
2054

Ahmad al-Qerem

Zarqa University, Jordan, ahmad_qerm@zu.edu.jo

ABSTRACT

This paper present a method for self-organized shape
formation swarm using collective motion algorithm and
move them from source to destination along predefined
path in a cohesive way. Collective motion is essential for
swarm to keep connectivity between their members during
the movement and in the proposed work it used to shape
formation. Using the proposed self-adaptive collective
motion swarm robots can organize their self in a circular
shape and move from source to destination along
predefined linear path while preserve their shape formation.

Key words: Collective motion, shape formation, Swarm
intelligence, Topology Force, Guidance Force

1.INTRODUCTION1
Swarm is a large set of homogenous agent interacting
among themselves locally and with their environment to
form a global emerge of collective behavior due to their
perception in the neighborhood. Swarm-based algorithms
have been introduced to provide low cost, fast, and robust
solutions for especially real-world problems, by modeling
the behaviors of numerous swarm of animals and insects
such as ants, bees, birds, and fish [1][2]. Swarm
Intelligence (SI) and bio-inspired computing based on
different natural swarm systems and it was successfully
applied in many real-life applications by simulating
collective behavior of these natural swarms, and can be
used in controlling robots and unmanned vehicles,
predicting social behavior, enhancing the
telecommunication and computer networks, in a variety
fields in engineering, social, and sciences.
Swarm intelligence algorithms must be flexible to internal
and external changes to be robust when some member fail,
so the collective behavior is essential for swarm agents or
robots for coordination of activities and travel directions
[3], and this collective behavior can be divide to consensus
(decision making), coordinate formation, pattern formation,
collective motion, and synchrony [9], in this paper
collective motion, and shape formation will be so these
robots can travel from source to destination in cohesive way
in predefined shape formation.

1

In artificial swarm intelligence global shape formation is
one of the challenging problems. It is used for different
purposes, such as save energy and path optimization. For
instance, a flock of large bird fly forming a V shape to
reduce the air resistance and fatigue for physically weak
birds. Ants moving in a line to optimize the path to their
food source by laying without any central control. For
specific task-oriented performance in artificial intelligence
systems such as exploring and mapping in space, building
sensing grids, forming a barricade for protecting an area,
Shape formation is required [4].

2.PREVIOUS WORK2

Paper [5] (shaping formation) proposed an algorithm of
rectilinear motion control and navigation of swarm of
autonomous homogeneous mobile robots involved in the
formation of a convex space surface, with a given packing
density the convexity of the surface, as well as the absence
of obstacles. The proposed algorithm consists of three main
stages: (a) the analysis and clothing of the formed convex
surface and calculation of the coordinates of target points
and portal points; (b) the mapping between robots and
target points; (c) calculation of the trajectories of robots
taking into account possible collisions and the initial delay
time of each robot, experimental robots number from 10
to10,000.
Paper [6] (shaping formation) discussed how a swarm of
differential-drive robots can self-organize itself into
multiple nested layers of a given circle, rectangular,
triangle, cross shape. A key component of the proposed
work is the reliance on inter-robot collisions to provide
information on how the formation should grow. The
number of robots in the swarm increases from tens to
several hundred robots. The average quality of the
formation is shown to be a linearly decreasing function of
swarm size, and the time for a swarm to form a given shape
does not grow quickly even as the number of robots in the
swarm increases by a large amount. The proposed robot
controller is composed of three subsystems. (a) The orbit
and steering module which responsible for directing the
robot towards an appropriate location on the perimeter of

2

Circular Shape Formation using Self Adaptive Collective Motion of
Swarm Robots

 ISSN 2278-3091
Volume 8, No.5, September - October 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse32852019.pdf

https://doi.org/10.30534/ijatcse/2019/32852019

Ahmad al-Qerem, International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2054 - 2061

2055

the desired shape. (b) The collision avoidance subsystem
slows the robot down when it detects a nearby obstacle, but
does not steer away to avoid it. (c) The layer promotion
subsystem that determines when a robot should “promote”
itself to the next layer of the formation in order to avoid
congestion and free up space for other robots. In this paper
no robot motion is discussed just formation.
Paper [7] (collective motion) discussed collective dynamics
of self-propelled mobile particles which able to probe and
anticipate the orientation of their neighbors in three
spatiotemporal patterns: homogeneous and coherent
directed motion (flocking), synchronous circular motion
(spinning) and compact group propagating in a coherent
fashion (swarming).

3.PROBLEM STATEMENT
For many years ago swarm intelligence has been studied
and deployed in many applications such as aircraft
formation, theoretical research, and engineering application,
due to its flexibility, scalability, and robustness. One of the
most attractive and challenging topics in Swarm
intelligence is formation control which has many
application like aerospace, rescue missions, military affairs.
Swarm control design is a complex field because of many
issues that should be considered such as coordination
between swarm robots, communication, and formation
keeping [11].
There are three main methods to implement formation
control (a) behavior based formation which utilized a set of
predefined behavior parameter such as moving to target
destination, obstacles avoidance, and formation keeping, its
suitable to distributed strongly autonomous multi-robot
system, but the stability of a desired formation is not
guarantee when the environment is complex [12]. (b)
Virtual structure in this method the robots is considered as
some points in the system and defining the overall behavior
formation structure, by tracking a given desired trajectory
and knowing the desired behavior of the virtual structure,
after that this behavior is converted to individual robots by
imposing a certain formation shape, but because of its
restricted requirements which needed to maintain the virtual
structure formation makes this method application limited
[13]. (c) And leader follower method by which a leader is
chosen and each follower keep track with this leader and
keep a certain distance and direction angle from him, but
this method prone to robots collision deadlock [11].

Behavior based method is used in this paper by
implementing collective motion algorithm so a swarm of
robots are form a circular shape and moving in linear
predefined path while the circular shape is preserved.

4.RELATED WORK
This paper is based on work and result concluded in paper
[3] which discuss the collective motion of swarm robots

and consider this type of motion as a fundamental operation
of swarm to enable swarm move from source to destination
in a cohesive way. Paper [3] presents Self adaptive
collective motion algorithm for swarm robots in 3-d space,
using one hop neighbor information and without
centralization in control, self-adaptive this mean robots
based on their environments can dynamically determine
proper moving parameters, and enable robots to move from
source to destination on predefined path considering the
following requirements:

- Use information from only one neighbor hop.
- Maintain connectivity of the network topology to
enable information exchange.

- Capability to bypass obstacles without cause swarm
partitioning.

- Desired distance between neighboring is maintaining

This paper develop the first algorithm from paper [3] case
one: “no obstacles or leader” to make swarm robots shape
in circle and move in predefined path with shape keeping

Guidance force 퐹퐺⃑ guide robots to their destination along
the predefined path and ensure their continuous movement

until reaching destination. Topology force퐹푇⃑ is used to
maintain a good topology of the robot swarm by maintain
the connectivity of the network topology and desired
distance between neighbors. Both topology and guidance
force are applied on each robot and make it move by the
resultant force	퐹푅푆⃑.
The predefined path 푃 is a sequence of coordinates 푃 ,
where i = 1, 2, 3… k, and its known for each robot. A robot
start from 푃 		the source toward 푃 		and continue
sequentially until it reach the destination 푃 	. When the
robot move from its current location c =〈푥 ,			푦 〉 to the next
coordinate 푃 		the guidance force affecting the robot is
defined by the following equation:

퐹⃑ = (푥 − 푥) + (푦 − 푦)⃑ (1)

The Euclidean distance between c and 푃 		 is the

magnitude of 퐹퐺⃑ and its direction is from c to 푃 		.
The topology force 퐹푇⃑ between two neighbors is presented
by two virtual forces, attractive and repulsive forces
between these neighbors, and only one force acts at a given
time. Let 퐷 , represent the distance between two neighbors
i and j where 0	 < 	 퐷 , 	≤ 푅 , 푅 is the communication
range, and 푅 is the desired distance that required between
two neighbors .
Attractive force will take affects when 푅 < 	 퐷 , 	≤ 푅 ;
otherwise, Repulsive force will take the affect (퐷 , ≤
푅 	≤ 푅) so if the distance between two neighbors is

2056

greater than the desired distance then the two neighbors will
be attractive to each other by the effect of the attraction
force, in the other hand if the distance between two
neighbors is smaller than the desired distance then the
repulsive force will take the affect to avoid collision
between neighbors.

푓 (횤, 횥)⃑ = (푥 − 푥) + (푦 − 푦)⃑ (2)

푓 (횤, 횥)⃑ =
−

																					

⃑
				 푖푓	0 < 퐷 < 푅

0 퐷 < 푅
 (3)

Where 푓 (횤, 횥)⃑ and 푓 (횤, 횥)⃑ re attractive and repulsive
force acting on robot 푖 from its neighbor 푗, and 푀 is a
positive constantan and set to 10.
While the topology force represented by attractive and
repulsive forces so it can be expressed by the following:

퐹⃑ = 훼 ∑푓 (횤, 횥)⃑ + 훼 ∑푓 (횤, 횥)⃑ (4)
 훼 and 훼 are coefficient that weight the attractive and
repulsive forces, and 0 ≤ 훼퐴, 훼 ≤ 1and 훼 + 훼 1	.
Finally the resulted force 퐹 is express by the following:

퐹 ⃑ = 훽 퐹⃑ + 훽 퐹⃑ (5)

Paper [3] proposed three algorithms for self-adaptive
collective motion as following:
(1) Without obstacles or leaders: the predefined path 푃		 is

Known for all the robots in the swarm, so every robot
is responsible to maintain its position an velocity using
guidance force 퐹⃑ eq. (1) and topology force (repulsive
force and attractive force) 퐹⃑ eq. (4), while the tuning
of the coefficients ratio 훼 /훼 and 훽 /훽 are the main
steering element to keep swarm in motion as desired
and reserve the topology.

(2) Without obstacles with leaders: in this case only the
leader robot knows about predefined path 푃		and the
other robots just follow its motion in a collective
manner, by adapting hierarchical organization to
handle the limitation of directly connection with the
leader due to communication range requirements. By
associate each robot (i) with hierarchal index 푙
depending on its closeness to the leader robot whom
assigned with index=0, and the leader motion is govern
as case (1) above and equations (1-5). The followers
rely on the attraction force and repulsive force
generated from their neighbor with lower index than
them and closer to the leader. The resulted force
resented in eq. (6).

퐹 ⃑ = 퐹⃑ = 훼 ∑ 푓 (횤, 횥)⃑∈ (), + 훼 	∑ 푓 (횤, 횥)⃑∈ () (6)

(3) With obstacles with and without leader:
 firstly swarm with leader:–

- If a follower robot detect an obstacle then its will be
resolved to two force , as shown if figure (1*), finally
the resultant force will be 퐹 ⃑ = 퐹 ⃑1

- If the leader detect an obstacle then it will lead the

follower to avoid this obstacle by moving along
boundary of that obstacle following left or right hand
rule as shown in figure (2).

 Secondly swarm without leader: if the swarm detect
an obstacle the robots will elect a temporary leader to

lead them following the previous approach swarm
with leader. After obstacle avoidance swarm return to
its normal motion without leader.

This paper explores the swarm collective motion through
three aspects in order to analysis the behavior of collective
motion algorithm, and these aspects as follow:

- Swarm collective motion algorithm to move N number
of robots through predefined path and predefined
boundaries (i.e. all robots need to be close to each other
to maintain proper communication. We work using
linear and sine wave path.

- Swarm shape formation using collective [3], in this
paper we chose the circle shape. First phase in our work
is to make a robots to form a circular shape using same
collective motion algorithm but the destination this time
the perimeter of the circle and its center is the path
coordinates. In this algorithm the constraint is consider
to be the distance between the robots in order to insure
uniform distribution along the circle perimeter, as
shown in figure 3.

Figure 1: obstacle avoidance in follower case

Figure 2: obstacle avoidance in leader case

Ahmad al-Qerem, International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2054 - 2061

2057

- Swarm collective motion algorithm to shape the robots
in circle and move them in predefined path while the
circle shape reserved. All the above algorithms use the
random generation of the robots location around the
starting point of the predefined path (source), as shown
in figure 5.

5.CONCLUSION
The use of collective motion algorithm to move set of

robot shows good performance in 2-D space. This
algorithm could be used to move the robots within specified
boundaries and defined shape, this was achieved by
manipulating constrains within the algorithm.

In future, additional work needed to adopt the
optimization of the time and cost to move the robots along

Figure.7: The figure shows history of robots movement on sinewave path

-2000 0 2000 4000 6000 8000 10000 12000
-6000

-4000

-2000

0

2000

4000

6000

Figure 3: The figure shows the initial position of the robots and the final
shape distribution (the center of the circle is (x=100, y=100) with radius =
0.5 ∗ 	푅 .

-150 -100 -50 0 50 100 150 200 250 300 350
-100

-50

0

50

100

150

200

250

300

X Axis [m]

Y
 A

xi
s

[m
]

Initial Robots Location
Robots Location after formation
Required Shape

Figure 4: The figure shows the initial position of the robots and their
movement from the initial position to the final along the path.

-200 0 200 400 600 800 1000 1200
-200

0

200

400

600

800

1000

1200

Y
 A

xi
s

[m
]

Initial Location (Random)

Robot Location after Formation

Robot Location at the end of path

Figure 5:. The figure shows number of iterations for the algorithm to shape
the robot to the circle shape and then move the robots to their final
destination along the path, number of robot is 25.

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

Movement Steps

N
um

be
r o

f i
te

ra
tio

ns

Figure 6: The figure shows history of robots movement during the iterations
from source to destination, number of robot is 25.

-200 0 200 400 600 800 1000 1200
-200

0

200

400

600

800

1000

1200

X Axis [m]

Y
 A

xi
s

[m
]

2058

the path. Although it is expected to have good performance
for the 3-D space, the algorithm need to be modified to
handle the 3-D space and different shape formation.

APPENDIX
- Appendix (1): algorithm
- Appendix (2): Matlab code

REFERENCES
[1] Ahmed, Hazem & Glasgow, Janice. (2012). “Swarm

Intelligence: Concepts, Models and Applications”.
10.13140/2.1.1320.2568.

[2] Dervis Karaboga, Bahriye Akay, “A survey: algorithms
simulating bee swarm intelligence”, Springer
Science+Business Media B.V. 2009.
https://doi.org/10.1007/s10462-009-9127-4

[3] H. Zhao, H. Liu, Y. Leung and X. Chu, "Self-Adaptive
Collective Motion of Swarm Robots," in IEEE
Transactions on Automation Science and Engineering,
vol. 15, no. 4, pp. 1533-1545, Oct. 2018.
https://doi.org/10.1109/TASE.2018.2840828

[4] Jeong, Donghwa & Lee, Kiju. “Dispersion and Line
Formation in Artificial Swarm Intelligence”, 2014.

[5] A. Ronzhin, I. Vatamaniuk and N. Pavluk, "Automatic
control of robotic swarm during convex shape
generation," 2016 International Conference and
Exposition on Electrical and Power Engineering (EPE),
Iasi, 2016, pp. 675-680.
https://doi.org/10.1109/ICEPE.2016.7781424

[6] G. Nagy and R. Vaughan, "Self-Organization of a
Robot Swarm into Concentric Shapes," 2017 14th
Conference on Computer and Robot Vision (CRV),
Edmonton, AB, 2017, pp. 155-160.

[7] Morin, Alexandre & Caussin, Jean-Baptiste & Eloy,
Christophe & Bartolo, Denis. (2015). Collective
Motion with Anticipation: Flocking, Spinning, and
Swarming. Physical review. E, Statistical, nonlinear,
and soft matter physics. 91.
10.1103/PhysRevE.91.012134.

[8] T. Nguyen, H. Nguyen, E. Debie, K. Kasmarik, M.
Garratt and H. Abbass, "Swarm Q-Leaming With
Knowledge Sharing Within Environments for
Formation Control," 2018 International Joint
Conference on Neural Networks (IJCNN), Rio de
Janeiro, 2018, pp. 1-8.

[9] Andrew J. King & G. Cowlishaw (2009) Leaders,
followers, and group decision-making, Communicative
& Integrative Biology, 2:2, 147-150, DOI:
10.4161/cib.7562

[10] H. Zhao, H. Liu, Y. Leung and X. Chu, "Self-Adaptive
Collective Motion of Swarm Robots," in IEEE
Transactions on Automation Science and Engineering,
vol. 15, no. 4, pp. 1533-1545, Oct. 2018.
https://doi.org/10.1109/TASE.2018.2840828

[11] Dongdong Xu, Xingnan Zhang, Zhangqing Zhu,
Chunlin Chen, and Pei Yang, “Behavior-Based

Formation Control of Swarm Robots,” Mathematical
Problems in Engineering, vol. 2014, Article ID 205759,
13 pages, 2014.
https://doi.org/10.1155/2014/205759

[12] T. Balch and M. Hybinette, “Behavior-based
coordination of large-scale robot formations,” in
Proceedings of the 4th IEEE International Conference
on MultiAgent Systems, pp. 363–364, 2000.

[13] A. Sadowska, H. Huijberts, D. Kostić, N. van de
Wouw and H. Nijmeijer, "Formation control of
unicycle robots using the virtual structure approach,"
2011 15th International Conference on Advanced
Robotics (ICAR), Tallinn, 2011, pp. 365-370.
https://doi.org/10.1109/ICAR.2011.6088583

APPENDIX (1)

Initialization of:

1. Predefined path
2. Vmax
3. TH1-5, and ∆
4. Random generation of the robot location in the

starting envelope
5. Shape constrains by:

- Rc=300 #communication range
- Rd=0.5*Rc # desired range
- M=10 #Constant
- N= 25 #number of robot
- C_C=Rd half diameter of the circular shape
- Robot_Seperation_distance=2*pi*C_C/(N-1);

LOOP (while)
- Calculate the guidance force for robots (between

each robot and the starting point on the path.

퐹⃑ = (푥 − 푥) + (푦 − 푦)⃑

- Self-Adaptive mechanism

- Calculate the distance between the robots and

Average distance and the standard deviation.

푖푓	퐴푣푟(푖)− 푅 > 푇퐻1	, 푖푛푐푟푒푎푠푒	푟푎푡푖표푛
훼
훼 푏푦	∆

푖푓	푅 − 퐴푣푟(푖) > 푇퐻2	, 푑푒푐푟푒푎푠푒	푟푎푡푖표푛	
훼
훼 푏푦		∆

푖푓	푆퐷(푖) ≤ 푇퐻3	&	푅 − 퐴푣푟(푖) > 푇퐻4	,

푖푛푐푟푒푎푠푒	푟푎푡푖표푛	
훽
훽 푏푦		∆

푖푓	푆퐷(푖) > 푇퐻5	푎	,푑푒푐푟푒푎푠푒	푟푎푡푖표푛	
훽
훽 푏푦		∆

- Calculate the repulsive and the attractive forces

between the robots

푓 (푖, 푗) = (푥 − 푥) + (푦 − 푦)

Ahmad al-Qerem, International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2054 - 2061

2059

푓 (푖, 푗) =

푀
퐷

−
푀
푅

																					
				 푖푓	0 < 퐷 < 푅

0 퐷 < 푅

- Calculate the Topology force,

퐹 = 훼 푓 + 훼 푓

- Calculate the resultants force for each robot
퐹 = 훽 퐹 + 훽 퐹

- Calculate the velocity of each robot,
푣 = 푎푟푐푡푎푛|퐹 | ∗ 2/휋 ∗ 푉

- Update the location of each robot 푥 	,푦

END LOOP

APPENDIX (2) MATLAB CODE

Rc=300; % communication range
Rd=0.5*Rc; % desired range
M=10; %Constant
N= 25 ; %number of robot
C_C=Rd;

Robot_Seperation=2*pi*C_C/(N-1);

TH11=.15*Robot_Seperation;
TH22=.15*Robot_Seperation;
TH33=.15*Robot_Seperation;
TH44=.15*Robot_Seperation;
TH55=.15*Robot_Seperation;

%maximium and minimum velocity
Vmin=0;
Vmax=5;

S=[0,0]; % initial location

T=[1000,1000]; %final location

Path=[0:10:1000; 0:10:1000];
Path=Path';

Result_Force=zeros(N,2);
%Guaidance force
F_G=zeros(N,2);

%Initilization Random generation
Robot_Location_C=round(rand(N,2)*100);
Check1=0;
hh=1;

for KK=1:100

 Check1=0
 MM=1;
 while (Check1==0)

%///////////////////////////////////////
//
///////////////////////////////
 % Start : Calculate gudance
force for robots

%///////////////////////////////////////
//
///////////////////////////////
 for i=1:N

Distance_M_CE(i)=(sqrt((Path(KK,1)-
Robot_Location_C(i,1))^2+(Path(KK,2)-
Robot_Location_C(i,2))^2));
 %calculate the Guidance
force
 Force_G(i,:)=(Path(KK,:)-
Robot_Location_C(i,:))*(Distance_M_CE(i)
-C_C);
 end

%///////////////////////////////////////
//
///////////////////////////////
 % END : Calculate gudance
force for robots

%///////////////////////////////////////
//
///////////////////////////////

%///////////////////////////////////////
//
///////////////////////////////
 % Start : Calculate distance
between robot and the rebulsive and
 % attracrive Forces

%///////////////////////////////////////
//
///////////////////////////////

 for i=1:N-1

Distance_M(i)=(sqrt((Robot_Location_C(i,
1)-
Robot_Location_C(i+1,1))^2+(Robot_Locati
on_C(i,2)-Robot_Location_C(i+1,2))^2));
 %calculate the attractive
and repulsive force
 %
 if (Distance_M(i)>
Robot_Seperation)

F_attr(i,:)=[(Robot_Location_C(i,1)-

2060

Robot_Location_C(i+1,1))
(Robot_Location_C(i,2)-
Robot_Location_C(i+1,2))];
 F_repu(i,:)=[0 0];
 else if (Distance_M(i)==
Robot_Seperation)
 F_attr(i,:)=[0 0];
 F_repu(i,:)=[0 0] ;
 else
 F_attr(i,:)=[0 0];
 F_repu(i,:)=-
(M/(Distance_M(i)^2)-
M/(Robot_Seperation^2))/sqrt((Robot_Loca
tion_C(i,1)-
Robot_Location_C(i+1,1))^2+(Robot_Locati
on_C(i,2)-
Robot_Location_C(i+1,2))^2).*[(Robot_Loc
ation_C(i,1)-Robot_Location_C(i+1,1))
(Robot_Location_C(i,2)-
Robot_Location_C(i+1,2))];
 end
 end

 end
 %calculate each distance between
robots

Distance_M(N)=(sqrt((Robot_Location_C(N,
1)-
Robot_Location_C(1,1))^2+(Robot_Location
_C(N,2)-Robot_Location_C(1,2))^2));
 %calculate the attractive and
repulsive force between robots
 %
 if (Distance_M(N)>
Robot_Seperation)

F_attr(N,:)=[(Robot_Location_C(N,1)-
Robot_Location_C(1,1))
(Robot_Location_C(N,2)-
Robot_Location_C(1,2))];
 F_repu(N,:)=[0 0];
 else if (Distance_M(N)==
Robot_Seperation)
 F_attr(N,:)=[0 0];
 F_repu(N,:)=[0 0] ;
 else
 F_attr(N,:)=[0 0];
 F_repu(N,:)=-
(M/(Distance_M(N)^2)-
M/(Robot_Seperation^2))/sqrt((Robot_Loca
tion_C(N,1)-
Robot_Location_C(1,1))^2+(Robot_Location
_C(N,2)-
Robot_Location_C(1,2))^2).*[(Robot_Locat
ion_C(N,1)-Robot_Location_C(1,1))
(Robot_Location_C(N,2)-
Robot_Location_C(1,2))];
 end
 end

%///////////////////////////////////////
//
///////////////////////////////
 %End : calculate each distance
between robot and the rebulsive and
 % attracrive Forces

%///////////////////////////////////////
//
///////////////////////////////

%///////////////////////////////////////
//
///////////////////////////////
 % Start: Adaptive code to
update the positive factors based on the
Avarage
 % and Standards
deviation

%///////////////////////////////////////
//
///////////////////////////////
 %calaculate Avarage and
Standards deviation
 Avr= mean(Distance_M,2);
 SD= std(Distance_M,1,2);

 for i=1:N
 %
 if (Avr-Robot_Seperation >
TH11)
 Alpha_A=.9;
 Alpha_R=.1;
 else if (Robot_Seperation-
Avr > TH22)
 Alpha_A=.1;
 Alpha_R=.9;
 else
 Alpha_A=.5;
 Alpha_R=.5;
 end
 end

Force_T(i,:)=Alpha_A*[F_attr(i,1)
F_attr(i,2)]+Alpha_R*[F_repu(i,1)
F_repu(i,2)];
 end

 for i =1: N

 if (SD < TH33 &&
Robot_Seperation-Avr> TH44)
 Beta_G=.9;
 Beta_T=.1;

Ahmad al-Qerem, International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2054 - 2061

2061

 else if (SD > TH55)
 Beta_G=.1;
 Beta_T=.9;
 else
 Beta_G=.5;
 Beta_T=.5;
 end
 end

Result_Force(i,:)=Beta_G.*Force_G(i,:)+B
eta_T.*Force_T(i,:);

 end

%///////////////////////////////////////
//
///////////////////////////////
 % End : Adaptive code to
update the positive factors based on the
Avarage
 % and Standards
deviation

%///////////////////////////////////////
//
///////////////////////////////

 Avr_C= mean(Distance_M_CE,2);
 SD_C= std(Distance_M_CE,1,2);

 for i=1:N
 for j=1:N
 if i~=j

Distance_M_TestR(i,j)=(sqrt((Robot_Locat
ion_C(i,1)-
Robot_Location_C(j,1))^2+(Robot_Location
_C(i,2)-Robot_Location_C(j,2))^2));
 else

Distance_M_TestR(i,j)=1000;
 end
 end
 end

Minimum_Seperation=min(Distance_M_TestR)
;

Avr_SEB=mean(Minimum_Seperation);

 if (SD < TH33 &&
abs(Robot_Seperation-Avr_SEB) < .5*
TH44 && SD_C < TH33 && abs(Avr_C-C_C) <
TH33)
 Check1=1;
 else
 Check1=0;
 end

%///////////////////////////////////////
//
///////////////////////////////
 % START : Calculate the
Final Force on each robot and Update the
 % robots location

%///////////////////////////////////////
//
///////////////////////////////

 for i=1:N

TTT(i)=sqrt(Result_Force(i,1)^2+Result_F
orce(i,2)^2);

V_i(i)=atan(TTT(i))*2/pi*Vmax;

Result_Force_F(i,1)=Result_Force(i,1)/TT
T(i)*V_i(i);

Result_Force_F(i,2)=Result_Force(i,2)/TT
T(i)*V_i(i);
 end

Robot_Location_C=Robot_Location_C+Result
_Force_F;

Robot_Location_CC(hh,:,:)=Robot_Location
_C;
 refresh;
 hh=hh+1;

 MM=MM+1;

//
//
//////////////////////////////
 % END : Calculate the Final
Force on each robot and Update the
 % robots location

%///////////////////////////////////////
//
///////////////////////////////

 end
 Number_Iteration(KK)=MM

end

