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ABSTRACT 
 
In this paper, an optimal scheduling framework of plug-in 
hybrid electric vehicles (PHEVs) is introduced to address the 
issue with fluctuations of renewable resources and demand 
profile. The main purpose of the framework is to minimize 
the total power losses in distribution networks through the 
best locations and optimum number of PHEVs for charging 
and discharging. A heuristic optimization based on 
gravitational search algorithm (GSA) technique is used in the 
framework to solve the non-linear and non-convex problem. 
To showcase the framework effectiveness, two worst case 
scenarios are considered; low demand at high generation and 
high demand at no generation. The framework is tested on the 
modified 33-bus distribution network within MATLAB 
environment. The results show that the electricity can be 
transferred using PHEVs and give significant loss reduction 
in both cases.  
 
Key words: Plug-in hybrid electric vehicle, gravitational 
search algorithm, network management, renewable energy.  
 
1. INTRODUCTION 
 
A huge-scale of renewable energy is expected to integrate in 
the distribution level as part of the energy transition from the 
conventional fossil-fuel plants to low/zero carbon emission 
energy resources (e.g., solar). The large amount of low/zero 
carbon emission energy resources in form of distributed 
generations (DGs) is being fed into the distribution networks 
can lead to enormous technical problems. The intermittent 
behavior of the DGs is one of the problems that limit the DG 
integration into the distribution power grid. The maximum 
amount of DGs could be absorbed in the power system under 
current conditions is generally between 20-25% [1]. The DG 
power curtailment is among several solutions that have been 
explored in order to increase the DG penetration level [2]. 
Although it helps, the amount of wasted energy will increase. 
Therefore, another solution is required to fully utilize the 
harvested energy and consequently, operate the power grid in 
more efficient and cost-effective way.  
 

The concerns on greenhouse emissions have also received 
growing attention in the transportation sector to use electric 
vehicles (EVs) instead of the traditional internal combustion 
engine vehicles [3]. The market penetration of EVs is 
expected to reach 30% global market share by 2030 [4], 
motivated by the higher efficiency and lower gas emissions of 
EVs [5]. Plug-in hybrid EV (PHEV) is one type of the EVs in 
the market that can change the demand profile in power grids. 
Consequently, the integration of large-scale PHEVs into the 
existing power system leads to another challenge mainly due 
to the massive electricity demands from the emerging PHEV 
loads. Uncoordinated charging of large PHEV fleets in venues 
such as parking stations tends to impose significant risk on 
the power system operation in terms of voltage and thermal 
limits violation. Nevertheless, the PHEVs can be coordinated 
in such way using demand response scheme [6] to not only 
reduce the impacts of their charging operation but also the 
issue with fluctuation of the renewable resources.  

 
Several studies on different aspects of EV implementations 

have been conducted including development of simulation 
tools [7], placement of charging stations [8-9] and impact on 
power quality [10]. However, the studies mainly focus on the 
charging operation and neglect the capability of PHEVs to 
supply power (i.e., discharge) and operate like mini-generator 
to help during the period of high demand using the concept of 
vehicle to grid (V2G) [11]. In other words, the PHEVs can 
operate in both way charging and discharging where this 
enables them to function as energy storage and deal with the 
issues of load fluctuations and the intermittent renewable 
resources [12]. Unlike other storage systems, the flexibility 
and mobility enable the PHEV to transport electricity from an 
area with high-generation to high-demand area when 
necessary. Thus, managing PHEVs in a highly coordinated 
manner is important to give maximum benefits to the power 
grid operation. 

 
This paper aims to determine an optimal coordination of 

PHEV charging and discharging activities in distribution 
networks. This problem involves power flow calculation and 
identification best locations and number of PHEVs which is a 
non-linear and non-convex optimization problem. Among the 
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used techniques, heuristic optimization technique has shown 
promising result in solving non-linear and non-convex 
problems [13]. Genetic algorithm (GA) is a well-known 
technique that uses heuristic algorithm to obtain a good 
solution in very short time [14-17]. In [18], the crossover 
operator of the GA is adopted in particle swarm optimization 
(PSO), another heuristic optimization technique, to overcome 
the pre-mature convergence issue. Meanwhile, gravitational 
search algorithm (GSA) is another type of heuristic 
optimization technique that has been reported has capability 
to provide a solution better than GA and PSO at certain 
problems [19]. Therefore, GSA is selected in this work to 
solve the optimal scheduling of PHEVs problem. 

   
 

2. PLUG-IN HYBRID ELECTRIC VEHICLE MODEL 
 
The PHEV in this work is considered to operate in either 
charging or discharging mode. From the network operation 
perspective, the PHEV can be modelled as motor (i.e., load) 
during charging and generator during discharging as shown 
in Figure 1 [20]. During discharging, power injection seen by 
the network to be less than the actual rated operating power, 
Prate of the PHEV due to internal losses or efficiency, η. On the 
contrary, the efficiency does not affect the consumed power 
from the network during charging period instead less power 
to be delivered to the battery of the PHEV. Therefore, power 
injection at the PHEV connection point l can be calculated 
using the following expression: 
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Figure 1: PHEV charging and discharging modes 
 
 

In the conventional energy storage system modelling, state 
of charge is calculated as one of the operating constraints. In 
contrast, the PHEV state of charge in this study can be 

ignored because the PHEVs normally participate in V2G 
scheme (i.e., discharging mode) when their state of charge is 
adequate to do so. Likewise, the PHEVs will be charged when 
the state of charge at significant low level. Furthermore, the 
PHEVs are not restricted to the same vehicles and this makes 
them not bound to the previous status. Nevertheless, the total 
power injection at bus m is limited to the number of available 
PHEV connection points at that particular bus, N as given by: 
 

(2) 
 

In this framework, the PHEVs are encouraged to be 
charged at the region of low demand and high generation or 
discharge otherwise. Therefore, a priority is given to PHEVs 
for either charging or discharging at certain bus according to 
their conditions. Consequently, a single mode of operation is 
expected at the selected bus. Hence, equations (1) and (2) can 
be simplified using the following expressions: 
 

(3) 
 

(4) 

where, n is number of PHEVs that engage in response to the 
provided incentive scheme.   
 
 
3. GRAVITATIONAL SEARCH ALGORITHM 
 
The gravitational search algorithm (GSA) is a probabilistic 
optimization technique introduced by Rashedi [21] to solve 
continuous domain problems. The search algorithm is based 
on the gravitational interaction metaphor of masses in the 
Newton theory. A j-th bit of agent i (xij) in the PHEV 
scheduling problem is represented by integer value where a 
combination of bits gives the agent i position. The GSA 
operators calculate agent‘s acceleration (aij) based on 
gravitational force and its mass in each iteration using the 
following equations: 
 

(3) 
 

(4) 
 

(5) 
 

(6) 
 

where, 
 

G0  :  initial gravity constant; 
T  :  total number of iterations; 
F  :  gravitational force action; 
M  :  agent gravitational mass; 
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Rik  :  Euclidian distance between i-th and k-th agent; 
ε  : small positive coefficient, 2-52; 
r  :  uniform random variable in interval [0,1]; 
Kbest :  selection number of the best agent to apply on other 

agent and it decreases monotonously from Kbestmax 
to Kbestmin along the iteration t. 

 
The agent’s velocity (vij) is updated using its current 

velocity and its acceleration as: 
 

(7) 
A new agent’s position can be calculated using (8) but the 
obtained value is a floating number. In order to maintain the 
agent’s position as integer variables, a new binary variable as 
expressed in (9) is introduced where INT(x) denotes rounding 
function to the nearest integer and  x denotes floor function. 
Then, agent position is updated using condition in (10). This 
condition is necessary to give velocity more influence to the 
new agent position as suggested in [22]. 
 

(8) 
 

(9) 
 
 

(10) 
 
 
 
4.  OPTIMAL PHEV SCHEDULING FRAMEWORK 
 
The goal of this work is to find suitable charging/discharging 
locations for PHEVs to help improving the distribution 
network operation in terms of the power loss reduction. In 
order to achieve the goal, an optimal PHEV scheduling 
framework using GSA technique is developed in MATLAB. 
The control variables are number of charging/discharging 
PHEVs and selected locations. Figure 2 shows a flowchart to 
obtain an optimal solution for the PHEV operation scheduling 
framework. Initial agent positions that carry all control 
variables are randomly generated within the pre-determined 
limits. The performance of each agent is then evaluated using 
MATPOWER [23] to calculate power flow based on given 
values. The obtained total power losses from the power flow 
calculation are used as a fitness value. Then, the worst and 
best agents can be identified to calculate each agent mass. The 
GSA operators manipulate the control variables using 
(3)-(10) to provide a new generation of agent positions. The 
process is repeated until it meets the stopping criterion. At 
this point, an optimal PHEVs operation is obtained.  
 
5.  RESULTS AND DISCUSSION 
 
The proposed framework is applied on a modified 33-bus test 
system [24] to showcase its performance. The test system is a 
balanced 12.66 kV distribution network consisting of 33 
buses that are interconnected by 32 lines. The total active and 

reactive power loads in the network are 3.715 MW and 2.3 
MVar, respectively. There are 6 identical DG units in the test 
network at buses 6, 7, 13, 18, 28 and 33 with a capacity of 1 
MW each unit to represent high penetration of renewable 
resources. This study aims to find the best two PQ buses for 
PHEV charging and discharging operation where each bus 
equipped with 20 connection points only. In this work, two 
worst case scenarios are considered; A) low demand (40%) at 
high generation (100%) and B) high demand (100%) at no 
generation (0%). Parameter settings for PHEV and GSA are 
given in the tables 1 and 2. 

 
Figure 2: Optimal PHEV scheduling flowchart 

 
 

Table 1: PHEV settings 

 
 

Table 2: Optimization settings 

 

Parameter Settings 
Population size 40 

Maximum iteration 100 
Initial gravity, G0 100 
Kbestmax (Initial) 2.5% 
Kbestmin (Final) 100% 

PHEV Model Rated operating 
power, Prate 

Round-trip 
efficiency 

Honda Accord [25] 6.7 kW 80% 
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5.1 Optimization Performance 
 
The performance of GSA to determine an optimal scheduling 
of PHEVs operation in the 33-bus system after performing 10 
runs can be summarized in Table 3. The fitness value in the 
table is given in terms of power losses in kW. The GSA 
technique application has shown almost same performance in 
both cases which fewer tendencies to get best solution. The 
deviations from average value are 9 kW and 5 kW for Case A 
and B, respectively. Although the fitness is not impressive, 
the GSA converges fast roughly at 40 iterations in both cases. 
Figure 3 illustrates the characteristics of the GSA technique 
in getting the best solution for the case studies. As shown in 
the figure, GSA has capability to explore the search space and 
get good solutions at fast convergence rate. In overall, the 
GSA technique requires several runs in order to get a good 
solution and it is acceptable for this application. 
 

Table 3: Performance of GSA on PHEVs scheduling 

 
 

 
Figure 3: The GSA convergence characteristics 

 
 

5.2 Improvement on Network Operation  
 
The performance of network operation for both worst case 
scenarios is tabulated in Table 4. In Case A (low demand and 
high generation), most of PHEVs are required to charge in 
order to absorb the surplus generation from the DGs. Figure 4 
illustrates the PHEV locations for charging (indicated by blue 
cars) and discharging (indicated by red cars) in the test 
network for the Case A. It clearly shows that PHEVs are 
suggested to be charged along the longest feeder with high 
DG installations (between bus 6 and 18). On the other hand, 

only one location for discharging is selected and it is near to 
the grid supply point. Since power generation in Case A is 
overwhelmed, power injection from PHEV discharging is not 
necessary. Nevertheless, it can be exported to external grid for 
profits (e.g., sell electricity) by directly connect to the grid 
supply point to reduce transmission losses. The optimal 
PHEV scheduling framework has demonstrated a significant 
improvement which able to achieve almost 10% power loss 
reduction or save more than 42 kW in Case A. 
 

Table 4: Network operation at different worst case scenarios 

 
 Note: Chr = charging; Dch = discharging 
 
 
 

 
 Figure 4: Optimal PHEV scheduling in 33-bus system 

during low demand at high generation (Case A) 
 

 
Number of PHEVs charging for Case B (high demand at no 

generation) in Table 4 is relatively small as to avoid further 
demand increase during this period. Only one PHEV at bus 25 
is suggested in Case B as shown in Figure 5. In this figure, all 
DGs are hidden to indicate no generation at this period. On 
the other hand, high volume of PHEVs is suggested to 
discharge at the end of the longest two feeders as can be seen 
in Figure 5. Buses 15 and 33 are locations near to the highest 
demand in the feeders from far end side. Therefore, 
discharging power from PHEVs will help the local demand to 
reduce dependency on the grid supply during this period and 
decrease overall system losses. It has shown more than 13% 

Item Case A Case B 
Chr Dch Chr Dch 

Location [bus] 15, 18 2, 28 5, 25 15, 33 
No. of PHEV 17, 15 10, 0 0, 1 18, 20 
Power losses [kW] 390.1 174.9 
Base case power 
losses [kW] 432.6 202.7 

Loss reduction 9.7% 13.7% 
Case Item Worst Average Best 

A Fitness 404 399 390 
Iteration 73 42.9 14 

B Fitness 184 180 175 
Iteration 76 39.5 9 
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power reduction in Case B when the PHEV scheduling 
scheme in place. From figures 4 and 5, the changing of PHEV 
mode of operation in the two case scenarios can be considered 
within local areas and therefore, the proposed PHEV 
scheduling scheme enables the mobility of electrical energy 
and improves the network operation with less implication to 
the existing infrastructure.   

 
 

Figure 5: Optimal PHEV scheduling in 33-bus system during 
high demand at no generation (Case B) 

 

6. CONCLUSION 
 
This paper presented an optimal coordination framework of 
PHEV operation in a medium voltage distribution network. 
The optimization problem is addressed using GSA technique 
and has been tested on the modified 33-bus radial distribution 
network. The results show a significant power loss reduction 
in two worst case scenarios; low demand at high generation 
and high demand at no generation. Hence, this scheme can be 
used to achieve more efficient network operations.  
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