
Argo Wibowo et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 1711 – 1719

1711


ABSTRACT

Information system technology continues to evolve over time.
Various fields of science including agriculture also utilize
information system to improve quality and services in the
agricultural sector. Indonesia is an agrarian country where
most of the populations work in the agricultural sector. Based
on this fact, the Indonesian government is also very
supportive towards improving and developing technology in
agriculture. Dutatani is one of the Agricultural Information
Systems (SIP) that has been consistently developed since
2016 towards precision agriculture. One of the technologies
developed is web-based technology which has many
sub-systems in it. This raises the problem regarding system
scalability wherein each sub-system is developed separately
and uses a different development model. Each system uses a
specific framework and a native. Therefore this study aims to
identify which sub-systems are suitable to be developed and
refactored to become a new agricultural information system
portal. The identification process used a code smell and
metric-based approach. The metrics used were Line of Code
(LOC), Complexity, Lack of Cohesion of Methods (LCOM)
and God Class. From the results of detection using a code
smell, the code detected was 55.17%. This study also revealed
a fact that code with a good structure would be easier to detect.
Modular code that used a framework and was orderly
structured could be read well by detection tools, and showed a
high LCOM rate compared to structured and native code.

Key words : Information System, Agriculture, Code Smell,
Refactor

1. INTRODUCTION

Information systems are applications with a large scale,
which simultaneously developed for a specific purpose.
Currently, information systems are required in various
sectors, one of which is agriculture. Indonesia is an agrarian
country where most of the populations work in the
agricultural sector. The Indonesian government is very

supportive towards improving and developing technology in
agriculture. In addition, the government is also very open to
the development of agricultural technology to support the
improvement of the quality of agricultural products and an
ease in the management of agricultural land. Surely, this can
be further supported by the existence of an agricultural
information system. The development of information
technology in agriculture is highly expected and continuously
pursued by the government and the people of Indonesia in
order to achieve an increase in agricultural productivity. Such
increase can help farmers to reduce agricultural production
costs which are considered and deemed ineffective and
inefficient.

Dutatani is one of the Agricultural Information Systems (SIP)
which has been continuously developed by the development
team from the Faculty of Information Technology of Duta
Wacana Christian University since 2016 and can be accessed
through the main address of http://dutatani.id [1]. This
system is called the Integrated Agricultural Information
System (IAIS). Such Information System has several
modules, namely a precise agricultural land mapping system
using satellite map coordinate data on agricultural land [2].
The second module is agricultural activity information system
[3], which is a system that records agricultural activities as
well as agricultural needs. This system is like a notebook for
farmers. The third module is commerce which has a search
feature for agricultural product catalogs [4][5]. Users can also
sell and buy agricultural products. The fourth module is an
agricultural learning information system [6] where farmers
and public users can exchange knowledge about agricultural
science.

During the applicative use of the website to display various
kinds of agricultural information system, several technical
problems are found. One problem faced by researchers in the
system development is the adaptation of information system
integration, there is inefficiency due to the ease of program
code adaptation. The information system is not developed in
the same framework. This affects the scalability of program
code development and poor integration of information

Code Smell Identification As The Basis For Code Refactoring
in The Agricultural Information System Portal Case Study at:

Gilangharjo Village, Bantul Regency, Indonesia
Argo Wibowo1, Lukas Chrisantyo2, Maria Nila Anggia Rini3

1 Information System, Universitas Kristen Duta Wacana Yogyakarta, Indonesia, argo@staff.ukdw.ac.id
2 Informatics, Universitas Kristen Duta Wacana Yogyakarta, Indonesia, lukaschris@staff.ukdw.ac.id

3 Informatics, Universitas Kristen Duta Wacana Yogyakarta, Indonesia, nila@staff.ukdw.ac.id

ISSN 2278-3091
Volume 10, No.3, May - June 2021

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse321032021.pdf

https://doi.org/10.30534/ijatcse/2021/321032021

Argo Wibowo et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 1711 – 1719

1712

system. Another problem is the size of the code that continues
to grow as it is developed in a separate framework. This
affects the principle of code reusability which refers to a code
that can be used together to avoid inconsistencies in input and
output data of the information system.

Based on these problems, a system portal that can function as
a gateway to the systems that have been previously made is
required. The portal is not only intended to combine the
existing systems, but also to combine the systems into one
main system portal with various modules in it. The
information system that was previously stand-alone will be
made into a sub-module in the portal. This study aims to find
strong evidence as a basis for code refactoring in the
agricultural information system portal using code smell
identification in the Dutatani program code. After a code
smell is found, the next step is to determine the sub-system to
be refactored into a new portal.

Code smell is an approach commonly used to identify certain
program code in a set of system program code which is bad
and needs to be updated [7]. Code smell can detect potentially
error code, class with too many objects (God Class), and the
level of complexity of the program [8]. The code smell
approach applied in this study was metric-based approach.

The study objective is to identify the program code that is not
good enough as the basis for code refactoring. This test
involved 1 dutatani agricultural portal web application and 4
sub modules in it, namely farmer activity information system,
agricultural mapping system, agricultural learning system
and agricultural commerce information system. This study
also provides a new perspective related to the development of
agricultural information system portal by comparing the
percentage of code smells on a separate and modular system.
The writing structure of the current article is as follows: the
first part describes introduction containing the background,
the problems found, solutions, study objectives, and
contributions of the study. The further section describes the
literature review composed based on library sources and
references of research articles used in writing this article.
Further section is the study methods that discuss the study
implementation process starting from metric determination,
the detection process, detection results analysis and refactor
determination. This end section of this article is the
conclusions and limitations of the study which are intended
for further development.

2. LITERATURE REVIEW

2.1 Code Smell

Code Smell is a software development problem that occurs at
a low level (code) [9] in the form of a collection of “bad” codes

in design and implementation [10]. Code smells can be
identified from the following things, namely: feature envy,
message chain, god class, and long method [7] [9] [11]. The
impact of code smells is the degree of adaptation, ease of
understanding of program code, scalability, maintainability
and low reusability [9] [12].

Studies on Code smell have been conducted several times,
including measuring the likelihood of a code smell [7]. The
pervious study proposed a formula to measure the likelihood
of a code smell with several parameters such as long methods,
conditionals, and code clones. Another study explained the
visualization of code smells as a software change control [13].
This study is intended to assist developers to easily find out
the codes to be changed in more efficient costs and time.
Another study observed relationship between representation
of different subjects and identification of code smells [14].

2.2 Metric-Based Approach

Metric-based approach is an approach that allows us to
measure the quality of a data model [15]. Metrics can help in
making decisions and strategies [16]. Code smell analysis can
also be applied by using metrics. A metric-based approach for
code smells is applied by counting the following factors [9]:

1. Lines of Code (LOC),
2. Number of Attributes per Class (NOA),
3. Number of Methods per Class (NOM),
4. Weighted Methods per Class (WMC),
5. Coupling Factors (CF),
6. Lack of Cohesion of Methods (LCOM),
7. Loose Class Cohesion (LCC),
8. Method Hiding Factor (MHF),
9. Number of Children (NOC),
10. Depth of Inheritance Tree (DIT) .
11. God Class
12. Complexity

To know the metric value in a code smell, a cutoff value is

needed which aims to interpret a good and true value [17].
Nearly perfect cutoff value is obtained from 2 main sources,
namely statistical and semantic information [18]. Source
derived from statistical information depends on the needs to
be measured using the Java and C ++ systems with metrics
(Michele Lanza and Radu Marinescu, 2006):

1. Average Number of Methods (NOM)
2. Average Lines of Code (LOC)
3. Average Cyclomatic Number (CYCLO)

This study assembled application-based metrics that had

been made in previous studies. With a large number of
applications, the lines of code and complexity of the
application became large, so the researchers used simple
techniques to determine each metric, namely: a typical value

Argo Wibowo et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 1711 – 1719

1713

that covered most of the data, a lower margin that was higher
than the interval, and a value that exceeded the value
considered as a sample.

This study used 2 statistical methods in determining high
and low values, namely the average (AVG) and standard
deviation (STDEV). To find out the AVG and STDEV values,
it can be assumed that they were normally distributed. In
addition, the researchers also recognized the three margins of
the typical value for each metric, namely:

1. Lower margin: AVG-STDEV
2. Medium Margin: AVG+STDEV
3. Very high margin: (AVG+STDEV)*1.5

Researchers considered the value as very high if it was 50%
higher than the cutoff value for the medium margin.

2.3 Agricultural Information System Portal

Information system (IS) is a set of information technology
(IT) applications integrated into a large system which have
specific goals [19], and interacts with various users both
internal and external users[20][21]. A good information
system is able to support the business processes of the
organization [22]. Sometimes, information system on a large
scale have many features or modules within. Although these
features are different, they still have the same purpose as the
parent information system. This of course requires an
information system portal [23] so as to make it easier for users
to use all features of the information system and explore one
feature to another without losing navigation.

Information systems with a portal model require good
integration so that the functions between systems can
communicate well with each other. Good integration can
increase scalability [24] so that the system can be developed
quickly and easily (so called maintainability). Maintainability
is important in integration since complex systems require
high maintainability [25].

Previous studies have produced farmer activity information
[3], land mapping [2][26], commerce [4][5] and learning [6]
systems. These 4 systems will be combined into 1 new portal,
since the old portal has not been well integrated. In order to
become a well-integrated agricultural information system
portal, code refactoring that supports scalability and
maintainability is required. Code refactoring is required when
the code loses structure which leads to difficulty in reading
the design due to a lot of duplications in the code [27][28]. In
addition, we can understand the structure of the program
better by solving bugs so as to maintain the speed of software
development [27] [29].

Code refactoring in this study is required due to the following
reasons:

1. Large-scale study developed by a team consisting of
several lecturers and students, each of whom departed
from different coding habits. Code refactoring is needed
to clear up and eliminate duplication of existing
functions.

2. Through code refactoring, the structure of codes
developed by various team members will be traced in
more depth, which indirectly also traces the codes with
the potential to cause bugs. Thus, these bugs can be
prevented or fixed.

3. Since this system is expected to be large software, ease of
code maintenance is therefore important. The results of
the first and second factors above are attempted to
increase readability and reduce bugs to achieve a good
coding design. Good design is essential in accelerating
software development.

Before getting into the code refactoring process, a code smell
analysis is needed so that it can detect the codes that need to
be fixed and need quality improvement [17].

Code smells on integrated and continuous information
systems often occur due to the lack of the developer's ability to
understand the advanced code created by the previous team
[30]. This can be overcome by implementing the same
framework [31] on the portal information system and
dividing other information systems into several modules (Md
Shariful Haque, Jeff Carver, Travis Atkison, 2018. Causes,
Impacts, and Detection Approaches of Code Smell: Survey
Proceedings of the ACMSE 2018 Conference, No. 25, 1-8.).
This study contributes to the importance of code smell
detection in information systems with different code
structures, and serves as the basis for code refactoring.

3. STUDY METHOD

The study method applied here was divided into 4 stages as
shown in Figure 1.

Figure 1: The Study Stages

3.1 Metric Determination

This study used a metric approach [9] to measure the level of
need for Code Refactoring. The software used was
PhpMetrics because the information system is made with

Argo Wibowo et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 1711 – 1719

1714

various approaches to the PHP programming language. The
metrics used were the Line of Code (LOC) or commonly
called the Logical Line of Code (LLOC), Complexity, Lack of
Cohesion of Methods (LCOM), God Class because it is 90%
more accurate in detecting code smell level [9]. Line of Code
is an executable and declarative line of code. A line of code
refers to one or more statements followed by line-ending
comments. A full line comment is not a line of code. Blank
lines (or lines containing only whitespace characters) are also
not lines of code. Complexity refers to the level of complexity
of the program structure. The value of Cyclomatic complexity
must remain below 10. This expresses well-structured and
well-written code, high trialability, low cost and effort to
build and maintain. If the number of Cyclomatic complexity
is above 10, the source code is complex, has low testability,
and high costs and efforts to build and maintain [32]. LCOM
Metric measures the cohesion or attachment to structural
information taken entirely from its source code (for example,
attribute references in methods and method calls) which
captures the extent to which class elements are shared [33].
High LCOM values mean low cohesion. LCOM values vary
from 0 to 4 [34]. God class is a class that has too many
functional lines and delegates small details to other classes
[35]. Object oriented metrics are used to measure the
properties of object-oriented software applications [34].

3.2 Detection Process

It was conducted by running PhpMetrics tools on 4
information systems and 1 old web portal. Information
systems were detected one by one and the results were viewed
one by one then averaged. Figure 2 shows an example of
running a PhpMetrics script on one of the data management
modules of the agricultural activity information system.
PhpMetrics would then generate a new directory containing
code smell analysis reports in the form of a complete html file.
This process was run 5 times to track code smells in old
agricultural IS portal as well as agricultural activity, land
mapping, and learning.

Figure 2: PhpMetrics Detection Process

There were 2 of 5 systems that were failed to be identified
during detection processes, namely the old IS Portal and
Commerce IS. It can be observed in Figures 3 and figure 4
that PhpMetrics stopped at 23% for the old IS Portal and at
4% for Commerce IS. This indicated that the codes created in
it were not formatted properly.

Figure 3: Failure in Detecting Old IS Portal

Figure 4: Failure in Detecting Commerce IS

After the detection process on 5 Agricultural IS was complete,
the resulting report can be seen in Figures 5, 6 and 7. Only 3
reports were generated because the Old IS Portal and
Commerce IS had failed detection.

Figure 5: Report on Agricultural Activity IS Detection

Figure 6: Report on Land Mapping IS Detection

Figure 7: Report on Learning IS Detection

3.3 Analysis of Detection Results

As explained in the previous section, the detected code smells
were Line of Code (LOC), Complexity, Lack of Cohesion
(LCOM) and God Class. The systems listed in the table were
the old SI Portal which accommodates all sub-systems,
Agricultural Activity IS, Learning IS, Land Mapping IS and
Commerce IS. Learning SI is SI which will be used as a new
home to replace the old portal. Old IS Portal uses code igniter
framework, Agricultural Activity IS uses native PHP with
self-made object class, Learning IS uses Laravel framework,
Land Mapping IS uses PHP Native and Commerce IS uses

Argo Wibowo et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 1711 – 1719

1715

PHP Native with self-made objects and structures. Table I
shows the LOC results for the 5 tested systems and
subsystems.

Table 1: LOC Metric
System Number of LOC
Old Portal Failed
Old Portal Only 37
Agricultural
Activity

0

Learning 25
Land Mapping 20
Commerce Failed

Tables 1 to 4 show the failed results for Old Portal and
Commerce testing. This occurred because the system being
tested was so complex that PhpMetrics was unable to resolve
code smell searches. The code that was traced did not have a
clear structure since it used different native PHP and
frameworks. Line of Code in Learning IS could be calculated
well with an average value of 25 lines per code that can be
executed. Furthermore, Land mapping IS which used PHP
Native had an average value of 20 lines per code that can be
executed. Agricultural Activity IS used the PHP Native object
so that it could not be recognized by PhpMetrics and obtained
a score of 0.

Table 2: Complexity Metric
System Number of Complexity
Old Portal Failed
Old Portal Only 148.59
Agricultural
Activity

0

Learning 46.4
Land Mapping 4.33
Commerce Failed

Table 2 shows the Complexity of the metrics in the 5 tested
systems. The Agricultural Activity IS got a value of 0 again
because of the code structure couldn't be read by PhpMetrics.
Learning SI obtained a score of 46.4, which indciated that the
code structure was quite complicated because it used a
framework. Framework file certainly affected test score. On
the other hand, Land Mapping IS obtained a score of 4.33,
which indicated that the code was well structured and well
written. This was due to Land Mapping IS used PHP Native
with a very simple structure.

Table 3: LCOM Metric
System Number of

LCOM
Old Portal Failed
Old Portal Only 2.23
Agricultural Activity 0
Learning 2.63
Land Mapping 1
Commerce Failed

Table 3 shows the Lack of Cohession of Methods of the
metrics in the 5 tested systems. Land Mapping IS obtained a
score of 2.63, which indicated that the code had a low
relationship when compared to Learning IS which only
obtained a score of 1. This indicated that Learning IS had a
good value due to the low level of relationship with the MVC
(Model View Controller) framework pattern. This will be
interesting when Learning IS is compared to Old Portal
without any sub-systems in it so that they both have a clean
structure without any sub-systems. Both Old Portal and
Learning IS used different frameworks.

Table 3 shows the Lack of Cohession of Methods of the
metrics in the 5 tested systems. Land Mapping IS obtained a
score of 2.63, which indicated that the code had a low
relationship when compared to Learning IS which only
obtained a score of 1. This indicated that Learning IS had a
good value due to the low level of relationship with the MVC
(Model View Controller) framework pattern. This will be
interesting when Learning IS is compared to Old Portal
without any sub-systems in it so that they both have a clean
structure without any sub-systems. Both Old Portal and
Learning IS used different frameworks.

Table 4: GOD Class Metric
System Number of God

Class
Old Portal Failed
Old Portal Only 198
Agricultural
Activity

0

Learning 2
Land Mapping 0
Commerce Failed

God Class denotes a class code which contains a complex
function or logic. Based on table 4, there were 2 God Classes
in Learning IS and there was no God Class in Land Mapping
IS. Based on the PhpMetrics report as shown in Figure 8, it
can be seen that the God Class was the controller class. It is
natural to see the MVC architecture used, so that 1 class

Argo Wibowo et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 1711 – 1719

1716

controller can relate to many class models and views.
Therefore PhpMetrics will detect the class controller to be
God Class. In contrast to Land Mapping IS which still used
PHP native, there were almost no classes that contain many
functions in it.

Figure 8: God Classes in Learning IS

The results of code smell detection presented in tables 1 to 5
indicated that the Old IS Porta, Agricultural Activity and
Commerce could not be detected by PhpMetrics. Therefore,
the three ISs would be eliminated from the new Portal
candidate. Old portal only, Learning and Land Mapping
remained here. Each of these three SIs was unique in that the
Old Portal and Learning used a framework, and land mapping
used a native. The use of frameworks will certainly further
help the development process [36] for several reasons, namely
1) it is most often used in modern website development, 2) it is
a form of reusing existing functions, 3) frameworks can solve
the standardization problem of writing code during the IS
development process. Therefore, the two systems that use the
framework, namely SI Old Portal and SI Learning woud be
further compared. The comparison can be seen in table 5.

Table 5: Comparison Between Old Portal and LEARNING as New

Portal Metric
Code Smell Old

Portal
Learning

LOC 37 25
Complexity 148.59 46.4
LCOM 2.23 2.63
God Class 198 2

Based on the result of comparison between Old IS Portal and
Learning IS, it can be seen that the Learning IS values were
better than Old IS Portal. LOC value for Old Portal was 37
and for Learning IS it was only 25. Complexity values
between the two was also quite different namely 148.59 for
Old IS Portal and 46.4 for Learning IS. Based on LCOM
value, it was also shown that the Learning IS obtained a
higher value than OLD IS Portal (2.63>2.23). The God Class
aspect also showed a significant difference namely 198 and 2.
Based on the results above, it can be determined that the IS
that would be refactored and made into a new portal was
Learning IS since its 4 metric code smells showed better
results than Old IS Portal.

3.4 Determine the Refactor Targets

The further stage was to determine the classes to be
refactored. There were 4 parts as the basis of the refactoring
process, namely the LOC, Complexity, LCOM and God Class
metrics.

A. LOC

Figure 9 shows the results of LOC identification using

PhpMetrics. In this study, the top 5 classes with the highest
number of LOC were taken. This class is a controller class.

Figure 9: Class with the Highest Number of Line Code in Learning

IS

It was different with the LOC in Old Portal which was
dominated by the default framework classes. Therefore, it is
necessary to perform manual filtering to obtain 5 IS classes as
listed in table 6 below:

Table 6: LOC in Old Portal IS
Class LLOC
Change 221
Forum 213
Discussion 180
Login 177
User 177

B. Complexity

There were 5 classes with the highest complexity level in

Learning IS as shown in Figure 10. The detected class was the
controller class, the same class as obtained in LOC detection.

Figure 10: Class with the Highest Complexity Level in Learning IS

Argo Wibowo et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 1711 – 1719

1717

Complexity in Old Portal OS was dominated by the default
framework classes. Therefore, it is necessary to perform
manual filtering to obtain the classes as listed in table 7
below:

Table 7: Complexity LEVEL IN Old Portal IS
Class LLOC
Forum 961.06
User 900.23
Change 841.16
Discussion 576.71
Admin 400.08

C. LCOM

Figure 11 shows the 5 classes with the highest LCOM
levels in Learning IS. A high LCOM level showed a good
indicator, but it should be considered that this class also had a
high code line level and was included in the God Class
category as shown in Figure 8

Figure 11: Classes with the Highest LCOM level in Learning IS

There was no LCOM in Old Portal since LCOM was

detected in the default framework class. For this reason, there
was no Old Portal class that should be refactored in the
LCOM metric.

D. God Class

List of God classes can be seen in Figure 8. The classes

declared large were the ApiController, CategoryController,
MaterialController, and QuestionController classes. In Old
Portal IS, most of the classes detected were the default
framework classes. Therefore, if it was filtered manually, 5
classes were found as listed in table 8 below:

Table 8: God Class SI Old Portal

Class Violation
Admin Probably Bugged
AdminNews Probably Bugged
AdminChang Probably Bugged

e
Forum Probably Bugged
Change Too complex class code

Too complex method code
Probably bugged

Based on the data obtained, the classes that required

refactoring are listed in table 9 below:

Table 9: Refactor Classes

No Class
Code Smell

LCOM Complexity LOC God
Class

1 ApiContr
oller

v v v v

2 Question
Controller

v v v v

3 Category
Controller

 v v v

4 MaterialC
ontroller

 v v v

5 TopicCon
troller

 v v

6 Approval
Controller

v

7 Instructor
Controller

v

8 Dashboar
dControll
er

v

9 Change v v v
10 Forum v v v
11 Discussio

n
 v v

12 User v v
13 Login v
14 Admin v v
15 AdminNe

ws
 v

16 AdminCh
ange

 v

The classes listed in table 9 are taken from 2 systems, namely
the Old Portal system as a reference for the classes needed,
and Learning IS as a reference for Information Systems which
will become the new portal.

4. CONCLUSIONS

Based on the study results and detection of code smell towards
5 information systems that have been conducted, it can be
concluded that there were 2 of 5 systems that were feasible to

Argo Wibowo et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 1711 – 1719

1718

be developed through the refactor process. However, from the
2 systems, a system that used a framework was chosen to
increase the productivity of system development [36], namely
Learning IS. Metrics used to measure code smells could also
be used to detect classes that were imposed code smells. The
detection and filter processes of both the old system and the
new candidate system obtained 16 classes that required
special consideration in code refactor to develop the new
portal system. The total number of class in the old IS and the
new candidate was 29 classes. Thus, the percentage of
detected code smells was 55.17%. This is quite high since
more than half of the codes should be refactored, but it is quite
important since the team didn't have to refactor the entire
codes. This study also revealed the fact that code with a good
structure would be easier to detect. The old portal which
contained various systems was not orderly structured so that it
could not be detected by code smell detection tools. Then
according to the study objectives, it was also found that
modular and structured codes could be read well by detection
tools, and had a high LCOM rate compared to structured and
native code.

ACKNOWLEDGEMENT

The research team would like to express gratitude to the
Ministry of Research, Technology, and Higher Education for
the funds granted to conduct this study with researc contract
number SP DIPA042.06.1.401516/2021. The research team
would also like to thank the Research and Community Service
Department (LPPM) of Duta Wacana Christian University for
the support provided during the study process so that it can be
conducted and completed properly.

REFERENCES
1. R. Delima, H. B. Santoso and J. Purwadi, Development

of Dutatani Website Using Rapid Application
Development, International Journal of Information
Technology and Electrical Engineering, vol. 1, no. 2, pp.
36-44, 2017.

2. A. R. Chrismanto, A. Wibowo, H. B. Santoso and R.
Delima, Developing Agriculture Land Mapping using
Rapid Application Development (RAD): A Case
Study from Indonesia, International Journal of
Advanced Computer Science and Applications, pp.
232-241, 2019.

3. R. Delima, F. Galih and A. Wibowo, Development of
Crop and Farmer Activity Information System,
Researchers World, vol. VIII, no. 4, pp. 180 - 189,
October 2017.

4. R. Delima, H. B. Santoso, G. H. Aditya, J. Purwadi and
A. Wibowo, Development of Sales Modules for
Agricultural E-Commerce Using Dynamic Syatem
Development Method, International Journal of New
Media Technology (IJNMT), pp. 95-103, 2018.

5. R. Delima, H. B. Santoso, N. Andriyanto and A.
Wibowo, Development of Purchasing Module for
Agriculture E-Commerce using Dynamic System
Development, International Journal of Advanced
Computer Science and Application, pp. 86-96, 2018.

6. R. Delima, A. Wibowo, A. Rachmat Chrismanto and H.
Budi Santoso, A Model of Requirements Engineering
on Agriculture Mobile Learning System Using
Goal-Oriented Approach, International Conference on
Informatics and Computing (ICIC), Jakarta, 2020.

7. S. Charalampidou, A. Ampatzoglou, A. Chatzigeorgiou
and P. Avgeriou, Assessing Code Smell Interest
Probability: A Case Study, XP '17: Proceedings of the
XP2017 Scientific Workshops, New York, 2017.

8. A. Kaur and M. Kaur, Analysis of Code Refactoring
Impact on Software Quality, MATEC Web of
Conferences ICAET, France, 2016.

9. M. Shariful Haque, J. Carver and T. Atkison, Causes,
Impacts, and Detection Approaches of Code Smell : A
Survey, ACMSE 2018 Conference, 2018.

10. F. M, B. K, B. J, O. W and R. D, Refactoring:
Improving the Design of Existing Code, Boston:
Addison-Wesley Professional, 1999.

11. E. Murphy-Hill, Scalable, Expressive, and
Context-Sensitive Code Smell Display, OOPSLA 2008
ACM, Nashville, 2008.

12. J. Radatz, A. Geraci and F. Katki, IEEE standard
glossary of, IEEE, 1990.

13. Nabilah and W. Danar Sunindyo, Controlling Software
Evolution Process Using Code Smell Visualization,
ICCCV, Jeju, 2019.

14. R. d. Mello, A. Uchoa, R. Oliveira and D. Oliveira,
Investigating the Social Representations of Code
Smell Identification: A Preliminary Study,
International Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE), Montreal,
2019.

15. M. Platinni, M. Genero and L. Jimenez, A Metric-Based
Approach For Predicting Conceptual Data Models
Maintainability, International Journal of Software
Engineering and Knowledge Engineering, vol. 11, no. 6,
pp. 703-729, 2001.

16. J. Hauser and G. Katz, Metrics: You are what you
measure!, European Management Journal, vol. 16, pp.
517-528, 1998.

17. F. A. Fontana, V. Ferme, A. Marino and B. Walter,
Investigating the Impact of Code Smells on System's
Quality: An Empirical Study on Systems of Different
Application Domains, Software Maintenance (ICSM),
2013 29th IEEE International Conference, Eindhoven,
2013.

18. M. Lanza and R. Marinescu, Object-Oriented Metrics
in Practice, Verlag Berlin Heidelberg: Springer, 2006.

19. Y. H. S. Al-Mamary, A. Shamsuddin and A. H. N.
Aziati, The Role of Different Types of Information
Systems In Business Organizations : A Review,

Argo Wibowo et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 1711 – 1719

1719

International Journal of Research (IJR), vol. 1, no. 7, pp.
1279-1286, 2014.

20. S. K. Boell and D. C. Kecmanovic, What is an
Information System?, Hawaii International Conference
on System Sciences, 2015.

21. D. A. Almazan, Y. S. Tovar and J. M. M. Quintero,
Influence of information systems on organizational
results, Contaduría y Administración, vol. 62, no. 2, pp.
321-338, 2017.

22. A. Arisman, Analysis of Factors Affect to
Organizational Performance In Using Accounting
Information Systems Through Users Satisfaction and
Integration Information Systems, Sriwijaya
International Journal Of Dynamic Economics And
Business, vol. 1, no. 2, pp. 167-180, 2017.

23. K. M. Alhendawi and A. S. Baharudin, The Assessment
Of Information System Effectiveness In E-Learning,
E-Commerce And Egovernment Contexts: A Critical
Review Of The Literature, Journal of Theoretical and
Applied Information Technology, vol. 95, no. 18, pp.
4897-4912, 2017.

24. X. Zhang and J. L. Freschi, Scalability analysis of three
monitoring and information systems: MDS2,
R-GMA, and Hawkeye, Journal of Parallel and
Distributed Computing, vol. 67, no. 8, pp. 883-902,
2007.

25. A. Chugh, S. Manchanda and P. Khosla, Improving
Software Maintainability Through Refactoring- An
Empirical Study, International Journal of Advances in
Electronics and Computer Science, vol. 2, no. 4, pp.
88-93, 2015.

26. A. Wibowo, A. R. Chrismanto, H. B. Santoso dan R.
Delima, The Development of Mobile-based Farmland
Mapping System with Drones and Wireless Devices,
International Journal of Advanced Trends in Computer
Science and Engineering (IJATCSE), vol. 9, no. 5, pp.
7894-7902, 2020.

27. M. Fowler, Refactoring: Improving the Design of
Existing Code, London: Pearson Education, 2018.

28. G. Lacerda, F. Petrillo, M. Pimenta and Y. G.
Gueheneuc, Code Smells and Refactoring: A Tertiary
Systematic Review of Challenges and Observations,
Journal of Systems and Software, vol. 167, 2020.

29. J. P. d. Reis, F. B. e. Abreu, G. d. F. Carneiro and C.
Anslow, Code Smells Detection and Visualization: A
Systematic Literature Review, Archives of
Computational Methods in Engineering, vol. 28, 2021.

30. T. Sharma, A Survey on Software Smells, Journal of
Systems and Software, vol. 138, p. 50, 2017.

31. F. Palomba, G. Bavota, M. D. Penta, F. Fasano, R.
Oliveto and A. D. Lucia, A large-scale empirical study
on the lifecycle of code smell co-occurrences,
Information and Software Technology, vol. 99, pp. 1-10,
2018.

32. A. Y. P. Putri, Modifikasi Metode Function Point
dengan Menambahkan Kompleksitas Proses Bisnis
pada General System Characteristics untuk Estimasi

Biaya Perangkat Lunak, Institut Teknologi Sepuluh
November, Surabaya, 2018.

33. V. Jain and A. Gupta, Lack of Conceptual Cohesion of
Methods: A new alternative to Lack Of Cohesion of
Methods, ISEC '15: Proceedings of the 8th India
Software Engineering Conference, India, 2015.

34. R. Ponnala and C. Reddy, Object Oriented Dynamic
Metrics in Software Development: A Literature
Review, International Journal of Applied Engineering
Research, vol. 14, no. 22, pp. 4161-4172, 2019.

35. B. L. Sousa, M. A. S. Bigonha and K. A. M. Ferreira,
When GOF Design Patterns occur with God Class
and Long Method Bad Smells?-An Empirical
Analysis, Journal of Software Engineering Research and
Development, vol. 17, pp. 11-22, 2019.

36. S. Syafiq, M. Daud, H. Hasan, A. Zairi, S. Imri, E.
Akmar and N. Rahim, Comparison of Web
Development Using Framework over Library,
International Journal of Computer and Systems
Engineering, vol. 12, no. 3, pp. 215-218, 2018.

