
Magagi Ali Bachir et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 1705 – 1710

1705

ABSTRACT

An adaptive system is any system that can self-conform
according to changes that occur in his environment.
Self-adaptation includes self-reconfiguration,
self-restructuring, self-repair, self-optimization or all at the
same time. The realization of this kind of systems, in spite of
the efforts made, suffers from a deficiency of engineering
approaches. One of the most promising techniques in this
quest is model-driven engineering. In the model-driven
engineering paradigm, the model is the backbone of the
systems engineering process. In this paper, we outline a
model-based approach that offers a way to explicitly design
self-adapting standard systems. We define it based on the
UML profiling technique which allows to specify models for
the most application domain frameworks. Through this
profile we clearly define the components involved in the
management of adaptation of systems, as well as the
relationships between them. We present, for practical
validation, an example application based on the approach.

Key words: Adaptive system, Model Driven Approach,
Model Driven Engineering, UML Profile, Meta-Modeling,
MAPE-K Control Loop.

1. INTRODUCTION
Computer systems are becoming more and more invasive in
everyday life[1]. They allow us to easily and quickly perform
some essential tasks. But these systems are very often called to
operate in unstable (changing) environments. They can thus
be confronted with problems related to these environments.
Hence the need to equip these systems with the capacity to
conform to them by modifying their structures or their
configurations, one speaks about adaptation or
self-adaptation. A self-adaptive system is a system that can
change its own structure or configuration to respond to an
unpredictable change in its environment. These changes may
include a lack of resources required by the system, overuse of
the system, or a threat to its operation or security. What will
force in the first case the system to do without the missing
resource and to continue to work, is what is called
self-organization. In the second case the system will be forced
to improve its performance to meet the very high demand that
it faces, this is called self-optimization. In the case of the

threat the system must try to make corrections to ensure the
continuity of the service which it is supposed to render, this
action is what is called self-repair. All these actions are
included in what is called the self-adaptation of the systems.

To help solve the problem of adaptation, some researchers in
computer science and more particularly in model-driven
engineering [2] have focused their research on this axis. As a
result, many approaches have been proposed, among which
EUREMA [3],PLASMA [4],MVC-IMASAM[5] to name a
few. These current methods do not allow to take into account
all aspects of adaptation. Most are interested in a few very
particular aspects, and the more general methods offer a very
high complexity making difficult their handling, which
leaves this field of research very interesting and still
explorable.

The remainder of this document is structured as follows:

We will explain in the first parts the contextualization of our
work, the fundamentals of the approach. We will present the
technique used in section 3. In section 4 we will present the
basic concept of the approach. The section 5 will present the
global architecture of the approach. The section of Result
(section 6) will present the definition of the UML profile[6] to
control the approach and a concrete example to show how the
approach can be used. In the section 7 we will present the
previous similar works. The section 8 came to present a
general conclusion of the work.

2. CONTEXTUALIZATION

Many of the model-driven engineering work has shown the
inadequacy of UML [7]language in the design of certain
types of information systems. Self-adaptive systems because
of their complexities are no exception; many researchers are
studying this type of systems and have therefore proposed
many methods for the realization of these kinds of systems.
Despite this effort, the proposed methods do not cover the
need in its entirety, and need to be improved or even
surpassed. It is in this sense that we undertake this work, we
try to propose not only an extension of the UML language but
also to try fill the gaps left by these different proposed
methods, in order to allow a more efficient design and an

Domain Specific Model Driven Approach for

Adaptive Systems
Magagi Ali Bachir1*, Jellouli Ismail1, El Garouani Said2, Amjad Souad1

1Abdelmalek Essaadi University, Morroco
2Sidi Mohamed Ben Abdellah University, Morocco

*magagi.bachir1@gmail.com

ISSN 2278-3091
Volume 10, No.3, May - June 2021

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse311032021.pdf

https://doi.org/10.30534/ijatcse/2021/311032021

Magagi Ali Bachir et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 1705 – 1710

1706

easier realization of self-adaptive systems, the result must
offer an easy method to handle.

We propose a method based on models that will take into
account all the specifications necessary for the design of
self-adaptive systems, it must cover self-repair,
self-optimization, self-organization It allows the explicit
description of the adaptation mechanism of the modeled
system. All the aspects modeled must be clearly explicit for a
better reading and a better management of the models. The
concept of adaptation that we will explain later, is based on
the principle MAPE-K proposed by IBM (Figure 1).

Analyse Plan

Execute Monitor

Knowledge

Autonomic Manager

Adaptive System

Figure 1:The MAPE-K model

The MAPE-K function in a very structured way, the sections
are interrelated but each of them ensure a well-defined role.
They can be presented as follow:

Monitor: it permanently supervises what is happening in the
system environment. It collects information and detects any
problem that needs to be analyzed.
Analyzer: it deals with the anomalies detected by the monitor
by examining them in order to identify their natures and their
implications.
Plan: it plans the action to take to react to the alterations that
occur in the environment.
Execution: it uses effectors to make changes to the behavior or
structure of the managed system.
Knowledge: It stores the data initially recorded or acquired
following the actions of the monitor.

3. TECHNIQUE USED

Like the work done in [8] to set up our approach we used
some parts of the model-driven engineering. Since we
propose a method that is similar to a modeling language, we
also use the technique presented by [2] that shows the
procedure to determine a modeling language. Two aspects
must be determined to have a real language: the abstract
syntax and the concrete syntax.

Abstract syntax: This part describes all the valid models so
usable to model any system. It also describes how the models
will be structured [2] and the different interactions that may
exist between them.

Concrete syntax: It describes how the models will be
presented graphically or textually in the modeling editor. It
also presents the semantics of models. In other words, it
specifies the meaning of each model in the design.

To do this, we'll define a UML profile, which will mirror our
view of the control loop. A profile is a set of stereotypes,
giving classes additional specifications.

4. CONCEPT

Our approach clearly appears as a modeling language. So
according to the methodology presented by [2] for the
implementation of a new modeling language, we try to
gradually determine the abstract syntax and the concrete
syntax.

As mentioned above, the adaptation mechanism of our
approach is inspired by IBM's MAPE-K principle. This
mechanism can be divided into three phases: Acquisition,
Analysis, and Action.

Acquisition: it mainly consists in senses the environment
and its different fluctuations. Following this permanent
monitoring it retrieves the changing parameters in the
environment of the system and informs the adaptive system
by sending it the details so that they can be analyzed.

Figure 2:Our vision from MAPE-K

Analysis: it consists in intercepting the changes sent by the
acquisition part. It reads the details, analyzes them to extract
relevant information. Then an alert will be made to indicate
that a change has occurred in the system environment and
the parametric details related to it.

Magagi Ali Bachir et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 1705 – 1710

1707

Action: based on the report received from the analyze part, it
decides what actions to take to stabilize the state of the system
so that it continues to operate. it can consist of a replacement
of the system components or a simple modification of certain
parameters.

5. THE ARCHITECTURE OF THE APPROACH
We will present here the global architecture of the approach.
This approach offers a clear separation between the entities of
the self-adaptive system and the instance that takes care of its
self-adaptation. We thus distinguish a part that we can name
models of the system which then represents the system itself
and a part adaptation models which contains the necessary
elements to ensure the adaptation of the system. The sensor is
represented by the Listner model and the effector by the
ConfigurationFile model as shown in the following figure.

Figure 3:Global architecture of the approach

6. RESULTS

6.1. Definition of the profile

In this part we will try to present the UML profile defined for
the approach. We will present the diagram showing all the
elements of the profile in the image of the control loop. We
summarize the different stereotypes presented in the UML
profile, while explaining their meanings.

Figure 4:The profile diagram

The following table presents the different stereotypes, their
types as well as their roles and meanings.

TABLE I:Stereotypes and descriptions
Stereotype Comment

Classes
Examiner it is a model whose role is to analyze the

details of the changes that have occurred
in the system environment to decide on
the action to be taken for the need of
adaptation.

Report it is a model whose role is to contain the
details of the changes that have occurred
in the system environment to convey it
from the analysis part to the action part.

State it is a model responsible for managing
the state of the system environment and
monitoring its change.

Listener it is a model responsible for listening to
variations in the state of the
environment.

Magagi Ali Bachir et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 1705 – 1710

1708

BlackBox it is a model responsible for containing
the various configuration files intended
to control the system.

ConfigurationFile it is a model responsible for containing a
certain number of configurations which
can be used to control the system.

CurrentConfig it is the model responsible for
containing the parameters of current
control of the system.

Associations
Message It expresses a simple message

occasionally sent from one model to
another.

Generation it indicates that the destination model is
a model generated by the source model.

Alert This is a type of message, prepared, in
case the state of the system changes, by
the dynamic model Listener. It is sent to
the Examiner model which will study it
and detect the symptom in order to
prepare the Report for a next
reconfiguration of the system. It must
contain all the details about the
invariant changes and their
non-compliance with the current system
configuration.

PermanentMessag
e

It describes a permanent interaction
between two models. It must therefore
be maintained throughout the life of the
system in design.

Enumerations
ConfigurationRule it is a model which represents a very

precise piloting rule in a
ConfigurationFile.

6.2. Application example

We propose here (figure 5) the design of the adaptation
mechanism of a video call application. We know that if the
connection goes off during the call everything will stop (rule
1). In case of lack of connectivity the application must
prioritize the audio and pause the video. As expressed by the
rule 2 configuration rule. Each configuration rule consists of
two parts: Condition and action.0 <speed <= 11,2kbps:
pauseFV.start, this rule indicates that if the speed of the
connection is not no higher than the 11.2kbps it is necessary
to stop the video stream.

The Observation model, perceived here as an object,
representing the listener constantly checks the speed of the
connection through Connectivity. In case of lack of speed,
we change the property to true and the Observation model
will send an alert to Analysis which, after reading, will
return a confirmation of receipt. ConfigurationRule rules
that describe how the system responds to environmental
changes to stabilize. CurrentConfig is made up of the
drawn rules of type ConfigurationRule that can be derived
from one or more Configuration Files.

Figure 5: Video call adaptation using the approach

7. RELATED WORKS
The approach presented in this paper clearly contributes to
solving the problem of self-adaptive systems realization, a

very important problem that is attracting more and more
attention from researchers. This approach is very special as it
offers a level of abstraction high enough to make his
apprehension, by the developers, very easy. The formal aspect

Magagi Ali Bachir et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 1705 – 1710

1709

that this approach offers is one of its greatest advantages that,
the developer can insert, in a very simple and expressive way,
all the specification in terms of adaptation needs of the system
to be designed, which greatly reduces the technical effort.

Nevertheless, this approach has a link, directly or indirectly,
with other works more or less general than this, which we
were more or less useful for the development of this approach.

Thus [3] proposes EUREMA, a formal approach based on
models and mega-models [9] to reduce the task of designing
and implementing self-adaptive systems. His approach
proposes a control loop design framework based on the
MAPE-K [10] principle proposed by IBM. It assumes that any
aspect of adaptation, whether it is self-repair,
self-organization, self-optimization, Is managed by a
control loop. In this approach a control loop is a set of
dynamic executable models running the system that will be
encapsulated in another system called mega-model.
Mega-models are run at system execution and system
environment feature, and control models are generated based
on adaptation requirements. In case of need of
implementation EUREMA uses the stereotype principle to
represent the models.

As for [11], it proposes a UML-based architecture for an
expressive design of system self-adaptation needs. This
approach is inspired by the MAPE-K principle and therefore
determines three model packages, each package with a
specific role. The Monitor package has specific models for
perpetual monitoring of the state of the environment. The
adaptation package contains the specific models for analysis
and decision making to respond to environmental damage.
When using the context adaptation package, it contains the
templates needed to represent the system environment. This
approach has set up a meta-model that will be inherited, by
the stereotype principle in the specific implementation phase,
and that will allow developers to check the validity of their
models. For each proposed model, Adapt Cases allows the
OCL specification accompaniment to define the constraints
on the different models of the design.

We can also refer to one of our previous work[5] in which we
presented a specification tool. This allows the system designer
to be able to explicitly express the adaptation needs for the
system he is designing. It offers a number of tools to represent
all of the necessary components in an adaptive system.

8. CONCLUSION
We have shown in this article that our approach allows a
rather elaborate design of self-adapting systems. It makes it
possible to express clearly and with precision all the
adaptation needs of the system during the design. We can
express all the possible reactions of the system to respond to
changes in its environment. We have also provided an
example of an adaptation case to illustrate the approach. But
since we are working in the field of model-based engineering,
where models are not just for design, but are at the very heart

of the system development process, there is room to improve
this. approach. We plan to provide a model transformation
grammar, based on our context, which will allow us to convert
our base models to other formal or textual models. We can
then implement this grammar with ad-hoc languages such as
ATLAS Transformation Language Presentation (ALT)[12]
or OMG's proposal, query view transformation (QVT)[13] to
transform our models into expressions of certain
programming languages.

REFERENCES
[1] J. M. Toms, Z. S. W. N, M. R. Thanka, and E. B.

Edwin, “Innovative Agricultural Information System
with User Friendly Digital Assistance for Farmers,”
Int. J. Adv. Trends Comput. Sci. Eng., vol. 10, no. 2,
pp. 719–727, 2021.

[2] M. Brambilla, J. Cabot, and M. Wimmer,
Model-Driven Software Engineering in Practice, vol.
1, no. 1. 2012.

[3] T. Vogel and H. Giese, “18 Model-Driven
Engineering of Self-Adaptive Software with
EUREMA,” vol. 8, no. 4, 2014.

[4] H. Tajalli, J. Garcia, G. Edwards, and N. Medvidovic,
“PLASMA: A plan-based layered architecture for
software model-driven adaptation,” ASE’10 - Proc.
IEEE/ACM Int. Conf. Autom. Softw. Eng., pp.
467–476, 2010.

[5] M. A. Bachir, I. Jellouli, E. G. Said, and A. Souad,
“MVC-IMASAM: Model-View-Controller inspired
modeling approach for system adaptation
management,” in 2020 6th IEEE Congress on
Information Science and Technology (CiSt), 2020,
pp. 127–132.

[6] S. Walderhaug, E. Stav, and M. Mikalsen,
“Experiences from Model-Driven development of
homecare services: UML profiles and domain
models,” Lect. Notes Comput. Sci. (including Subser.
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
vol. 5421, no. September, pp. 199–212, 2009.

[7] R. S. Bashir, S. P. Lee, S. U. R. Khan, V. Chang, and
S. Farid, “UML models consistency management:
Guidelines for software quality manager,” Int. J. Inf.
Manage., vol. 36, no. 6, pp. 883–899, 2016.

[8] M. Luckey and G. Engels, “High-quality specification
of self-adaptive software systems,” ICSE Work. Softw.
Eng. Adapt. Self-Managing Syst., pp. 143–152, 2013.

[9] T. Vogel, A. Seibel, and H. Giese, “Toward
Megamodels at Runtime.”

[10] E. Rutten, N. Marchand, D. Simon, E. Rutten, N.
Marchand, and D. Simon, “Computing Feedback
Control as MAPE-K loop in Autonomic Computing,”
2015.

[11] M. Luckey, B. Nagel, C. Gerth, G. Engels, and W.
Straße, “Adapt Cases : Extending Use Cases for
Adaptive Systems,” pp. 30–39, 2011.

[12] F. Jouault, “The Atlas Transformation Language (

Magagi Ali Bachir et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 1705 – 1710

1710

ATL) ATL project Transforming models with ATL
Operational Context of ATL ATL Transformation
Example : Class to Relational.”

[13] A. Kraas, “Realizing model simplifications with
QVT operational mappings,” CEUR Workshop Proc.,
vol. 1285, pp. 53–62, 2014.

