
Deepak Chandra Uprety et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(4), July – August 2021, 2861 – 2866

2861

Transient-Snapshot based Minimum-process Synchronized Check

pointing Etiquette for Mobile Distributed Systems
Deepak Chandra Uprety1, Dr. Parveen Kumar2, Dr. Arun Kumar Choudhary3

1 Research Scholar, Department of Computer Science Engg, Nims University, Jaipur (Raj), deepak.glb@gmail.com
2 Professor, Department of Computer Science Engg., Nims University, Jaipur (Raj), parveen.kumar@nimsuniversity.org,

3 Professor, AP Goyal Shimla University, Shimla, Himachal Pradesh, India, choudharyarun@rediffmail.com

ABSTRACT
Minimum-process harmonized checkpointing is well
thought-out an attractive methodology to acquaint with fault
tolerance in mobile systems patently. We design a minimum-
process synchronous checkpointing algorithm for mobile
distributed system. We try to minimize the intrusion of
processes during checkpointing. We collect the transitive
dependencies in the beginning, and therefore, the obstructive
time of processes is bare minimum. During obstructive
period, processes can do their normal computations, send
messages and can process selective messages. In case of
failure during checkpointing, all applicable processes are
necessitated to abandon their transient snapshots only. In this
way, we try to reduce the loss of checkpointing effort when
any process fails to take its checkpoint in coordination with
others. We also try to minimize the harmonization message
complexity during checkpointing.

Key words: Mobile Computing Systems, coordinated
checkpointing, Recovery.

1. INTRODUCTION
In mobile distributed computing Systems, some methods are
functioning on mobile nodes (Mob_Nodes). A Mob_Node is a
computer that may retain its connectivity with the rest of the
distributed frame of reference through a wireless network
while on move; or it may detach. It necessitates assimilation
of portable computers within existing data network. A
Mob_Node can join to the network from diverse sites at
dissimilar times. The groundwork mechanisms that
interconnect directly with the Mob-Hosts are called Mobile
Support Stations (M_S_Sts). A cubicle is a logical or
topographical exposure area under an M_S_St [9, 19, 20].

Local reinstatement_point is the hoarded state of a method at a
processor at a given instance. Global snapshot is an
assortment of local reinstatement_points, one from each
method. A global state is said to be “consistent” if it contains
no orphan application_communication; i.e., an
application_communication whose receive event is
documented, but it sends event is vanished. To recuperate
from a catastrophe, the system resurrects its accomplishment
from a preceding CGS (Consistent Global State) saved on the

 stable storage during fault-free accomplishment. This saves all
the computation done up to the last CGS and only the working
out done subsequently, prerequisites to be recreated. Processes
in a distributed frame of reference communicate by sending and
receiving communications [1, 7, 14, 17, 18].

Checkpointing / CGS_assortment (Consistent Global State
assortment) for Mobile_DS (Mobile Distributed Systems)
needs to handle new issues like: mobility, low bandwidth of
wireless channels, lack of stable storage on mobile nodes,
disconnections, limited battery power and high failure rate of
mobile nodes. These concerns make customary
CGS_assortment procedures inappropriate for such settings.
least_int_method (least interacting method) collaborative
CGS_assortment is an appropriate methodology to acquaint
with fault tolerance in Mobile_DS patently. This approach is
domino-free, requires at most two recovery-points of a
method on established storage, and necessitates only a least
number of methods to capture snapshots. But it requires extra
orchestration communications, hindering of the underlying
working out or taking some unserviceable recovery_points
[3, 4, 5, 6, 12, 13, 15, and 16].

In this paper, we put forward a least_int_method collaborative
CGS_assortment etiquette for non-deterministic Mobile_DS,
where no unserviceable reinstatement_points are captured.
We use the technique to minimize the hindering of methods.
During the period, when a method sends its
causal_depend_array (causal dependency array) to the
originator and receives the least_int_method_set[], may
receive some application_communications, which may add
new members to the already computed
least_int_method_set[]. Such application_communications
are buffered at the receiver side. It should be noted that the
duration for which the application_communications are
delayed at the receiver’s end is insignificantly small.

We also try to curtail the loss of CGS_assortment effort when
any method miscarries to register its reinstatement_point in
harmonization with others. We suggest that in the first phase,
all pertinent Mob_Nodes will register transient
reinstatement_point only. Transient reinstatement_point is
stored on the memory of Mob_Node only. In this case, if some
method miscarries to register its reinstatement_point in the
first phase, then Mob_Nodes need to abandon their transient
reinstatement_points only. The effort of taking a transient

Volume 10, No.4, July - August 2021
International Journal of Advanced Trends in Computer Science and Engineering

Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse321042021.pdf
https://doi.org/10.30534/ijatcse/2021/321042021

ISSN 2278-3091
Volume 10, No.4, July - August 2021

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse321042021.pdf

https://doi.org/10.30534/ijatcse/2021/321042021

Deepak Chandra Uprety et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(4), July – August 2021, 2861 – 2866

2862

reinstatement_point is trivial as paralleled to the tentative one.
We put forward three phase etiquettes for CGS_assortment.
But, in the suggested etiquette, the harmonization with the
originator M_S_St is done without sending explicit
orchestration communications. We want to emphasize that in
all collaborative CGS_assortment schemes, available in
literature, harmonization among methods and originator takes
place by directing categorical orchestration communications
[2, 3, 4, 7]. In this way, we try to significantly diminish the
orchestration overhead in collaborative CGS_assortment.

In order to keep the hindering of methods bare minimum, we
assemble the causal_depend_arrays[] (causal dependency
arrays) and compute the exact least_int_method_set[] in the
beginning of the etiquette as in [3]. The number of methods
that register reinstatement_points is curtailed to 1) avoid
arising of Mob_Nodes in doze mode of operation, 2) curtail
whipping of Mob_Nodes with CGS_assortment action, 3)
save limited battery life of Mob_Nodes and low bandwidth of
wireless channels.

The new ideas used in this etiquette are given as follows. In
the suggested etiquette, the harmonization with the originator
M_S_St is done without sending explicit orchestration
communications. The originator M_S_St (say M_S_Stin)
collects the causal_depend_array [] of all methods, computes
the least_int_method_set [] and broadcasts the transient
reinstatement_point invitation to all M_S_Sts along with the
least_int_method_set[] . Suppose, M_S_Sti gets the transient
reinstatement_point invitation in the first phase from
M_S_Stin. It sets its timer (timer_transient) and sends the
transient reinstatement_point invitation to all pertinent local
Mob_Nodes. timer_transient is the extreme permissible time
for all pertinent methods to register their transient
reinstatement_points. On receiving the transient
reinstatement_point invitation, a Mob_Node registers its
transient reinstatement_point and sends the response to
M_S_Sti. Before the expiry of the timer_transient, if
M_S_Stigets the negative response from some Mob_Node to
its transient reinstatement_point invitation, then M_S_Sti

sends the negative response to M_S_Stin; and M_S_Stin issues
abandon communication to all M_S_Sts. Otherwise, on
expiry of timer_transient, if M_S_Sti does not get the positive
response to transient reinstatement_point invitation from all
pertinent local Mob_Nodes, it informs failure communication
to M_S_Stinand M_S_Stinissues abandon broadcast.
Alternatively, on expiry of timer_transient, M_S_Sti issues
tentative reinstatement_point invitation to the pertinent
Mob_Nodes in its cubicle and sets timer_tent. On expiry of
timer_transient, if M_S_Sti does not get abort massage from
M_S_Stin, it is presumed that all pertinent methods have
captured their transient reinstatement_points; and the
etiquette should enter the second phase in which all pertinent
methods convert their transient reinstatement_points into the
tentative ones. Similarly, timer_tent is the maximum
allowable time for all pertinent methods to convert their
transient reinstatement_points into tentative ones. If some

method fails to register its tentative reinstatement_point, then
M_S_Sti informs M_S_Stinand M_S_Stin issues abort.
Otherwise, after the timeout of timer_tent, M_S_Sti commits
the reinstatement_points of the methods of the
least_int_method_set [], which are local to its cubicle. On
expiry of timer_tent, if M_S_Sti does not get abort massage
from M_S_Stin, it is presumed that all pertinent methods have
captured their tentative reinstatement_points; and the
etiquette should enter the third phase in which all pertinent
methods convert their tentative reinstatement_points into the
permanent ones. In this way, three-phase collaborative
CGS_assortment etiquette commits without sending or
receiving much orchestration communications. Only in the
case of a failure, an M_S_St issues the failure communication
to M_S_Stin and M_S_Stin issues the abandon. The suggested
etiquette may register longer time to commit. But in doing so,
we are saving orchestration communications to significant
extent and no extra hindering of methods takes place due to
longer commit time.

2. THE PROPOSED CHECKPOINTING ALGORITHM

2.1 System Model and Data Structures

Our frame of reference model is similar to [4]. The list of data
structures is given as follows. All data structures are adjusted
on accomplishment of a CGS_assortment method, if not
mentioned unambiguously.

(a) Each method Pi maintains the following data
structures, which are preferably stored on local M_S_St:

p-c_s_ni

A monotonically increasing integerreinstatement_point
sequence number for each method. It is incremented by 1 on
transient reinstatement_point.

tentativei

A flag that indicates that Pi has captured its tentative
reinstatement_point for the current initiation.

cdd_set []
A bit array of size n; cdd_seti [j] is set to ‘1’ if Pi receives an
application_communication from Pj such that Pi becomes
causally dependent upon Pj for the current CI. Initially, the bit
array is initialized to zeroes for all methods except for itself,
which is initialized to ‘1’. For Mob_Nodei it is kept at local
M_S_St. On global commit, cdd_set [] of all methods are
updated.

hinderingi

A flag that indicates that the method is in hindering period.
Set to ‘1’ when Pi receives the cdd_set [] invitation; A
method comes out of the hindering state only after taking its
transient instatement_point if it is a member of the
least_int_method_set []; otherwise, it comes out of hindering
state after getting the transient reinstatement_point invitation.

Deepak Chandra Uprety et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(4), July – August 2021, 2861 – 2866

2863

Bufferi operation, if m_vect[i] =1 then c_s_n[i] is incremented. It
A flag. Set to ‘1’ when Pi buffers first should be noted that entries in this array are updated only after
application_communication in its hindering period.

c_statei

A flag. Set to ‘1’ on the receipt of the least_int_method. Set to
‘0’ on receiving commit or abort.

(b) Initiator M_S_St maintains the following Data
structures

least_int_method_set []
A bit array of size n. Computed by taking transitive closure
of cdd_set [] of all methods with the cdd_set [] of the
originator method. Minimum set= {Pk such that
least_int_method_set [k] =1}.

r_tent []
A bit array of length n. r_tent [i] is set to ‘1’ if Pi has captured
a tentative reinstatement_point.

r_mut []
A bit array of length n. r_mut [i] is set to ‘1’ if Pi has captured
a transient reinstatement_point.

timer1
A flag; set to ‘1’ when maximum allowable time for
collecting least_int_method global reinstatement_point
expires.

(c) Each M_S_St (including originator_M_S_St)
maintains the following data structures

D []
A bit array of length n. D[i] =1 implies Pi is running in the
cubicle of M_S_St.

ee_tent []
A bit array of length n. EE_tent[i] is set to ‘1’ if Pi has
captured its tentative reinstatement point.

ee_mut []
A bit array of length n. EE_mut [i] is set to ‘1’ if Pi has
captured a transient reinstatement point.

s_bit
A flag at M_S_St. Initialized to ‘0’. Set to ‘1’ when some
relevant method in its cubicle fails to register its tentative
reinstatement_point.

Pin

Initiator method identification.

c_s_n []
An array of size n, maintained on every M_S_S, for n
methods. c_s_n[i] represents the most recently committed
reinstatement_point sequence number of Pi. After the commit

converting tentative reinstatement_points in to permanent
reinstatement_points and not after taking tentative
reinstatement_points.

G_chkpt
A flag which is set to ‘1’ on the receipt of (i)
reinstatement_point invitation in all-method CGS_assortment
or (ii) cdd_set [] invitation in least_int_method etiquette.

Chkpt
A flag which is set to 1 when the M_S_St receives the
reinstatement_point invitation in the least_int_method
etiquette.

Mss_id
An integer. It is unique to each M_S_St and cannot be null.

timer_transient
It shows the maximum allowable time for all pertinent
methods to register their transient reinstatement_points. It
also includes the time in which an M_S_St informs the
M_S_Stin and M_S_Stininforms all M_S_Sts.

timer_tent
It shows the maximum allowable time for all pertinent
methods to convert their transient reinstatement_points into
tentative ones. It also includes the time in which an M_S_St
informs the M_S_Stin and M_S_Stininforms all M_S_Sts.

2.2 Proposed Algorithm

The originator M_S_St newscasts an invitation to all M_S_Sts
to send the cdd_set [] arrays of the methods in their cubicles.
All cdd_set [] arrays are at M_S_Sts and thus no initial
CGS_assortment control_communications or responses travel
wireless channels. On receiving the cdd_set [] invitation, an
M_S_St records the identity of the originator M_S_St (say
mss_ida) and M_S_St, sends back the cdd_set [] of the
methods in its cubicle, and sets g_chkpt. If the
originator_M_S_St receives an invitation for cdd_set [] from
some other M_S_St (say mss_idb) and mss_ida is lower than
mss_idb, then, current initiation with mss_ida is rejected and
the new one having mss_idb is sustained. Correspondingly, if
an M_S_St receives cdd_set [] invitations from two M_S_Sts,
then it discards the invitation of the originator M_S_St with
lower mss_id. Otherwise, on receiving cdd_set [] arrays of all
methods, the originator_M_S_St computes
least_int_method_set [], sends transient reinstatement_point
invitation along with the least_int_method_set [] to all
M_S_Sts. In this way, if two methods contemporaneously
start CGS_assortment, then one is snubbed. When a method
sends its cdd_set [] to the originator M_S_St, it comes into its
hindering state. A method comes out of the hindering state
only after taking its transient reinstatement_point if it is a
member of the least_int_method_set []; otherwise, it comes

Deepak Chandra Uprety et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(4), July – August 2021, 2861 – 2866

2864

out of hindering state after getting the least_int_method_set [].
At this point, we conclude that this method is not going to be
included in the minimum set. It should be noted that the
hindering time of a method is bare minimum.

On receiving the transient reinstatement_point invitation
along with the least_int_method_set [], an M_S_St, say
M_S_Stj, registers the following actions. It sets the timer
timer_transient; sends the transient reinstatement_point
invitation to Pi only if Pi belongs to the least_int_method_set
[] and Pi is running in its cubicle. On receiving the
reinstatement_point invitation, Pi registers its transient
reinstatement_point and informs M_S_Stj. On receiving
positive response from Pi, M_S_Stj updates p-c_s_ni, resets
hinderingi, and sends the buffered
application_communications to Pi, if any. Alternatively, If Pi

is not in the least_int_method_set [] and Pi is in the cubicle of
M_S_Stj, M_S_Stj resets hinderingi and sends the buffered
application_communication to Pi, if any. For a disconnected
Mob_Node, that is a member of least_int_method_set [], the
M_S_St that has its disconnected reinstatement_point,
converts its disconnected reinstatement_point into the
required one.

During hindering period, Pi processes m, received from Pj , if
following conditions are met: (i) (! bufferi) i.e. Pi has not
buffered any application_communication (ii)
(m.psn<=c_s_n[j]) i.e. Pj has not registered its
reinstatement_point before sending m (iii) (cdd_set[] i[j]=1)
Pi is already dependent upon Pj in the current CI or Pj has
captured some permanent reinstatement_point after sending
m. Otherwise, the local M_S_St of Pi buffers m for the
hindering period of Pi and sets bufferi.

On expiry of timer_transient, if M_S_Stj does not get the
positive response to transient reinstatement_point invitation
from all pertinent local Mob_Nodes, it informs failure
communication to M_S_Stinand M_S_Stinissues abort.
Alternatively, on expiry of timer_transient, M_S_Stj issues
tentative reinstatement_point invitation to the pertinent
Mob_Nodes in its cubicle and sets timer_tent.

If some method fails to register its tentative
reinstatement_point, then M_S_Stj informs M_S_Stin and
M_S_Stin issues abort. Otherwise, after the timeout of
timer_tent, M_S_Stj commits the reinstatement_points of the
methods of the least_int_method_set [] which are local to its
cubicle. On expiry of timer_tent, if M_S_Sti does not get
abort massage from M_S_Stin, it is presumed that all pertinent
methods have captured their tentative reinstatement_points
successfully; and the etiquette should enter the third phase in
which all pertinent methods convert their tentative
reinstatement_points into the permanent ones.
We explain the recommended least_int_method
CGS_assortment etiquette with the help of an example. In
Figure 1, at time t0, P5 initiates CGS_assortment procedure
and sends invitation to all methods for their

causal_depend_arrays[]. At time t1, P5 receives the
causal_depend_arrays[] from all methods and computes the
least_int_method_set[] which is {P4, P5, P6}. For the sake of
simplicity, the control communications by which the methods
send their causal_depend_arrays[] to the originator method P5

are not shown in the Figure 1. P5 sends least_int_method_set
[]to all methods and registers its own transient
reinstatement_point C51. On receiving least_int_method_set[]
, a method records its transient reinstatement_point if it is a
member of least_int_method_set[]. When P4 and P6 get the
least_int_method_set [], they find themselves to be the
members of the least_int_method_set []; therefore, they
register their transient reinstatement_points, C41 and C61,
respectively. When P1, P2 and P3 get the least_int_method_set
[], they find that they do not have its place in
least_int_method_set [], therefore, they do not register their
transient reinstatement_points. It should be noted that these
methods have not sent any application_communication to any
method of the least_int_method_set []. In other words, P5 is
not transitively dependent upon them. Therefore, for the sake
of consistency, it is not necessary for them to register their
reinstatement_points in the current initiation.

A method comes into the hindering state immediately after
sending the cdd_set [] []. A method comes out of the
hindering state only after taking its transient
reinstatement_point if it is a member of the
least_int_method_set []; otherwise, it comes out of hindering
state after getting the least_int_method_set[]. We want to say
that the hindering time of a method in this etiquette is
negligibly small. Moreover, a method is allowed to perform
its normal computation, send application_communications
and partially receive them during the hindering period. For
example, P5 receives m4 during its hindering period. As
cdd_set [] 5[6]=1 due to m2, and receive of m4 will not alter
cdd_set[] 5[]; therefore P5 methods m4. P2 receives m15 from
P3 during its hindering period; cdd_set[]2[3]=0 and the
receiver of m15 can alter cdd_set[]2; therefore, P2 buffers m15.
Similarly, P4 buffers m16. P4 dispenses m16 only after taking its
transient reinstatement_point C41. P2 dispenses m15 after
getting the least_int_method_set []. P4 dispenses m7, because,
at this moment, it not in the hindering state. Similarly, P4

processes m8.

On getting the transient reinstatement_point invitation, a
method, say P6, sets the timer timer_transient. If P6 fails to
register its transient reinstatement_point, it informs P5 and P5

will issue abort. In this way, if any method fails to register its
reinstatement_point in harmonization with others in the first
phase, then all the methods need to abort their transient
reinstatement_points only and not the tentative
reinstatement_points as in other etiquettes [2, 3, 4]. In this
way, we are able to significantly diminish the forfeiture of
CGS_assortment effort in case of a failure during
CGS_assortment. On the other hand, on timeout of
timer_transient and no abort communication from P5, it is
presumed that all pertinent methods have captured their

Deepak Chandra Uprety et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(4), July – August 2021, 2861 – 2866

2865

transient reinstatement_points successfully and the etiquette
should enter into the second phase. Therefore, P6 converts its
transient reinstatement_point into tentative one and sets the
timer timer_tent. If P6 fails to convert its transient
reinstatement_point into tentative one, it informs P5 and P5

will issue abort. Similarly, if any other method fails to register
its transient reinstatement_point, it will inform P5 and P5 will
act accordingly. Otherwise, on timeout of timer_tent, P6

converts its tentative reinstatement_point into permanent one.
on timeout of timer_tentand no abort communication from
applicable methods, it is presumed that all pertinent methods
have captured their tentative reinstatement_points
successfully and the etiquette should enter into the second
phase. In this way, we commit the reinstatement_points
without much harmonization.

2.3 Performance Analysis of the Proposed Protocol

The obstructive time of Koo-Toueg [7] algorithm may be
extraordinarily high due to the formation of CGS_assortment
tree and obstructive of processes during the whole of the
CGS_assortment procedure. It may be quite disagreeable,
specifically in Mobile_DS. In Cao-Singhal algorithm [3],
obstructive time is abridged ominously as compared to [7].
The obstructive time of the proposed scheme is similar to
[3].It should be noted that the proposed protocol is a three-
phase protocol. We add two extra phases, one to collect the
dependency vectors and another to take the transient
snapshots. First phase is added to compute the exact minimum
set in the beginning of the protocol to minimize the
obstructive time as in [3]. In order to diminish the loss of
CGS_assortment effort, when any process fails to take its
transient reinstatement_point in harmonization with others;
all relevant processes take transient snapshots in the first
phase and convert their transient snapshots into tentative ones
in the second phase. In this way, by adding extra
synchronization message overhead, we are able to deal with
the problem of frequent aborts in coordinating
CGS_assortment. We try to minimize the loss of
checkpointing effort in case of a fault during
CGS_assortment. We want to emphasize that we do not send
extra synchronization messages for different phases of the
protocol as mentioned in Section 1 and 2. Therefore, the
synchronization message overhead in the proposed scheme is
less than [3]. We use local timers in place of synchronization
messages. Only in case of a fault, synchronization messages
are sent in order to abort the algorithm

3. AVERAGE HINDERING TIME AND AVERAGE
NUMBER OF APPLICATIONS_COMMUNICATIONS
BUFFERED

Suppose, the two M_S_Sts are connected using a 1 Mbps
communication link. Each Mob_Node or M_S_St has one
method running on it. The length of each frame of reference
application_communication is 100 bytes. The average delay
on static network for sending system communication is
(8*100*1000) / (1000000) = 0.8ms. The hindering time is

2*0.8=1.6 ms. In the suggested etiquette, selective incoming
application_communications at a method are blocked during
its hindering period. We consider the worst case in which all
incoming application_communications are blocked. Blocking
period in the suggested scheme is negligibly small; therefore
the number of application_communications blocked in the
etiquettes is insignificant [Refer Table 1]. It should be noted
that the number of application_communication blocked
during CGS_assortment depends upon the
application_communication sending rate and the capacity of
the static communication link. Referring Table 1, we can say
that the no. of application_communications buffered during
CGS_assortment in the suggested etiquette is negligibly
small.

Table 1: Average number of communications buffered during
CGS_assortment

Message
Sending
Rate per
second

0.001

0.01

0.1

1

10

Average
No. of
Messages
blocked
in the
suggested
Scheme

1.6*
10-6

1.6*
10-5

1.6*
10-4

1.6*
10-3

1.6*
10-2

4. CONCLUSION
We have designed a minimum-process synchronous
checkpointing algorithm for mobile distributed system. We
try to minimize the intrusion of processes during
checkpointing. The obstructive time of a process is bare
minimum. During obstructive period, processes can do their
normal computations, send messages and can process
selective messages. The number of processes that take
checkpoints is minimized to avoid awakening of MHs in doze
mode of operation and thrashing of MHs with checkpointing
activity. It also saves limited battery life of MHs and low
bandwidth of wireless channels. We try to reduce the loss of
checkpointing effort when any process fails to take its
snapshot in coordination with others. We also try to minimize
the synchronization messages during checkpointing. In the
proposed scheme, no synchronization messages are sent in
order to enter the second or third phase of the algorithm.

REFERENCES
1. S. K.M. Chandy and L. Lamport. “Distributed

Snapshots: Determining Global States of Distributed
Systems” ACM Transactions Computer systems vol. 3,
no.1. pp.63-75, Feb.1985.

2. Prakash R. and Singhal M., “Low-Cost Checkpointing
and Failure Recovery in Mobile Computing
Systems”, IEEE Transaction On Parallel and Distributed
Systems, vol. 7, no. 10, pp. 1035-1048,October1996.

Deepak Chandra Uprety et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(4), July – August 2021, 2861 – 2866

2866

3. Guohong Cao and Mukesh Singhal, “Mutable
Checkpoints: A New Checkpointing Approach for
Mobile Computing Systems”, IEEE Transaction On
Parallel and Distributed Systems, vol. 12, no. 2, pp. 157-
171, February2001.

4. Guohong Cao and Mukesh Singhal, “On Coordinated
Checkpointing in Distributed Systems” IEEE
Transaction on Parallel and Distributed Systems, vol. 9,
no. 12, pp. 1213-1224, December 1998.

5. Weigang Ni, Susan V. Vrbsky and Sibabrata Ray
“Pitfalls in Distributed Non-blocking Checkpointing”,
University of Alabama.

6. Prakash R. and Singhal M. “Maximal Global Snapshot
with concurrent initiators”, Proc. Sixth IEEE Symp.
Parallel and Distributed Processing, pp.344-351,
Oct.1994.

7. Koo. R. and S. Toueg. “Checkpointing and Rollback-
Recovery for Distributed Systems”. IEEE Transactions
on Software Engineering, SE-13(1):23-31, January1987.

8. Bidyut Gupta, S. Rahimi and Z. Lui. “A New High
Performance Checkpointing Approach for Mobile
Computing Systems”. IJCSNS International Journal of
Computer Science and Network Security, Vol.6 No.5B,
May 2006.

9. Acharya A. and Badrinath B. R., “Checkpointing
Distributed Applications on Mobile Computers”,
Proceedings of the 3rd International Conference on
Parallel and Distributed Information Systems, pp. 73-80,
September,1994.

10. Ch. D.V. Subba Rao and M. M. Naidu. “A New,
Efficient Coordinated Checkpointing Protocol
Combined with Selective Sender-Based Message
Logging”.

11. Nuno Neves and W. Kent Fuchs. “Adaptive Recovery
for Mobile Environments”, in Proc. IEEE High-
Assurance Systems Engineering Workshop, October 21-
22, 1996, pp.134-141.

12. Y. Manable. “A Distributed Consistent Global
Checkpoint Algorithm With minimum number of
Checkpoints”. Technical Report of IEICE, COMP97-
6(April1997).

13. J. L. Kim and T. Park. “An efficient protocol for
checkpointing recovery in Distributed Systems” IEEE
Transaction on Parallel and Distributed Systems,4(8):
pp.955-960, Aug 1993.

14. Elnozahy E.N., Alvisi L., Wang Y.M. and Johnson D.B.,
“Survey of Rollback-Recovery Protocols in Message-
Passing Systems”, ACM Computing Surveys, vol. 34, no.
3, pp. 375-408, 2002.

15. S. Venkatesan and T.T.-Y. Juang, “Low Overhead
Optimistic Crash Recovery”, Preliminary version
appears in Proc. 11th Int’l Conf. Distributed Computing
Systems as “Crash Recovery with Little Overhead,”
pp.454- 461,1991.

16. Parveen Kumar, Lalit Kumar, R K Chauhan, “A Non-
intrusive Hybrid Synchronous Checkpointing
Protocol for Mobile Systems”, IETE Journal of
Research, Vol. 52 No. 2 & 3, 2006.

17. J.L. Kim, T. Park, “An efficient Protocol for
checkpointing Recovery in Distributed Systems”,
IEEE Trans. Parallel and Distributed Systems, pp.955-
960, Aug.1993.

18. Mansouri, H., Pathan, A-S.K.: Review of checkpointing
and rollback recovery protocols for mobile distributed
computing systems. In: Ghosh, U., Rawat D.B., Datta, R.,
Pathan, A-S. K (eds.) Internet of Things and Secure
Smart Environments: Successes and Pitfalls, CRC Press,
Taylor & Francis Group (2020).

19. Mansouri, H., Pathan, A.-S.K.: Checkpointing distributed
application running on mobile Ad Hoc networks. Int. J.
High Perform. Comput. Networking 11(2), 95–107
(2018).

20. Mansouri, H., Pathan, A.-S.: A resilient hierarchical
checkpointing algorithm for distributed systems running
on cluster federation. In: Thampi, S.M., Martinez Perez,
G., Ko, R., Rawat, D.B. (eds.) SSCC 2019. CCIS, vol.
1208, pp. 99–110. Springer, Singapore (2020).

