristic algorithm. The relation between the
efficiency and values mentioned in Table 6 are given below

System Efficiency ∝ % of accuracy
System Efficiency ∝ 1 / % of error
System Efficiency ∝ 1 / execution time

Where,System Efficiency is the efficiency of the sub-system
which uses the particular meta-heuristic algorithm to solve
the optimization problem.
From Table 6, it is clear that, among the 3 iterations, the
PSO algorithm shows higher accuracy and lower error rate.
Even though the execution time for GA is less in 2
iterations, PSO remains consistent with its accuracy and low
error rate.

5. CONCLUSION

The proposed approach is used to optimize the test cases and
finds the associated fitness valuesfor each test case. The
maximization of this fitness value is considered as the best
optimalsolutionfor the chosen problem. By implementingPSO
and GA algorithms, the optimal solution is determined and
the test suite is prioritized accordingly. Further, the results of
both PSO and GA algorithms are compared in terms of three
criterion attributes namely, accuracy, error rate, and
execution time.
From the comparative study, it is clear that GA is best suited
for lightweight problems which are much faster to optimize
whereas PSO works best in solving problems where heavy
computation is required. The PSO exhibits more accurate
results while the Genetic Algorithm provides faster
execution. The result and conclusion depend completely on
the sample test case set the input to the system. The user is
presented with both the resultant test suites, from which they
might choose the most favourable one, taking factors such as
testing environment, stakeholder requests, and expectations
into consideration.
The future direction might be focused on: (i) Implementing
different meta-heuristic algorithms for this test case
optimization problem, (ii) a hybrid approach, which is a
combination of two meta-heuristic algorithms that can be
attempted to understand the behavior on the chosen
prioritization problem.

REFERENCES

1. Dr. VelurRajappa, ArunBiradar, Satanik Panda,

Efficient software test case generation Using Genetic
algorithm based Graph theoryInternational
conference on emerging trends in Engineering and
Technology, pp. 298--303, IEEE (2008).
https://doi.org/10.1109/ICETET.2008.79

2. Praveen RanjanSrivastava and Tai-hoon Kim,
Application of Genetic algorithm in software testing,
International Journal of software Engineering and its
Applications, vol.3,No.4, pp. 87--96 (2009).

3. ChartchaiDoungsa-ard, KeshavDahal, AlamGirHossain
and TaratipSuwannasart, An automatic test data
generation from UML state diagramusing genetic
Algorithm”.http://eastwest.inf.brad.ac.uk/
document/publication/Doungsa-ard-KIMA.pdf.

4. Hilary I O., Nkolika J P., Adedotun O A.,
Chukwuemeka O I., Akunnaya P O. Smart review of
the applications of Genetic Algorithm in
Construction and Housing. Internatinal Journal of
advanced trends in Computer Science and Engineering,
vol. 9, no. 1, pp. 266 – 273, 2020.
https://doi.org/10.30534/ijatcse/2020/40912020

5. Prakash B., Viswanathan V. A comparative study of
meta-heuristic optimisation techniques for
prioritisation of risks in agile software development.
Int. J. Computer Applications in Technology, vol. 62,
no. 2, 2020.

6. Lucija B., Iztok F., Vili P. Solving agile software
development problems with Swarm Intelligence
Algorithms. International conference in new
technologies, development and applications, vol. 76, pp.
298 – 309, Springer, 2019.
https://doi.org/10.1007/978-3-030-18072-0_35

7. Ali A. Al-Jadaa (2014). Software Metrics,Birzeit
University of Engineering and Information Technology,
Master of Computing-Software Engineering Course
2014

8. Arvinder K., Shubhra G., A Genetic Algorithm for
Fault based Regression Test Case Prioritization,
International Journal of Computer Applications, vol. 32,
no. 8, 2011.

9. Rothermel, G., Untch, R., Chu, C. and Harrold, M.J.
Prioritizing test cases for regression testing, IEEE
Transactions on Software Engineering, vol. 27, No.10,
October 2001, pp.929–948.

10. Priyanka P., Shashank S., Debnath B., Taihoon K.
Comparative analysis of test case prioritization
approaches in regression testing. International Journal
of advanced trends in Computer Science and
Engineering, vol. 8, no. 4, pp. 1260 – 1267, 2019.
https://doi.org/10.30534/ijatcse/2019/36842019

11. Elbaum, S., Malishevsky, A. G. and Rothermel, G. Test
case prioritization: A family of empirical studies.
IEEE Transactions on Software Engineering, vol.28,
No. 2, 2002, pp.159–182.

12. Srivastava, A. and Thiagarajan, J. Effectively
prioritizing tests in development Environment, in
Proceedings of the ACM SIGSOFT international
symposium on Software testing and analysis, USA,
2002, pp. 97–106.

13. Sangeeta S, Ritu S, Chayanika S, Applying Genetic
Algorithm for Prioritization of Test Case Scenarios
derived from UML Diagrams, Internationa Journal of
Computer Science, vol. 8, no. 3, 2011.

14. Nirmal Kumar Gupta and Dr. Mukesh Kumar Rohil
,Using Genetic algorithm for unit testing of object
oriented software, First International conference on
Emerging trends in Engineering and technology, IEEE
(2008).

 Prakash B et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6569 – 6576

6576

15. Francisca Emanuelle, Ronaldo Menezes, Marcio Braga,
Using Genetic algorithms for test plans for
functional testing, ACM (2006).

16. Praveen RanjanSrivastava and Tai-hoonKim
,Application of Genetic algorithm in software testing,
International Journal of software Engineering and its
Applications, vol.3,No.4, pp. 87--96 (2009).

17. Mahaalzabidi, Ajay Kumarand A. D. Shaligram,
Automatic software structural testing by using
evolutionary algorithms for test data generations,
IJCSNS International Journal of Computer science and
Network Security, Vol.9, No.4 (2009).

18. Robert M .Patton, Annie S. Wu, and Gwendolyn H
.Walton, A Genetic Algorithm approach to focused
software usage testing, Annals of
softwareengineering,.http://www.cs.ucf.edu/~ecl/papers/
03.rmpatton.pdf

19. Omdev D., Kamna S., Sandeep D. Comparative
analysis of regression test case prioritization
techniques. International Journal of Advanced Trends
in Computer Science and Engineering, vol. 8, no. 4, pp.
1521 – 1531, 2019.
https://doi.org/10.30534/ijatcse/2019/74842019

20. Nirmal Kumar Gupta and Dr. Mukesh Kumar Rohil,
Using Genetic algorithm for unit testing of object
oriented software, First International conference on
Emerging trends in Engineering and technology, IEEE
(2008).

21. Jose Carlos, Mario, Alberto, Francisco, A strategy for
evaluating feasible and unfeasible test cases for the
evolutionary testing of object-oriented software,
ACM (2008).

22. Kennedy J, EberhartR,Particle Swarm Optimization,
Proceedings in IEEE International Conference on
Neural Networks, Australia, pp. 1942 – 1948, 1995.

23. Goldberg D E, Genetic algorithms in search,
optimization, Summary the applications of GA –
Genetic Algorithm for dealing with some optimal
calculations in Economics, Addison Wesley, 1989.

