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 
ABSTRACT 
 
TCP-Transmission Control Protocol provides connection 
oriented and reliable delivery at the transport layer. The 
primary cause of packet losses in wired networks is the 
network congestion. Wireless networks may experience 
packet losses due to non congestion issues such as channel 
issues and route failures. TCP's default consideration of any 
loss as a cause of network congestion degrades the overall 
performance in wireless networks, due to unnecessary 
activation of congestion control in case of non congestion 
losses. In recent years, ML-Machine Learning based network 
protocol design has attracted the attention of the researchers. 
Reinforcement Learning is more suitable to propose a 
generalize and adaptable solution for the networks with 
dynamic topologies and traffic. In this paper, we propose 
TCP-ILD, TCP with Intelligent Loss Differentiation for 
MANETs-Mobile Adhoc Networks. TCP-ILD differentiates 
congestion loss, channel loss and route failure loss to act 
accordingly. The extensive simulation has been performed 
with NS- 3 simulator. A significant amount of performance 
improvement is found. 
 
Key words : TCP, MANET, Congestion Loss, Channel Loss, 
Route Failures, Reinforcement Learning, Loss Differentiation   
 
1. INTRODUCTION 
 

TCP-Transmission Control Protocol [1,2] provides 
connection oriented and reliable communication at the 
transport layer. TCP ensures the reliable delivery with 
congestion control, flow control and error control. TCP was 
initially introduced for the wired networks where the primary 
cause of any packet loss is mainly the network congestion. 
TCP activates congestion control to retransmit the lost packet 
and to reduce the transmission rate. Wireless networks may 
experience packet losses due to some other issues such as 
channel issues and route failures. TCP's default consideration 
of any loss as a cause of network congestion activates the 
congestion control unnecessary in presence of channel loss 
and route failure loss. TCP should able to identify the cause of 
a packet loss and act accordingly [3,4,5]. 
 

 

 

 
Researchers have proposed various TCP variants for the 

wireless networks.  Most of them are either strict rule based 
with limited scope to be generalize and adaptable for 
unknown or dynamic networks. These TCP variants are 
classified into layered and cross-layered approaches based on 
their implementation approaches. A detail discussion of these 
TCP variants is given in [6].In recent years, ML-Machine 
Learning based network protocol design has attracted the 
attention of the researchers. Reinforcement Learning is more 
suitable to propose a generalize and adaptable solution for the 
networks with dynamic topologies and traffic. A few of the 
recent ML based TCP variants are discussed in Section 2. 

  
This paper proposes a TCP-ILD: TCP with Intelligent Loss 

Differentiation. TCP-ILD differentiates congestion loss, 
channel loss and route failure loss to act accordingly. 
TCP-ILD is discussed in Section 3. The implementation and 
simulation is performed with NS-3 simulator. The 
experimental setup and performance analysis are discussed in 
Section 4. This paper concludes with the future directions. 

 
2. RELATED WORK 
 
2.1 Machine Learning with Networks 
 
 ML-Machine Learning [7,8,9] techniques are used for the 
accurate and efficient predictions in various fields. The 
network protocols can be designed using ML techniques for 
more effective solutions. Such solutions can be generalize and 
adaptable to be suitable for the dynamic networks. The 
dynamic networks have rapidly changing topologies and 
unpredictable traffic patterns. Over the last few years, ML 
techniques are started being introduced for large scale 
networks to the adhoc networks, for the purpose of traffic 
analysis, resource management, performance prediction, 
network security and protocol design [10,11]. This section 
discusses some of the most recent ML based TCP schemes. A 
detail discussion of these TCP schemes is in [12]. 

2.2 TCP with Supervised Learning 
 
 Bayesian Packet Loss Detection for TCP [13] differentiates 
congestion loss and packet reordering event. A Bayesian 
framework based mechanism analyzes the RTT distribution to 
identify the cause of DACKs - Duplicate Acknowledgements. 
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TCP+ Classifier [14] differentiates congestion loss and loss 
due to link error. A decision tree based classifier analyzes the 
delay and inter arrival times. TCP ex Machina's Remy 
program [15] produces computer generated congestion 
control algorithm. It analyzes the prior network assumptions 
and traffic for a specific objective such as to achieve higher 
throughput. EWMA - Exponentially Weighted Moving 
Averages of inter arrival times of ACKs, RTT ratio are used to 
represent the state. LP-TCP [16] - Loss Predictor based TCP 
predicts the loss probability for a packet being sent. A random 
forests based algorithm processes parameters like EWMA and 
TS-Time Series of inter arrival times of ACKs and EWMA of 
packet sending times. 
 
2.3 TCP with Reinforcement Learning 
 
 A Machine Learning framework for TCP RTT-Round Trip 
Time estimation [17] uses experts framework method. The 
RTT value is derived as a weighted average of the values 
guessed by the experts. The weights decide the accuracy of the 
experts. This approach avoids pauses in transmission and 
unnecessary timeouts. i-TCP [18] intelligent TCP sets the 
value of Cwnd with a reinforcement learning based neural 
network. The inputs are Cwnd, number of consecutive 
timeouts and number of DACKs. Learning based and Data 
driven TCP [19] a reinforcement learning based solution to 
set value of Cwnd. Moving averages of inter arrival times 
between ACKs and packets, RTT-Ratio and SSThresh form 
the states. TCP-GVegas[20] is TCP Vegas with grey 
prediction to set Cwnd with reinforcement learning. Neural 
Network based Reliable Transport Layer Protocol [21] 
identifies the mobility pattern of the nodes to differentiate 
losses. RL-TCP [16] is a reinforcement learning based 
solution to set Cwnd. The EWMA of inter arrival times 
between ACKs, inter sending times between packets, Cwnd 
and SSThresh form the states. Q-TCP [22] Q-learning based 
TCP is a reinforcement learning based solution to set Cwnd. 
Average intervals between sending two packets and receiving 
two ACKs, average RTT are used to form the states. 
 
3.  TCP-ILD: PROPOSED SOLUTION 

 
3.1 TCP-ILD Architecture 

 
 TCP-ILD: Intelligent Loss Differentiation is proposed with 
SARSA algorithm of Reinforcement Learning. TCP-ILD has 
three sections, The sensor, The learner and The actuator. The 
sensor derives the current state, utility and reward to be used 
for the learning purpose. The learner updates the Q table of 
SARSA algorithm. The actuator selects the action given the 
state. TCP-ILD is implemented independent of congestion 
control. It can be considered as loss differentiation module 
which is independent of congestion control. this enable us to 
implement TCP-ILD with multiple TCP variants easily.  
3.2 The Sensor 
 

TCP-ILD has 4 states and 3 actions. The 4 states are the 
TCP’s states corresponding to its congestion control 
mechanism. These are Open (Normal State), Disorder 

(Duplicate ACKs), Recovery (Fast Retransmission) and Loss 
(Retransmission Time Out).  The 3 actions are corresponding 
to congestion loss, channel loss and route failure loss. The 
utility function is designed with type of ACK and change of 
subsequent RTT value. The reward is calculated based on the 
change of utility function values. The detail of State, Utility 
and Reward is shown in Algorithm  1. 

 
Algorithm – 1 – The Sensor (On Reception of ACK) 
1: State Identification 
CS  TCP’s Congestion State 
if    CS is Open   then  StateNext  0 
else if  CS is Disorder  then  StateNext  1 
else if  CS is Recovery then  StateNext  2 
else if  CS is Loss    then  StateNext  3 
 
2: Utility Function Calculation 
 UtilityCurrent  0 
if IsDupAck()      then  UtilityCurrentUtilityCurrent + 1 
if RTTPrevious < RTTCurrent  then UtilityCurrentUtilityCurrent + 1 
 
3: Reward Calculation 
if    UtilityCurrent > UtilityPrevious thenRewardCurrent   -1 
else if  UtilityCurrent = UtilityPrevious   then RewardCurrent   0 
else if  UtilityCurrent < UtilityPrevious  then RewardCurrent   1 
 
UtilityPrevious  UtilityCurrent 
 

Algorithm  1: The Sensor 
 3.3 The Learner 

 
TCP-ILD learns using SARSA algorithm. We have simplified 
SARSA algorithm by selecting next action based on 
maximum value rather than following ε-greedy approach. 
The learning rate - σ is set to 0.9 and the discount factor – ϒ is 
set to 0.5. The steps followed by the learner are shown in 
Algorithm 2. 
 

Algorithm – 2 – The Sensor (On Reception of ACK) 
1: Receive StateNext and RewardCurrent from the Sensor 
2: ActionNext  Select_Action_Max(StateNext) 
3: Temp1  [1- σ] * Q[StateCurrent] [ActionCurrent] 
4: Temp2  σ * [RewardCurrent +  
[ϒ * Q[StateNext] [ActionNext]] 
5: Q[StateCurrent] [ActionCurrent]  Temp1 + Temp2 
6: StateCurrent  StateNext 
7: ActionCurrent  ActionNext 
 

Algorithm 2: The Learner 
3.4 The Actuator 
 

TCP-ILD avoids immediate retransmission and reduction 
of transmission rate on a packet loss. To achieve this, the 
actuator predicts the type of loss during recovery phase and 
retransmission phase. ActionNext 0, 1 and 2 are considered as 
consideration of loss as a cause of congestion, channel issues 
and route failure. At present, the decision making is 
implemented with two phases. 
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 During fast retransmission phase, if the ActionNext is 2, it 
is considered as indication of route failure and TCP will exit 
from the fast retransmission phase without retransmission 
and without reduction of the transmission rate. During 
recovery phase, if the ActionNext is 0, congestion control is 
continued. TCP-ILD will perform retransmission, reduction 
of transmission rate as per the base TCP variant. Otherwise, 
TCP will exit from the recovery phase immediately.  

4. EVALUATION 
 
4.1 Experimental Setup 

 
 TCP-ILD is implemented with NS 3.28 simulator. We have 
performed its evaluation with large number of long running 
network scenarios. These scenarios differ in terms of the 
number of nodes, mobility speed, number of TCP flows, 
transmission parameters such as RSS etc. Based on our earlier 
evaluation of existing TCP variants, TCP WestwoodPlus, 
TCP Vegas and TCP NewReno performed better. So 
TCP-ILD is evaluated with these three TCP variants. The 
results of one main experimental setup is discussed in this 
paper. We are discussing two end-to-end performance 
metrics: Average Throughput (Kbps) and Total Received 
Data (MB). 

 
4.2 End-to-End Performance 

 
 This experimental setup has 10 networks each of different 
nodes (05,10,15,….45,50). Each network has a single TCP 
flow. Each of these networks is evaluated for 300, 600 and 
900 seconds. Due to large number of TCP flows, the results 
are evaluated on average scale. Figure 1, Figure 2 and Figure 
3 show the average performances for the evaluation of these 
scenarios with simulation time of 300, 600 and 900 seconds. 

 
 Figure 4 shows the growth of throughput and received 

data with respect to the time. As reinforcement learning based 
solution needs time to build an efficient model, the results are 
improved for long running scenarios. The purpose of 
evaluating TCP-ILD on the networks with different number 
of nodes and for large simulation durations is to identify 
weather it works as an adaptable and generalize solution or 
not. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  1: Average Performance – 300 Seconds 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Average Performance – 600 Seconds 
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Figure  3: Average Performance – 900 Seconds 
 
 
 
 
 
 
 
 
 

Figure – 3 Average Performance – 900 Seconds  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

Figure 4: Average Performance With Respect to Time  
 
 
4.3 End-to-End Performance 

 
The purpose of our evaluation is to compare 

performances of existing TCP variants and with their 
TCP-ILD implementations. TCP-ILD is evaluated with 3 
existing TCP Variants: TCP NewReno, TCP WestwodPlus 
and TCP Vegas.  The selection of these three base TCP 
variants is done based on our prior evaluation of 14 
existing TCP variants. TCP-ILD is implemented with 
these 3 TCP Variants so total 6 TCP Variants are 
evaluated. 

 

  Based on the results of evaluation, it is observed that the 
performance of TCP WestwoodPlus is better than TCP 
NewReno and TCP Vegas. The same observation is found for 
their respective TCP-ILD implementations. TCP-ILD 
performs better for TCP WestwoodPlus and TCP NewReno. It 
is observed that TCP WestwoodPlus-ILD performs better out 
of all the six TCP Variants. The evaluation is continued with 
some more complex networks too. The same observation is 
found.  

5.CONCLUSION 
 Dynamic networks such as MANETs have random 
topologies and unpredictable traffic flows. Reinforcement 
learning based solutions perform better as they learn via the 
trials without need of dataset for prior learning. TCP-ILD is 
reinforcement learning based, adaptive and generalized 
solution to differentiate losses for MANETs. We have 
performed extensive simulations and found TCP-ILD 
performs well with TCP-WestwoodPlus and TCP-NewReno. 
TCP-ILD is decoupled from the TCP’s congestion control. 
This enables it to be implemented with any TCP variant 
easily.  

FUTURE DIRECTIONS 
 TCP-ILD can be evaluated with real world network 
scenarios. The learning parameters and the exploration – 
exploitation trade-off of reinforcement learning can be 
analyzed to identify the scope of performance improvement. 
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