
Wafa Dababat et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6346 – 6355

6346

ABSTRACT

String matching is a fundamental problem in computer
science and has been extensively studied. Searching for all
occurrences of a pattern in a text is a fundamental problem in
many applications, like natural language processing,
information retrieval, pattern recognition and computational
biology. Many string matching algorithms are existing and
work efficiently with different applications in different life
scopes; one of these algorithms is the Intelligent Predictive
String Search Algorithm, this algorithm searches through a
given text to find the first occurrence of a pattern without a
pre-processing phase that included in many string marching
algorithms to calculate the pattern shift values which lead
less computations and uses simple rules during a match or
mismatch of a pattern character using one sliding window.

In this paper we updated the Intelligent Predictive String
Search Algorithm three times resulting with three versions; in
the first one we reversed the search direction to be from right
using one sliding window while in second version we use two
sliding windows to scans the text from both sides sequentially
and finally we parallelize this version using real parallel
environment. Besides, it is easy to parallelize the new
developed algorithm gain significant enhancement in
decreasing time and memory requirements.

Key words: Pattern matching, Intelligent Predictive String
Search Algorithm, Two Sliding Windows algorithm, parallel
environment.

1. INTRODUCTION

Pattern matching algorithms are used in many applications to
search for a certain pattern p of length m in a text t of length n,
many algorithms exist that maintain this purpose, but they
differ from each other in some aspects such as:
Number of sliding windows used in searching process, some
algorithms use one window with size equal to pattern size
[1-3]. Others using two or more sliding windows each with

length equal to pattern length [4-9]. In this case, the
comparisons between the text and two sliding windows
happened at the same time at the both sides while other
algorithms used four sliding windows [10].
Shift values, the shifting value vary from one algorithm to
another, such variations depend on the number of consecutive
characters in the text immediately after the pattern window
[1-10].
In this paper, we made an enhancement on the Intelligent
Predictive String Search Algorithm[11][12], while keeping
the shift values used in the original Intelligent Predictive
String Search Algorithm as it is but we use two sliding
window instead of one, the window size is equal pattern size
(m), but In this case the two sliding window moves according
to the same shift value rules.
Comparisons are made between the new algorithm and the
original Intelligent Predictive String Search Algorithm
[11][12]. The experimental results section showed that the
new algorithm is faster than the others in case of a number of
comparisons. The rest of this paper is organized as follows:
The next section introduces some literature review about the
topic; it is followed by a section that covers the Intelligent
Predictive String Search Algorithm. We then present the
three adaptations on Intelligent Predictive String Search
Algorithm followed by their analysis. The conclusion and
future work are drawn in the last section.

2. RELATED WORKS

Several pattern matching algorithms have been developed
and improved in the past decades to meet the different needs
of different applications [13-18]. As we mentioned previously
some of these algorithms used single sliding window to search
the text for a certain pattern, while others used two or more
sliding windows. On the other hand, some of these algorithms
require two phases, pre-processing phase to calculate shift
values that used by the sliding window and searching phase
[1-10]. The shift values that the window will shift also varies
from one algorithm to another, for example; the shifting
values in the BoyerMoore algorithm (BM) [19] in case of a

Intelligent Predictive String Search Algorithm Using Two

Sliding Windows in Parallel Environment
Wafa Dababat 1, Mariam Itriq 2

1 Department Of SE, Al-Balqa Applied University, Salt, Jordan
w.dababat@bau.edu.jo

2 Department Of IT, The University of Jordan, Amman, Jordan
m.itriq@ju.edu.jo

ISSN 2278-3091
Volume 9, No.4, July – August 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse316942020.pdf

https://doi.org/10.30534/ijatcse/2020/316942020

Wafa Dababat et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6346 – 6355

6347

mismatch (or a complete match of the whole pattern) depends
on two pre-computed functions to shift the window to the
right. These two shift functions are called the good-suffix
shift and the bad-character shift. The pre-processing and
searching time complexities of (BM) are O(m+│∑│) and
Ω(n/m), O(n).
Berry-Ravindran algorithm (BR) [20] depend on the bad
character shift function to determine the shift value in case of
a mismatch and the searching phase make use of one sliding
window from left to the right. The pre-processing and
searching time complexities of BR algorithm are O(σ2) and
O(nm) respectively. EBR [6] algorithm made modifications
on Berry-Ra-vindran bad character shift by using three
consecutive characters.
Two Sliding Window algorithm TSW [5] enhanced (BR) by
using two sliding windows instead of one, each of them equal
to the length of the pattern n. One window aligned with the
text from the left the other aligned from the right and the both
windows shifted according to bad character shift. In TSW, the
best time complexity is O(m) and the worst case time
complexity is O(((n/2-m+1))(m)). The pre-process time
complexity is O(2(m-1)).
In order to minimize the number of comparisons, Enhanced
Two Sliding Window algorithm (ETSW) [7] made some
modification on TSW. The preprocessing phase remains the
same, and the modifications happened on the comparison
process by using two pointers one from the left of the pattern
and the other form the right of the same pattern. The same
process applied to the two windows, the best time complexity
is O(m/2) and the worst case time complexity is
O(((n/2-m/2+1))(m/2)). The pre-process time complexity is
O(2(m-1)).
ERS-A [4] uses two sliding windows in the searching process
the same as used in TSW [5]. In addition to using RS-A[13]
algorithm to calculate the shift values of the right pattern,
some enhancement to calculate the shifting values for the left
pattern was done to maximizes the efficiency of the searching
process with O([n/(2*(m+4))]) time complexity in average
case.
The Intelligent Predictive String Search Algorithm [11][12],
that we're going to develop in several stages have the
following properties:
 It does not require pre-processing phase.
 It finds the first occurrence of a pattern in a text that

consists of words separated by a blank space.
 It makes use of one sliding window to search the text

from left
 It uses two rules to make a shift namely alphabet-blank

mismatch and alphabet-alphabet mismatch.
We are going to explain the algorithm in detail in the next
section.

3. INTELLIGENT PREDICTIVE STRING SEARCH
ALGORITHM

As we mentioned earlier this algorithm get rid of the
pre-processing phase with its complex computations
involved and makes an assumption that the text consists of
words separated by a blank space and the search is made
for complete words and not their substrings.
At each comparison this algorithm makes three main steps
after aligning the leftmost character of the pattern P to the
leftmost character of text T, the steps are simulated in
Figure1:
(Compare -> Predict -> Act)

Figure 1: Schematic diagram for the algorithm steps.

Step1-Compare:
At the beginning, the leftmost end of the pattern window
with size (m) is aligned with the same end of the text as
shown in Figure2. At each alignment of the pattern, the
algorithm works on the portion of the text with size equal
to pattern size (m) this is known as the text window. The
comparison between the first character of the text from the
left and the first character of pattern window from left is
made, this comparison leads to either match or mismatch.

Figure2: Compare step

Step 2-Predict:
In case of match is found the rightmost character of the
pattern is compared with the rightmost character of the
current window. If this leads to a match, the remaining
characters are compared from right to left. In case of
mismatch at any other position the pattern is shifted by (m)
characters (window size).

In case of mismatch of the leftmost or the rightmost
character of the pattern, the two rules Alphabet-Blank
mismatch and Alphabet-Alphabet mismatch are taken
placed depending on the type of mismatch.
If t1 is a blank space, then pattern shifted by one position to
right, however the next position might be a possible
beginning of the pattern.

Wafa Dababat et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6346 – 6355

6348

If t1 is different from pf1, then next character might be
another character of the same word or it might be a blank.
In case of the first possibility the pattern can be shifted by
one position to the right while if the second possibility
arises the pattern can be shifted by two positions.
If t1 match p1, then check if tm is a blank or not. If tm is a
blank this means that the text word currently checked is
shorter than pattern, in this case the pattern is shifted by m
positions towards the right
 if tm not a blank but differ from the corresponding pattern
character and the next text character is blank, then pattern
shifted by m positions towards the right

Step 3-Act:
In this step either a full match happened or the predicted
shift value is taken place
These steps are shown in Figure3 [11][12].

Figure 3: Act step-(Algorithm_predictive_search(T,P))

4. THE PROPOSED ADAPTATIONS ON THE
INTELLIGENT PREDICTIVE STRING SEARCH
ALGORITHM

In this paper we proposed three versions of Intelligent
Predictive String Search Algorithm. The first two versions
will enhance the performance of the algorithm under certain
situations while the third version is shown to give better time
and speedup of the original algorithm.
The first variation which is named Right Intelligent
Predictive String Search Algorithm which is suitable for
searching for the last occurrence of the pattern in the text. The
second variation called LR Intelligent Predictive String
Search Algorithm, this algorithm makes use of two sliding
windows to scan the text from its both sides right and left.
Finally, the third variation refereed as Parallel Intelligent
Predictive String Search Algorithm, in this algorithm we

adapted the original Intelligent Predictive String Search
Algorithm to work under a parallel environment which leads
to enhancement in the performance in all situations. And its
valuable in cases where we are interested in all occurrences of
the pattern. We have to mentioned here that all versions used
the Alphabet-Blank and Alphabet-Alphabet rules in case of
mismatch exactly as used in the original algorithm. Next, we
will describe each variation separately in details.

4.1Right Intelligent Predictive String Search Algorithm

As we indicated earlier, this algorithm is a mirror version of
the original algorithm, it will give better results than the
original algorithm in case where the application is interested
in the last occurrence of the pattern assuming an equal
distribution of the pattern occurrences in the text.
Right predictive will start by placing the pattern's right by the
rightest position in the text, comparing the right most
character of the pattern pm-1 with the right most character of
the text tn-1, this may result with mismatch where the pattern
is moved one position to the left if the text's character is a
blank or two positions to the left otherwise. In case of
matching, an attempt to find a total match starts by comparing
the pattern and the text from the right of the pattern. In case of
a mismatch the pattern slides by its length (m) to the left if the
mismatch character in the text is a blank, or by (m+1) if the
character to the right of the mismatch character in the text is a
blank. The way how the Right Intelligent Predictive String
Search Algorithm works with working example is shown in
Figure4 and Figure5 respectively.

Figure 4: Right Intelligent Predictive Search Algorithm

Wafa Dababat et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6346 – 6355

6349

Figure 5: Working example on Right Intelligent Predictive

Search Algorithm

4.1.1 Working Example
In this section, we will present an example to clarify the
idea of Right Intelligent Predictive String Search
Algorithm as shown in Figure5.
 Given:
Pattern(P)=”under”, m=5,
Text(T)= ”The pen is under the desk”, n=25

Attempts (1-3): see Figure5 (attepmt1-3), In attempt1 we
align the sliding window with the text from the right. In
this case, a mismatch occurs between text character (k) and
pattern character (r) and the text character23(s) is not a
blank; therefore, according to Alphabet-Alphabet
mismatch rule the sliding window shifted to left one
position, the same rules happened in attempts 2-3 when we
align pattern character(r) with text character (s) and
pattern character (r) with text character (e) respectively.

Attempt4: see Figure5 (attepmt4), In attempt4 a
mismatch occurs between text character (d) and pattern
character (r) and the text character20 is a blank; therefore,
according to Alphabet-Alphabet mismatch rule the sliding
window shifted to left two positions.
Attempts (5-6): see Figure5 (attepmt5-6), In attempt5 a
mismatch occurs between text character (e) and pattern
character (r) and the text character18(h) is not a blank;
therefore, according to Alphabet-Alphabet mismatch rule
the sliding window shifted to left one position, the same
rules happened in attempt6 when we align pattern
character(r) with text character (h).
Attempt7: see Figure5 (attepmt7), In attempt7 a
mismatch occurs between text character (t) and pattern
character (r) and the text character16 is a blank; therefore,
according to Alphabet-Alphabet mismatch rule the sliding
window shifted to left two positions.
 Attempt8: see Figure5 (attepmt8), In attempt8 a match
occurs between text character15 (r) and pattern character
(r) therefore, we compare the text character11(u) with
pattern charchter0 (u) since matching occurred the
remaining characters are compared from right to left and a
complete match of the whole pattern is found.

4.1 LR Intelligent Predictive String Search
Algorithm (with two sliding windows)

In this version the algorithm tries to get a match of the pattern
inside the text by using two sliding windows to scan the text
string from two directions; from left to right and from right to
left. In mismatch cases, during the searching process from the
left, the left window is shifted to the right, while during the
searching process from the right, the right window is shifted
to the left. Both windows are shifted depending on
Alphabet-Alphabet and Alphabet-Blank mismatch rules until
the pattern is found or the windows reach the middle of the
text. The way how the LR Intelligent Predictive String
Search Algorithm works is shown in Figure 6.

Figure 6: Working example on Intelligent Predictive Search
Algorithm with two sliding windows

As shown in Figure6, we present an example to clarify the
idea of Intelligent Predictive String Search Algorithm
with two sliding windows moving sequentially before
using parallel environment. Given:

 Pattern(P)=”under”, m=5,
 Text(T)= ”The pen is under the desk”, n=25
Attempts (1,3,5,7,9,11,13,15): see Figure6 these attempts
follow the original Intelligent Predictive String Search
Algorithm rules from left side; while attempts
(2,4,6,8,10,12,14,16) follows the adaptive version that we
named Right Intelligent Predictive String Search
Algorithm as discussed early in section 4.1.

4.2 A parallel version of predictive pattern matching
algorithms

Most computing environment nowadays have multi
processors or multi cores. If an algorithm is converted to a
parallel version properly, computations run time can be
significantly decreased without compromising the quality
of algorithm's output. In this part, an enhancement of
predictive pattern matching algorithm is presented,
experimental results of this part are presented in the next
section.

Wafa Dababat et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6346 – 6355

6350

Converting an algorithm to one of its parallel equivalent
algorithms can be achieved either by decomposing the
processing steps of the original algorithm among different
simultaneous computation threads, or by having multiple
identical threads that run the same steps on different input
data. In this work, we follow the second method by
decomposing the text and distribute it on different threads
running at the same time to maximize speedup of the
algorithm. This procedure can be applied on any of the
Predictive algorithms: original, right predictive or LR
predictive. The original predictive algorithm has been
chosen for this work, but the same parallel algorithm can
be applied to other versions of the predictive algorithm
without difficulty.
The parallel algorithm consists of three main parts: first,
Text is decomposed into n parts (n is the number of
threads), each Text part with the pattern is sent to a
different computation thread. Second, each thread will run
predictive pattern matching algorithm on its text part.
Finally, results of simultaneous threads are collected and a
proper output is presented. The steps of the parallel
predictive algorithm are shown in Figure 7.

Figure 7: Steps of the parallel Intelligent Predictive Search
Algorithm

For text decomposition details we refer to [21]. The
activity diagram in Figure 8 shows the workflow of the
algorithm.

Figure 8: The workflow of a parallel Intelligent Predictive

Search Algorithm

5. EXPERIMENTAL RESULTS
The proposed algorithms were tested for work with
different experiments depending on random patterns with
variable lengths from random parts of the text file. The
same experiments were applied to the original predictive
algorithm for comparison purposes.
For the implementation we used Java NetBeans 8.1
running on windows 10. We made the experiments on two
different hardware environments, the first using dual core
2.2 GHz with 6GB RAM, and using 8 core 3.4 GHz with
8GB RAM in the second environment.

5.1 The results of LR predictive algorithm
To make the tests, we considered a text file with 125032
words. Several experiments were conducted. In the first
part of this work, patterns were randomly selected from the
first part of the text file. Next, we considered random
variable length patterns from the last part of text file. The
number of attempts and comparisons needed is presented
in tables Table 1 and Table 2. In Table 3 we show the
averages of all attempts.

Table 1: Results when pattern is selected from the first part of the
text file.

Original Predictive Predictive with two

windows

Pattern
length Attempts Comparisons Attempts Comparisons

5 2056 2388 4192 4870
6 9969 11764 19460 23306
7 9960 11531 12775 14237
8 6279 7273 12519 14587
9 9561 11903 15088 17792
10 30770 36167 52153 57524
11 13220 15432 25457 30171
12 16805 19332 32773 38090
16 19051 22478 38360 45347
18 38925 45443 77066 90699

Table1 contains the number of comparisons and number of
attempts needed for searching a pattern in a text file where
the pattern is selected from the first part of the text file. In
each experiment we considered different patterns having
the same length and applied the search using both the
two-sliding predictive algorithm and the original
predictive algorithm, the average of attempts and
comparisons for each pattern length was recorded.
Table2 contains the results of taking patterns from the last
part of the text file. The same procedure was applied as
mentioned previously.

Wafa Dababat et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6346 – 6355

6351

Table 2: Results when pattern is selected from the last part
of the text file.

Original Predictive Predictive with two

windows

Pattern
length Attempts Comparisons Attempts Comparisons

5 46576 53716 6377 7426
6 20498 24007 3926 4618
7 183005 213450 20998 24557
8 260614 279320 23568 24684
9 253838 253847 40485 47386
10 334088 396483 24581 28984
11 309029 346904 25517 27620
12 389474 450002 30365 35366
13 292606 343721 45161 45161
18 320133 324810 14471 14471

Table 3 contains the average of all attempts from the first
and last part of the text file.

Table 3: Average of all results from the first and last parts of
the text file

Original Predictive Predictive with two

windows

Pattern
length Attempts Comparisons Attempts Comparisons

5 25344 29246 7381 8583
6 20218 23768 21423 25615
7 101463 118256 23274 26516
8 136586 146933 24303 26929
9 136480 138827 35331 41485
10 197814 234409 64444 72016
11 167735 188884 38216 43981
12 211542 244333 47956 55773
13 165354 194339 60941 67928
18 198992 207848 84302 97935

The results of experiments are shown in Figure9, Figure10
and Figure 11 respectively.

Figure 9: Average number of attempts and comparisons
when pattern is in first part of the text file

Figure 10: Average number of attempts and comparisons
when pattern is in last part of the text file

Figure 11: Average number of all attempts and

comparisons when pattern is in last of first part of the text
file

Wafa Dababat et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6346 – 6355

6352

5.1.1 Analysis of results of the LR predictive
algorithm

When considering the results, we notice that the original
predictive algorithm will always show better performance
in cases where the pattern is in the first part of the text file.
This is clear in Figure8.
In cases where the pattern is selected from the last part of
the text file, it is clear that the two sliding window
predictive algorithm will give a better performance in all
cases. Figure9 shows these results. These results make
sense, the original predictive algorithm will go all the way
from the left to the right part of the text to find the pattern,
whereas the LR predictive algorithm will try matching
from one side at a time yielding a better performance.
When considering the overall results shown in Figure10,
we conclude that in average, the two-window predictive
algorithm will give better results in most cases.
We have noticed that the performance of the two-window
predictive algorithm will tend to degrade when that pattern
is selected from the middle part of the text file, in this case
the original predictive algorithm always gave better
results.

5.2 Results of the parallel predictive search
algorithm

First, we applied the algorithm on the hardware
environment that has dual core processor. Using the same
data file, we fixed the pattern size, taking different
patterns with the same size. We stated by taking one
thread, applying the algorithm by searching one pattern
using one thread at a time. The time of each search
experiment was recorded. When finished, the average of
all experiments using one thread was recorded.
Then, we used the same patterns from the previous step,
and repeated the search using two threads this time, and
results were recorded. We continued the same process by
maintaining the same patterns and repeating the search by
increasing the number of threads one at a time until we
reached 5 threads.
Speedup is defined as the ratio of the worst-case execution
time of the fastest known sequential algorithm for a
particular problem to the worst-case execution time of the
parallel algorithm. The more speedup gained, the better
the parallel algorithm is. The time(ns) and speedup are
recorded in Table4 and Table5 respectively.
Table4 contains the results from applying the parallel
predictive pattern matching algorithm on a dual core
processor, by fixing the pattern size and increasing the
number of threads on each trial.

Table 4: Processing time(ns) of the parallel predictive
algorithm on a dual core processor.

Number of threads time(ns)
1 95048064
2 51194189
3 52402024
4 52938293
5 57938293

Table5 shows the speedup gained by applying the parallel
predictive algorithm on a dual core processor.

Table 5: Speedup of the parallel predictive algorithm on a
dual core processor.

Number of threads speedup
1 1
2 1.856618219
3 1.81382429
4 1.79545011
5 1.64050508

The results of the parallel predictive algorithm on a dual
core processor are depicted in Figure12 that shows the
time(ns) and Figure13 that shows the speedup.
Next, we repeated the same process on 8 core processor, we
again fixed the pattern size, starting with one thread,
increasing the number of threads one at a time and
recording the average search time and speedup until we
reached 10 threads. The average time(ns) results are
shown in Table6, while Table7 contains the speedup
results of the search experiments.

Table 6: Processing time(ns) of the parallel predictive
algorithm on 8 core processor.

Number of threads time(ns)
1 53154189
2 36223356
3 33341856
4 26521275
5 21591023
6 20973559
7 18112191
8 16859120
9 19120663

10 26525240
Table 6 contains the results of applying a multithreading
parallel predictive algorithm on 8 core processor. The
average search time for a number of patterns having the
same length and varying the number of threads.

Wafa Dababat et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6346 – 6355

6353

Table 7: Speedup of the parallel predictive algorithm on 8
core processor

Number of threads speedup
1 1
2 1.467401005
3 1.59421806
4 2.004209413
5 2.461865239
6 2.534342836
7 2.934718886
8 3.15284481
9 2.779934409

10 2.003909823

Table7 shows the speedup obtained by applying the
parallel predictive algorithm on multithreading
environment on 8 core processor.

Time and speedup results of the experiments on 8 core
processor are presented in Figure14 that presents the
processing time and Figure15 showing the speedup.

Figure 12: Time(n) of the parallel predictive search
algorithm on a dual core processor

Figure 13: Speedup of the parallel predictive search
algorithm on a dual core processor

Figure 14: Time(n) of the parallel predictive search
algorithm on 8 core processor

Figure 15: Speedup of the parallel predictive search
algorithm on 8 core processor

5.2.1 Analysis of results of the LR parallel predictive
algorithm

In the first parallel environment that has two CPUs, the
lowest average search time was 51194189 ns and highest
speedup gained was 1.856618219. These numbers
represent the best time and best speedup respectively. Both
best results were obtained when the number of threads was
two, which is equal to the number of CPUs in the machine.
We can see that no further improvement can be done by
increasing the number of threads, since the time tends to
increase rather than decreasing after this peak point. This
increase of time is due to communication overhead
increase when number of threads increase.
When considering search results of the 8 core processor
experiments, it is clear that the minimum average search
time is 16859120 ns and the highest speedup is
3.15284481. These two results are gained when the
number of threads was 8. Which is equal to the number of
CPUs. And again, tending to increase the number of
parallel threads more than 8 is of no benefit, since it
increases the search time.
In both experiments, one thread represents the sequential
original predictive search algorithm. It is obvious that the
parallel algorithm will give better results than the

Wafa Dababat et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6346 – 6355

6354

sequential original algorithm in all cases. As seen, the
worst time in all recorded times is that of the case having
one thread.
So, depending on the obtained results, we can say that the
parallel version of the predictive algorithm will always
give better results than the original version.
Regarding the parallel predictive algorithm, the best
search time and speedup will always be obtained when the
number of threads is equal to the number of CPUs in the
parallel machine.

6. CONCLUSIONS
In this present paper, three proposed versions of the
Intelligent Predictive String Search Algorithm have been
successfully implemented and tested. The experimental
results of proposed LR parallel predictive algorithm
method satisfy the lowest average search time and the
highest speedup compared with the other approaches.

REFERENCES

1. Hudaib A., Suleiman D., Awajan A. 2016. A Fast
Pattern Matching Algorithm Using Changing
Consecutive Characters, Journal of Software
Engineering and Applications, 399-411.

2. Ganardi M., Hucke D., Lohrey M., 2018. Sliding
Window Algorithms for Regular Languages,
International Conference on Language and
Automata Theory and Applications LATA 2018,
26-35.

3. AbdulRazzaq A., Abdul Rashid N., Hasan A.,
Abu-Hashem M., Zaino Z.2016 New Searching
Technique of Hybrid Exact String Matching
Algorithm, International Review on Computers
and Software (I.RE.CO.S.), Vol. 11, N. 10 ISSN
1828-6003
https://doi.org/10.15866/irecos.v11i10.10321

4. SULEIMAN D,HUDAIB A, AL-ANANI A,AL-
KHALID R & ITRIQ M, 2013. ERS-A Algorithm
for Pattern Matching. Middle East Journal of
Scientific Research, 15(7), 1067-1075.

5. HUDAIB A., AL-KHALID R., SULEIMAN D.,
ITRIQ M. & AL-ANANI A, 2008. A Fast Pattern
Matching Algorithm with Two Sliding Windows
(TSW). Journal of Computer Science, 4(5),
393-401.

6. SULEIMAN D, 2014. Enhanced Berry Ravindran
Pattern Matching Algorithm (EBR). Life Science
Journal, 11(7), 395- 402.

7. ITRIQ M., HUDAIB A., AL-ANANI A.,
AL-KHALID R. & SULEIMAN D, 2012. Enhanced
Two Sliding Windows Algorithm for Pattern
Matching (ETSW). Journal of American Science,
8(5), 607- 616.

8. Hudaib A., Suleiman D. & Awajan A, (2016, April).
Dynamic Berry Ravindran Algorithm for
Pattern Matching (DBR), 6th International
Conference on Applied Computer Science (ACS
'16), At Istanbul, Turkey, (pp 15-17).

9. SULEIMAN D., ITRIQ M., AL-ANANI A., Al-
KHALID R. & HUDAIB A, 2015. Enhancing
ERS-A Algorithm for Pattern Matching
(EERS-A). Journal of Software Engineering and
Applications, 8, 143-153.
https://doi.org/10.4236/jsea.2015.83015

10. HUDAIB A., Al-KALID R., AL-ANANI A, ITRIQ
M & SULEIMAN D, 2015. Four Sliding Windows
Pattern Matching Algorithm (FSW). Journal of
Software Engineering and Applications, 8, 154-165.

11. Gurung D, Chakraborty U K and Sharma P (2016),
Intelligent Predictive String Search Algorithm,

 Procedia Computer Science, Vol. 79, pp.161-69
https://doi.org/10.1016/j.procs.2016.03.116

12. Gurung D, Chakraborty U K and Sharma P (2017),
An analysis of the Intelligent Predictive String
Search Algorithm: A Probabilistic Approach,
Information Technology & Computer Science, Vol.
2, pp.66-75,

13. Senapati, K.K., Mal, S. and Sahoo, G. (2012) RS-A
Fast Pattern Matching Algorithm for Bio-Logical
Sequences. In- ternational Journal of Engineering
and Innovative Technology (IJEIT), 1, 116-118.

14. Singla N. & Garg D. 2012. String Matching
Algorithms and their Applicability in various
Applications, International Journal of Soft
Computing and Engineering (IJSCE) 1(6).

15. CHAO Y. 2012. An Improved BM Pattern
Matching Algorithm in Intrusion Detection
System. Applied Mechanics and Materials, vol. 148
– 149, 1145-1148.

16. SENAPATI K.K., MAL S. & SAHOO G. 2012.
RS-A Fast Pattern Matching Algorithm for
Bio-logical Sequences. International Journal of
Engineering and Innovative Technology (IJEIT),
1(3), 116- 118.

17. D.N. Goswami,Dr. Anshu Chaturvedi,Raghuvanshi
C.S , Efficient Algorithm for Frequent Pattern
Mining Based On Apriori, International Journal of
Advanced Trends in Computer Science and
Engineering, July 2010.

18. Irma T. Plata, Allan C. Taracatac, Edward B.
Panganiban,Development and Testing of
Embedded System for Smart Detection and
Recognition of Witches’ Broom Disease on
Cassava Plants using Enhanced Viola-Jones and
Template Matching Algorithm, International
Journal of Advanced Trends in Computer Science
and Engineering, October 2019.

19. Boyer, R.S. and Moore, J.S. (1977) A Fast String
Searching Algorithm. Communications of the

Wafa Dababat et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6346 – 6355

6355

Association for Com- puting Machinery, 20,
762-772.
https://doi.org/10.1145/359842.359859

20. BERRY, T. & RAVINDRAN, S., 2001. A Fast
String Matching Algorithm and Experimental
Results. In Proceedings of the Prague Stringology
Club Workshop ‟99 (eds Holub, J.and Simanek, M),
Collaborative Report DC-99-05, Czech Technical
University, Prague, Czech Republic, 16-26.

21. Wafa Dababat, Mariam Itriq, Parallel Enhanced
Pattern Matching Algorithm with Two Sliding
Windows PETSW, International Journal of
Computer Applications (0975 – 8887) Volume 179 –
No.18, February 2018.
https://doi.org/10.5120/ijca2018916317

