
 Shivani Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March – April 2019, 293 – 299

293

Reliability of Component-Based Systems – A Review

Shivani Yadav1, Bal Kishan2

Department of Computer Science and Applications, Maharshi Dayanand University, Rohtak-124001, India
1shivaniyadav17@gmail.com

2balkishan248@gmail.com

ABSTRACT

Component-based software development is a methodology to use
and create software systems that consume and produce reusable
software components. The components act as independent units that
interact to form a functional system. This approach has the potential
to overcome the overheads associated with monolithic software
applications. The reliability of such a system is highly dynamic in
real-time. Reliability of the software ensures that the program
performs the specified function effectively and results in quality
software. Through this paper an introduction of component based
system with its reliability, performance factors and its advantages
are provided. This paper also provides the related work carried out
over the years by various researchers and the research gaps.

Key words: Reliability, software components, performance,
component, reusability.

1. INTRODUCTION

Software systems have become such an important part of our
day to day lives that it’s easy to overlook their presence.
They’re present across every spectrum of our life, be it
communication, transportation or something as simple as
doing household chores with the help of home appliances.
This seamless integration requires that the software be
robust, reliable and functional at all times. The ability to
conform to the required standards and perform the desired
functions, determines the software quality. High software
quality ensures reliability. The probability of operational
performance without failure of a system within specified
period of time is known as software reliability. As the
proliferation of software continues, it becomes increasingly
difficult to maintain software quality and reliability due to
the extensive time and energy required. This calls for
component based software engineering (CBSE), which also
helps in reducing the development cost and effort required by
reusing the components. Our next section introduces
component-based system, its performance factors and
reliability; Section III presents related work carried out over
years by various researchers; Section IV presents the research
gaps and at last Section V presents the conclusion and future
work.

2. COMPONENT-BASED SYSTEM

CBSE is a branch of software engineering that focuses on
separating concerns about extended facilities available in a
particular software system. It relies on reusing independent

components to define, implement and compose new
composite systems. [1]
Components can create or consume incidents, and be used in
event-driven structures. The component model works by
identifying the elements in an interface and their definition.

1.1 Performance factors and advantages of component

based systems

Performance of component-based system depends on the
following factors [2]:

 Component implementation: A single component
can be developed and deployed in multiple ways
depending on the developer’s implementation of the
interface. While different components can result in
the same functionality, the resources consumed by
them, their execution times and dependencies on
other components can vary.

 Required services: A component might require
calls to different components for invoking services.
The performance of the component then becomes
contingent on the performance of the other
components or services being called.

 Deployment platform: A software architect might
deploy a component on a number of platforms as
per requirements. This deployment platform can be
a combination of several software and hardware
platforms. Each of these combinations results in
varied performance levels.

 Usage profile: The different input parameters to a
component service determine the performance of a
component. The execution times can changes the
inputs from calls to required services are returned
with results.

 Resource contention: Multiple components fight
for resources as the program runs through different
components. This results in processes waiting for
limited resources, adding up to the execution times

The following advantages of the component-based system
are [3]:

 Reusability: The primary motive of component-
based development approach is to use already
existing components and hence reduce the effort and
cost. The required components are assembled to
design a new application. Higher frequency of reuse
ensures that the components are thoroughly checked
for quality and increase the productivity of the
system.

 ISSN 2278-3091
Volume 8, No.2, March - April 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse31822019.pdf

https://doi.org/10.30534/ijatcse/2019/31822019

 Shivani Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March – April 2019, 293 – 299

294

 Maintainability: In a component-based system, the
software becomes easier to maintain as the
functionality needs to implemented only once and
can be updated easily by making changes at a single
source.

 Portability: The ease with which a component can
be transferred from one environment to another, for
reuse, is defined as portability. Portability results in
the higher frequency of component reuse.

 Quality Enhancement: Quality of components is
improved as components are tested many times for
reusability.

 Low cost and time: One component is used many
times at many places which reduces production cost
as well as time.

 Consistency increases
 Manages complexity in an effective manner or

reduces complexity up to a certain level

2.1 Reliability of component-based systems

Reliability analysis approaches are broadly classified into
three main models [4]:
 1. State-based models

This model takes into account the change of state as
the control flows from one component to another.
The assumption is that failure occurs due to
individual components. Each component’s behavior
is taken to be independent of past behavior, also
known as Markov behavior. Architectural models
were proposed using Discrete Time Markov chain
(DTMC) or semi-Markov processes. It can be
represented in two ways:

Hierarchical models: This model starts with the
architecture model at the core and then including
cover failure behavior to solve the architecture
model and arrive at reliability.

Composite model: The reliability of the application
is predicted using a combination of software
architecture and failure behavior into a composite
model.

State-based models analyses the reliability using
various methods like mathematical formulas,
algebraic method, algorithms and also, markov
theory which includes discrete time markov model
(DTMC), time continuous markov model (CTMC),
semi markov model (SMP)

2. Path-based models
An application can have multiple execution paths
based on the input parameters and subsequent
service requests. This model considers the different
paths obtained by testing the components.
Reliability of each path = product of component
reliabilities along that path
System reliability = average of path reliabilities over
all paths of the software system

Path-based model attains a series of the entire
probable executable paths which are obtained by

experiments, algorithms, simulation for evaluating
system reliability.

3. Additive models
System reliability is calculated by focusing on the individual
components failure data and mainly at the time of testing. In
additive model, reliability is modeled using non-
homogeneous poisson process (NHPP).

3. LITERATURE REVIEW

Some of the following approaches give information about the
performance evaluation methods used for analysing
component-based software systems:

Woodside et al. [5] came up with the concept of performance
evaluation elements to a model of software systems.
Software developers and designers create and store model
elements like, model annotations, deployment models,
infrastructure models, design refinements and
communication models, to extend platform-independent
models to platform-specific models.

A technique was proposed by Eskanazi et al. [6] to improve
APPEAR to predict the performance of component-based
software systems. The method involves simulating the full
application model, keeping in mind the implementation of
component services, predicting the performance of individual
component processes, and creating flow charts for annotated
control of component t services. However, it is difficult to
repeat this approach because it does not include a model or
tool to apply to other software systems.

Menasce et al. [7] suggested a method for negotiating
performance properties at runtime with their clients by using
QoS-aware software components. Using previously
monitored performance properties, the components build a
QN model which is then used to analyse their ability to fulfil
the specified OoS service requirement.

The concept of parametric performance for software
components was developed by Reussner et al. [8]. The
performance of each component can be calculated if the
performance of necessary services for the execution of that
component is known. This design helps in determining the
components to provide appropriate performance
characteristics for the deployment environment at the design
time.

Ostrand et al. [9] used negative binomial regression, with file
size, programming language, status and the number of
changes on file as metrics, to predict fault-prone modules.
According to the accuracy parameter, a negative binomial
regression model was found to be extremely useful.

Yang et al. [10] applied Self-Adaptation Learning Control
Network-(FALCON)to a set of artificial data. FALCON, a
specific type of neural network. The model enables
measurement of many quality properties such as reliability,
performance, and stability, the complexity of inheritance

 Shivani Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March – April 2019, 293 – 299

295

trees, reuse and depth as input. However, research is still in
its infancy because they have not used this approach with the
actual data set.

Seliya et al. [11] used Expectation–Maximization (EM)
technique on limited fault data to predict software faults.

Data sets used for training were JM1 data sets, whereas data
sets used for testing were KC1, KC2 and KC3. Since,
sufficient data was not available, an exact model could not be
created and a model for only limited problem of fault data
could be built. In the absence of fault data for components or
the cost of operating the metrics collection can be very
expensive. This necessitates the need for powerful classifiers
to build accurate classification models which can use both
unlabelled and labelled data.

The team evaluated the performance considering type I, type
2 and overall misclassification rate parameters. Then a
prediction model was created after labelling the unlabelled
data with EM technology and using all modules. Quality
models of emerging markets presented acceptable results for
the problem of semi-supervised fault prediction.

Koru et al. [12] used Mozilla open source projects to run
their tree based models for identifying change-prone classes
by classifying them under different labels using metrics. It
was observed that 20% of classes changed.

Tomaszewski et al. [13] relied on a combination of expert
judgement and univariate linear regression for predicting
software faults. They used method and class metrics to study
a couple of software systems developed in Ericsson. The
accuracy of fault prediction was the parameter for
performance evaluation. Eleven experts were invited to
anticipate the fault-proneness of the components. It was
observed that expert opinions were less accurate than
statistical approaches and it became increasingly difficult for
experts to anticipate faults in large data-sets. Even amongst
the statistical approaches, class metrics based evaluation
models were found to be more accurate than component
metrics based evaluation models. The identification of fault-
prone components by experts was quite subjective and varied
for the most part and in cases where experts agreed on same
components, the fault density values were often diverse.

Olague et al. [14] studied six versions of Rhino project using
three software metrics suites to predict fault-proneness of
object-oriented classes. The analysis was done using two
techniques: univariate and multivariate binary logistic
regression. Three metrics suite were used: Bansiya and
Davis’s quality metrics (QMOOD), Abreu’s object-oriented
metrics (MOOD) and Chidamber–Kemerer (CK) metrics
suite. Model validation was done using accuracy as the
parameter for model validation and the metrics’ effects were
examined using Spearman correlation. The best performance

for fault prediction was observed with CK metrics suite, in
particular the Weighted Methods Count and Response for
Children metrics. Univariate binary logistics regression
suggested that CK QMOOD metrics, CIS and NOM, were
also useful. Multivariate binary logistic regression models
were quite useful for iterative and agile software
development processes.

Bibi et al. [15] applied Regression via Classification (RvC) to
predict faults and estimated the number of software faults
with a confidence interval. Results provided better regression
error than the standard regression methods. The dataset used
for analysis was Pekka dataset, provided by ISBSG
(International Software Benchmarking Standards Group), and
a Finland based commercial bank. Mean absolute error was
used as the performance evaluation metric.

Turhan et al. [16] showed that independence assumption is
not detrimental, by using PD, PF and balance parameters
with principal component analysis (PCA) pre-processing
when using Naive Bayes algorithm.

Chang et al. [17] discovered fault patterns using association
rules and proposed a fault prediction model. The results were
promising and the method can be used in causal analysis.

Tosun et al. [18] used three embedded software projects and
conducted experiments on public datasets to validate
Zimmermann and Nagappan’s paper published. They found
network measures to be effective indicators of fault-prone
modules for large systems. PD, PF, and precision were used
as the evaluation metrics.

Arisholma et al. [19] evaluated a legacy system project,
based on Java, to determine fault-proneness using different
models. Their findings showed that prediction accuracy was
affected by the modeling technique in a limited way. Process
metrics are a good measure for fault prediction and the best
model can be determined using performance evaluation
parameters. Further, they included cost-effectiveness as a
measure for assessment of models. The best results were
obtained when Adaboost was combined with C4.5 and
evaluation techniques were run with default parameters.

Vikrant Kaulgud et al. [20] designed a metric that can be
used for forecasting and early warnings, using data from
component testing tools to derive in-process insights.
Prioritization of component tests ensured that complex
components received effort allocation in line with
requirements. At the same time, exhaustive testing of the
entire component set was ensured.

Nasib Singh Gill et al. [21] formulated a systematic approach
for constructing testable components to increase test
automation and convert a given component into a testable
component. The approach helped in improving the overall
quality of the system by making fault detection in the early
phases of software development.

 Shivani Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March – April 2019, 293 – 299

296

M. K. Pawar et al. [22] analyzed different integration testing
approaches such as UML based, CIG (Component Interaction
Graph), Component certification, Component Interaction
testing, component metadata etc. and presented various
issues associated with them.

Ahmad Nauman Ghazi et al. [23] compared three testing
technologies for testing heterogeneous systems namely:
Exploratory manual testing, combinatorial testing and search
based testing. Exploratory manual testing was found to be the
most frequently used technique for heterogeneous systems
and search based techniques are least frequently used. This
can be attributed to the fact that search based technique is a
relatively new area and needs further research to utilize its
full potential.

Prasenjit Banerjee et al. [24] proposed a quality evaluation
framework, and a set of metrics, along with their theoretical
validations for the conceptual level component based system

model. The framework included parameters such as
completeness, complexity, expressiveness and analysability
for quality measurement. The software quality measurements
were used to exhibit two-fold quality evaluation viewpoints:
designer level and user level. The proposed framework was
tested on the library management system.

4. RESEARCH GAPS

So far our literature survey shows that the authors are
interested in model-based testing of component-based
software. Soft computing paradigms which are based on
meta-heuristic are very less exploited in the field of CBD.
The combination of these two approaches will enhance the
effectiveness of testing. Table 1 below enlists some
important research publications in the field of CBD and
testing along with their research gaps.

Table 1: Important Publications and Research Gaps

Publication
Year

 Title of Paper Authors Research Gaps/ Limitations

2018 “The Impact of Motivator and Demotivator
Factors on Agile Software Development”
[25]

Shahbaz Ahmed Khan
Ghayyur, Salman Ahmed,
Saeed Ullah, Waqar
Ahmed

Needs to find motivator factors
according to core agile practices

2017 “Professionals are not Superman: Failures
beyond Motivation in Software
Experiments” [26]

Oscar Dieste, Efra’in R.
Fonseca C., Geovanny
Raura, Priscila Rodriguez

Fails in casual relationship
detection and empirical studies.

2017 “Motivators and Demotivators of Agile
Software Development: Elicitation and
Analysis” [27]

Shahbaz Ahmed Khan
Ghayyur, Salman Ahmed,
Adnan Naseem, Abdul
Razzaq

Lacks in empirical analysis of
motivators and demotivators

2016 “Deriving UML-based Specifications of
Inter-Component Interactions from Runtime
Tests” [28]

Thorsten Haendler, Stefan
Sobernig, Mark
Strembeck

Computationally expensive and
requires runtime mapping

2016 “COSTOTest: A Tool for Building and
Running Test Harness for Service-Based
Component Models” [29]

Pascal André, Jean-Marie
Mottu, Gerson Sunyé

Lacks generality and applicable to
service oriented components only

2016 “Search-Based Cost-Effective Test Case
Selection within a Time Budget: An
Empirical Study” [30]

Dipesh Pradhan, Shuai
Wang, Shaukat Ali

Can be improved by hybridizing
with local search techniques.

2015 “A Generic Model-Based Methodology of
Testing Techniques to Obtain High Quality
Software” [31]

Khaled Almakadmeh,
Fatima Abu-Zitoon

Not applied on component based
softwares and soft computing
techniques are not utilized.

2015 “Neuro-Fuzzy Model to Estimate &
Optimize Quality and Performance of
Component Based Software Engineering”
[32]

Gaurav Kumar, Pradeep
Kumar Bhatia

Lacks real life data and can be
optimized for more number of
quality attributes

2014 “A Novel Approach to Component-Based
Software Testing” [33]

Lata Nautiyal, Dr. Neena
Gupta, Dr. Sushil Chandra
Dimri

Only theoretical basis, No
implementation

2014 “Design Test Process in Component-Based
Software Engineering: An Analysis of
Requirements Scalability” [34]

Mariem Haoues, Asma
Sellami, Hanêne Ben-
Abdallah

Can be improved using soft
computing along with model based
techniques.

 Shivani Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March – April 2019, 293 – 299

297

2013 “A Survey on Software Testing Techniques
using Genetic Algorithm” [35]

Chayanika Sharma,
Sangeeta Sabharwal, Ritu
Sibal

GA can be hybridized with other
soft computing techniques.

2012 “State-Model-Based Regression Test
Reduction for Component-Based Software”
[36]

Tamal Sen, Rajib Mall Code should be auto-generated
and applicable to regression
testing

2012 “Automatic Generation of Test Models and
Properties from UML Models with OCL
Constraints” [37]

Miguel A. Francisco,
Laura M. Castro

Requires tool support and test data
repository. Not applied on
integration testing.

2011 “Testing Component Based Software: What
It has to do with Design and Component
Selection” [38]

Shyam S. Pandeya, Anil
K. Tripathi

Applicable on component
selection level.

2011 “Towards Incremental Component
Compatibility Testing” [39]

Ilchul Yoon, Alan
Sussman, Atif Memon,
Adam Porter

Needs knowledge of component
dependencies

2010 “Automated Unit and Integration Testing for
Component-based Software Systems” [40]

F. Saglietti, F. Pinte Applicable to limited system size

Another method for improving the reliability of the system
where only prediction is to be determined is using Reliability
Block Diagram (RBD). It measures the important
components of the system and the changes required [41]. For
reducing failures in any software, one can also use
component software engineering with maturity driven
process. [42]

5. CONCLUSION AND FUTURE SCOPE

The aim of component-based software development process
is to design and construct software systems using reusable
components. Components are designed to produce or
consume events and can be used for implementing event-
driven architectures. The component model works by
identifying the elements in an interface and their definition.
Combination of model-based testing of component-based
software and soft computing paradigms which are based on
meta-heuristic are discussed in the field of CBD and the
combination of these two approaches will enhance the
effectiveness of testing. This paper provides an overview of
component based software system, its performance factors
and advantages. We have summarized some existing
techniques, and after extensive literature survey, we realized
that there are many research gaps which need improvement.

REFERENCES

[1] R. Alam, and M. U. Bokhari. Assuring reliability of the
software using component based software engineering,
Journal of Basic and Applied Engineering Research, vol.
1(7), pp. 55-60, 2014.
[2] S. Becker, and R. H. Reussner. The impact of software
component adaptation on quality of service properties,
L'objet, vol. 12 (1), pp. 105-125, 2006.
https://doi.org/10.3166/objet.12.1.105-125
[3] S. Becker, H. Koziolek, and R. Reussner. The Palladio
component model for model-driven performance
prediction, Journal of Systems and Software, vol. 82(1), pp.
3-22, 2009.
https://doi.org/10.1016/j.jss.2008.03.066

[4] K. Tyagi, and A. Sharma. Reliability of component
based systems – A critical survey, WSEAS Trans. on
Computer, vol. 2(11), pp. 45–54, 2012.
[5] M. Woodside, D. Petriu, and K. Siddiqui. Performance-
related completions for software specifications, in Proc.
ICSE'02, pp. 22-32, 2002.
https://doi.org/10.1145/581344.581346
[6] E. Eskenazi, A. Fioukov, and D. Hammer. Performance
prediction for component compositions, in Proc. CBSE'04,
in: LNCS, vol. (3054), pp. 28-293, 2004.
https://doi.org/10.1007/978-3-540-24774-6_25
[7] D. A. Menasce, V. A. F. Almeida, and L. W. Dowdy.
Performance by Design, Prentice Hall, 2004.
[8] R. H. Reussner, S. Becker, and V. Firus. Component
composition with parametric contracts, in Tagungsband
der Net.Object Days, pp. 155-169, 2004.
[9] T. J. Ostrand, E. J. Weyuker, and R. M. Bell.
Automating algorithms for the identification of fault-
prone files, in Proc. ISSTA '07, pp. 219–227, 2007.
https://doi.org/10.1145/1273463.1273493
[10] B. Yang, L. Yao, and H. Huang. Early software quality
prediction based on a fuzzy neural network model, in
Proc. ICNC’ 07, IEEE, 2007, pp. 760–764.
https://doi.org/10.1109/ICNC.2007.347
[11] N. Seliya, and T. M. Khoshgoftaar. Software quality
estimation with limited fault data: A semi supervised
learning perspective, Software Quality Journal, vol. 15(3),
pp. 327–344, 2007.
https://doi.org/10.1007/s11219-007-9013-8
[12] A. G. Koru, and H. Liu. Identifying and characterizing
change-prone classes in two large-scale open-source
products, Journal of Systems and Software, vol. 80(1), pp.
63–73, 2007.
https://doi.org/10.1016/j.jss.2006.05.017
[13] P. Tomaszewski, J. Håkansson, H. Grahn, and L.
Lundberg. Statistical models vs. expert estimation for fault
prediction in modified code – An industrial case study,
Journal of Systems and Software, vol. 80(8), pp.1227–1238,
2007.
https://doi.org/10.1016/j.jss.2006.12.548
[14] H. M. Olague, L. H. Etzkorn, S. Gholston, and S.
Quattlebaum. Empirical validation of three software

 Shivani Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March – April 2019, 293 – 299

298

metrics suites to predict fault-proneness of object-
oriented classes developed using highly iterative or agile
software development processes, IEEE Transactions on
Software Engineering, vol. 33(6), pp. 402–419, 2007.
https://doi.org/10.1109/TSE.2007.1015
[15] S. Bibi, G. Tsoumakas, I. Stamelos, and I. Vlahavas.
Regression via classification applied on software defect
estimation, Expert Systems with Applicationl, vol. 34(3), pp.
2091–2101, 2008.
https://doi.org/10.1016/j.eswa.2007.02.012
[16] B. Turhan, and A. Bener. Analysis of Naive Bayes’
assumptions on software fault data: An empirical study,
Data & Knowledge Engineering, vol. 68(2), pp. 278–290,
2009.
https://doi.org/10.1016/j.datak.2008.10.005
[17] C. Chang, C. Chu, and Y. Yeh. Integrating in-process
software defect prediction with association mining to
discover defect pattern, Information and Software
Technology, vol. 51(2), pp. 375–384, 2009.
https://doi.org/10.1016/j.infsof.2008.04.008
[18] A. Tosun, B. Turhan, and A. Bener. Validation of
network measures as indicators of defective modules in
software systems, in Proc PROMISE ’09, ISBN: 978-1-
60558-634-2, pp. 1–9, 2009,
https://doi.org/10.1145/1540438.1540446
[19] E. Arisholma, L. C. Briand, and E. B. Johannessen. A
systematic and comprehensive investigation of methods to
build and evaluate fault prediction models, Journal of
Systems and Software, vol. 83(1), pp. 2–17, 2010.
https://doi.org/10.1016/j.jss.2009.06.055
[20] V. Kaulgud, and V. S. Sharma. Insights into
component testing process, in Proc. WETSoM '11, pp. 27-
30, 2011.
https://doi.org/10.1145/1985374.1985382
[21] N. S. Gill, and P. Tomar. New and innovative process
to construct testable component with systematic
approach, ACM SIGSOFT Software Engineering Notes, vol.
36(1), pp. 1-4, 2011.
https://doi.org/10.1145/1921532.1921540
[22] M. K. Pawar, R. Patel, and N.S Chaudhari. Survey of
integrating testing for component-based system,
International Journal of Computer Applications, vol. 57(18),
pp. 21-25, 2012.
[23] A. N. Ghazi, K. Petersen, and J. Börstler.
Heterogeneous Systems Testing Techniques: An
Exploratory Survey, International Conference on Software
Quality, Software Quality Days (SWQD), Part of the Lecture
Notes in Business Information Processing book series, 2015,
pp. 67-85.
https://doi.org/10.1007/978-3-319-13251-8_5
[24] P. Banerjee, and A. Sarkar. Quality evaluation
framework for component based software, in Proc. ICTCS
16, 2016 Article no. 17.
https://doi.org/10.1145/2905055.2905223
[25] S. A. K. Ghayyur, S. Ahmed and S. Ullah. The impact
of motivator and demotivator factors on agile software
development, International Journal of Advanced Computer
Science and Applications, vol. 9(7), pp. 80-93, 2018.
https://doi.org/10.14569/IJACSA.2018.090712
[26] O. Dieste, E. R. Fonseca C.G. Raura, and P. Rodriguez.
Professionals are not superman: failures beyond
motivation in software experiments, in IEEE/ACM 5th

International Workshop on Conducting Empirical Studies in
Industry (CESI), 2017, pp. 27-32.
https://doi.org/10.1109/CESI.2017.8
[27] S. A. K. Ghayyur, S. Ahmed, A. Naseem, and A.
Razzaq. Motivators and demotivators of agile software
development: elicitation and analysis, International
Journal of Advanced Computer Science and Applications,
vol. 8(12), pp. 304-314, 2017.
https://doi.org/10.14569/IJACSA.2017.081239
[28] T. Haendler, S. Sobernig, and M. Strembeck. Deriving
uml-based specifications of inter-component interactions
from runtime tests, in Proc. SAC’16, 2016, pp. 1573-1575.
https://doi.org/10.1145/2851613.2851981
[29] P. André, J. Mottu, and G. Sunyé. Costotest: a tool for
building and running test harness for service-based
component models (demo), in Proc. ISSTA’16, 2016, ACM,
pp. 437-440.
https://doi.org/10.1145/2931037.2948704
[30] D. Pradhan, S. Wang, S. Ali, and T. Yue. Search-based
cost-effective test case selection within a time budget: an
empirical study, in Proc. GECCO’16, 2016, Association for
Computing Machinery(ACM), pp. 1085-1092.
https://doi.org/10.1145/2908812.2908850
[31] K. Almakadmeh, and F. Abu-Zitoon. A generic model-
based methodology of testing techniques to obtain high
quality software, In Proc. IPAC’15, 2015, ACM, Article
no. 49.
https://doi.org/10.1145/2816839.2816903
[32] G. Kumar, and P. K. Bhatia. Neuro-fuzzy model to
estimate & optimize quality and performance of
component based software engineering, Newsletter ACM
SIGSOFT Software Engineering Notes, vol. 40(2), pp. 1-6,
2015.
https://doi.org/10.1145/2735399.2735410
[33] L. Nautiyal, N. Gupta, and S. Chandra Dimri. A novel
approach to component-based software testing, Newsletter
ACM SIGSOFT Software Engineering Notes, vol. 39(6), pp.
1-4, 2014.
https://doi.org/10.1145/2674632.2674640
[34] M. Haoues, A. Sellami, and H. Ben-Abdallah. Design
test process in component-based software engineering: an
analysis of requirements scalability, in Proc. WETSoM’14,
2014, pp. 48-54.
https://doi.org/10.1145/2593868.2593877
[35] C. Sharma, S. Sabharwal, and R. Sibal. A survey on
software testing techniques using genetic algorithm,
International Journal of Computer Science Issues, vol. 10(1),
pp. 381-393, 2013.
[36] T. Sen, and R. Mall. State-model-based regression test
reduction for component-based software, International
Scholarly Research Network, ISRN Software Engineering,
pp. 1-9, 2012.
https://doi.org/10.5402/2012/561502
[37] M. A. Francisco, and L. M. Castro. Automatic
generation of test models and properties from uml models
with ocl constraints, in Proc OCL’12, 2012, pp. 49-54.
https://doi.org/10.1145/2428516.2428525
[38] S. S. Pandeya, and A. K. Tripathi. Besting component-
based software: what it has to do with design and
component selection, Journal of Software Engineering and
Applications, vol. 4(1), pp. 37-47, 2011.
https://doi.org/10.4236/jsea.2011.41005

 Shivani Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March – April 2019, 293 – 299

299

[39] I. Yoon, A. Sussman, A. Memon, and A. Porter.
Towards incremental component compatibility testing, in
Proc. CBSE’11, 2011, pp. 119-128.
https://doi.org/10.1145/2000229.2000247
[40] F. Saglietti, and F. Pinte. Automated unit and
integration testing for component-based software
systems, in Proc. S&D4RCES’10, 2010, Article no. 5.
https://doi.org/10.1145/1868433.1868440
[41] D. Iudean, A. Cretu, R. Munteanu, R. Moga, N. Stroia,
D. Moga, and L. Vladareanu, Reliability Approach of a

Compressor System using Reliability Block Diagrams,
International Journal of Advanced Trends in Computer
Science and Engineering, vol. 8, no. 1.1, pp. 133-138,2019.
[42] A. Shaikh, The Role of Maturity Driven Software
Process Improvement in an Industry, International
Journal of Advanced Trends in Computer Science and
Engineering, vol. 8, no. 1.1, pp. 344-350, 2019.
https://doi.org/10.30534/ijatcse/2019/6081.12019

