
 Y. Geetha Reddy et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1095 – 1100

1095


ABSTRACT

Software reliability prediction models are used to predict the
fault rate of the software systems using machine learning
models. A large number of traditional reliability measures are
used to test the software faults in the debugging and testing
process. Most of the traditional machine learning based fault
prediction models are integrated with standard software
reliability growth measures for reliability severity
classification. However, these models are used to predict the
reliability level of binary class with less standard error. In this
paper, a hybrid support vector regression-based quartile
deviation growth measure is implemented on the training
fault datasets. Experimental results are simulated on various
reliability datasets with different configuration parameters for
fault prediction.

Key words : Software fault detection, reliability prediction
,support vector machine.

1. INTRODUCTION

Reliability in its simplest form means that a failure cannot
occur within a certain period of time. The reliability concept
thus stresses the probability, expected function(s), time and
operating conditions of four components. Reliability also
depends on the conditions of the system that may or may not
change over time. Software systems have increased
significantly in size and complexity in recent decades, and the
trend is expected to continue in the future[1]. Computer
reliability and accessibility, usability, performance,
serviceability, capabilities and documentation are important
attributes of software quality. Software reliability is difficult
to achieve, since software complexity seems to be high. While
it is difficult to achieve a certain degree of reliability of any
highly complex system, including software, system
developers tend to upgrade the software layer with complexity
and rapidly developing system sizes.The Software Reliability
Growth Model (SRGMs) is a software reliability model
(SRMs) design recognition class which is converted into a
mathematical model. The reliability assessment of recent
system updates is an important challenge in IT software

management[2].

The probabilistic models are based on dynamic models and
represented as time-based statistical distributions. All these
models are used to predict current trends and to predict future
trends in reliability. Probabilistic software reliability
prediction models use statistical methods to estimate
variables such as system error numbers, failure rates, software
complexity and program failure, etc. There exists a number of
software models in the literature, but none of them is ideal.
The selection of an appropriate estimate model based on a
specific application is a major research problem[3]. A data set
that includes instances of defined classes and a test data set for
which the class must be decided must therefore be entered.
The quality of the data provided for learning, and also the type
of algorithm used in machine learning, depends greatly on the
ability to classify successfully. Categorical labels (discrete,
unorderly) estimate classification results of continuously
valued function models. It implies that numerical data values
are expected instead of class marks to be incomplete or
inaccessible. Regression analysis is the most widely used
statistical method for numerical forecasting. Although other
methods are available, the prediction also consists in
identifying distribution trends based on available data.
Genetic algorithms are also implemented to maximize the
number of delayed input neurons and the number of neurons
in the neural network's hidden architectural layer. We have
demonstrated, using the software model for online adaptation,
that good-fitness and next-step predictability is better than
traditional methods when cumulative software failure times
are forecast. Because those variables ' meanings are certainly
not known. Many potential values can equate to the likelihood
of occurrence. Therefore, we really don't know when the next
loss will happen. We know only a few possible failure times
and their likelihood. T Two types of fault data, namely
time-domain data and interval-domain data, were widely used
in software reliability modeling. The time-domain form is
determined by the time the failure occurred. Learning
supervised is a methodology for machine learning to build a
data structure for preparation. Maximum Likelihood
Assessment (MLE) is a common statistical method for the
determination of the probability distribution parameters

A Hybrid Quartile deviation-based Support vector regression model for
software reliability datasets

Y. Geetha Reddy1 , Dr. Y Prasanth2
Research Scholar1, Professor2

Department of Computer science and Engineering
KLEF, Guntur District, A.P., India.

 ISSN 2278-3091
Volume 9 No.2, March -April 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse30922020.pdf

https://doi.org/10.30534/ijatcse/2020/30922020

 Y. Geetha Reddy et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1095 – 1100

1096

underlying a given dataset. Throughout literature there are
many predictive models of the reliability of software based
neural networks, which are better known than certain
statistical models[4-6].Computer reliability is one of the key
factors taken into account in maintaining the accuracy of the
computer. Simply put, software reliability is about system
failure or failure[7]. Success and success are two distinct
variables commonly included in our software development.
Fault could be identified as a fault or error during the
development phase.

These models use failure data obtained during the testing
period of software development [78 to determine the growth
behavior and hence derive reliability prediction. Various
types of SRGMs have been developed and implemented in
many different industry sectors since the 1970s . These
models are further classified into two types, namely: failure
rate models, and failure intensity models or as known as
non-homogeneous Poisson process(NHPP) models.

There are many SRGMs has been proposed or developed.
Most of them are designed with their own limitations,
assumptions and unique characteristics. Each model suited
and produced good result for certain data set, but no model is
good enough for all data sets from different domains [9]. The
generalization problem of SRGM as further complicates
model selection forreliability prediction process. However,
these studies are using numerical methods like least square
estimation (LSE) and nonlinear regression (NLR) as the
SRGM parameter estimation methods which can be improved
by computational intelligence (CI)method such as PSO. This
approach [10] uses fuzzy logic with neural networks in
software reliability prediction. The recurrent neural network
is trained using the back-propagation algorithm. The number
of failures and cumulative execution time in the failure
dataset is used as input to the network to predict the next step
failure.

2. RELATED WORKS

Lazarova et al. have developed various SRGMs concerning
the growth rate software reliability index for error
detection[11]. Liet.al, proposed a measuring method as an
indicator collection, gathering data for the testing of all those
metrics[12].Mirchandaniet al. suggested the
non-homogeneous Poisson method-based software reliability
growth pattern because the detection of these errors might
also lead to detection of other errors without
failure[13].Nagaraju proposed an evolutionary model of the
neural network to estimate and predict the software reliability
based on a multimedia architecture input and output. In this
study, the development of neural network models for
software-reliability predictions was proposed using an
Exponential and Logarithmic Encoding Scheme. Neural

network models with the two encoding schemes above have
shown a better prediction of cumulative failures than some
statistical models. However,[14] the value of the encoding
parameter is calculated by repeated hit / test experiments.
This paper presents recommendations for encoding
parameter selection, which provide consistent results for
various data sets. The proposed solution is implemented using
18 separate data sets and a clear result for all datasets is
observed. The method was compared to known statistical
models using three sets of change points.

Rani [15] proposed a neural network approach focused on
predictions of software reliability. He compared the approach
to parametric model recalibration with some meaningful
predictive measures with the same data sets. We concluded
that better predictors are neural network methods.

Rizviet al.[16] proposed a system in which software
reliability based on the neural network would be expected.
They used the reverse propagation algorithm for instructions.
They used several failure times in the last 50 to estimate the
next failure as output. The performance of approaches was
calculated by changing the number of input nodes and hidden
nodes. We concluded that the success of the strategy usually
depends on the quality of the data sets.

Sagar[17] submitted a neural network approach focused on
the evolutionary prediction of device reliability. They used
single output architecture with multiple delayed inputs.
Vojdani[18] suggested two models for cumulative system
failure estimation, such as exponential neural network
encoding (NNEE) and logarithmic encoding (NNLE). He
encoded the data with the above two encoding scheme, i.e. the
time of execution. He used the four dataset method and
compared the results with some statistical models and found
better results than those models.
Wanget al.[19] have proposed to reuse it data from previous
projects / releases for failure to boost early reliability for
current projects / releases. Wang et al.[20] proposed the
combinational dynamic weighted model (DWCM) based on a
neural network for the prediction of device reliability. Based
on the software-reliability growth model (SRGM), they used
various activation functions within the secret layer. The
method was used on two sets of data and the effect was
compared with certain statistical models. The experimental
results indicate that the DWCM approach is more successful
than traditional models. The neural network is a methodology
for performance computation. The machine performance can
previously be predicted on the basis of our neural network
architecture. The system is also trained unless its desired
output or destination can be achieved. For training purposes,
we use different learning techniques that are freely described
as supervised and unattended learning.[21] Software
reliability is a quantitative study of every software designed
since it affects directly software quality[22]. An efficient
software reliability model is required in order to achieve good
results. The previously developed reliability model is based on

 Y. Geetha Reddy et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1095 – 1100

1097

the analysis of faults linked to the code and context in which it
was implemented [23]. All software reliability models are
designed based on the execution time and calendar time. The
time required or spent by the processor in the execution of
instructions from the program is the execution time of any
program [24].
3.PROPOSED MODEL

In this section, a statistical quartile deviation-based improved
SVR prediction model is proposed on the software reliability
datasets. In this work, a novel approach to predict the
software reliability on the training and test software fault
data. This model is integrated with the quartile deviation
growth function in order to fit the S shaped curve. The main
objective of this model is to improve the prediction accuracy
and to minimize the error rate for software quality and
reliability estimation. The S-shaped models show the
asymptotic behavior similar to the concave model. The failure
data used to track the curve are analyzed in two software
testing phases. Therefore, the S-shape curve acts in the same
way as the concave curve at later testing stages. In the
proposed model, reliability estimation is performed in two
phases. In the initial phase, quartile deviation based error
estimation is calculated on the training data for software
reliability prediction. In the second phase, a hybrid support
vector regression model is designed and implemented on the
computed S-shaped training data as shown in figure 1.

Figure 1: Proposed Framework

In the proposed model, a enhanced support vector regression
is designed and implemented on the software fault dataset to
improve the prediction rate and to minimize the error rate.
The following proposed SVR model is implemented on the
fault data. Initially, input data is given to hybrid SVR model
to predict the effort rate. The prediction values of the SVR are
tested using the Quartile deviation model and maximized
composite reliability measures. These measures are used to
find the deviation, skewness and shape of the dataset.

^

^

Let m(x) be the input data, m be the estimation function.

m values are estimated by using multiple linear regression
method.Then the objective function of the proposed SVR model
is given as

1C(x) : |
2



2 2

2

^

' ||x x;|| /2.

| w || . (x). (x)

where

(x) | m(x) m(x) | | m(x) MLR(x) |
MLR(x) Multiple linear regression

(x, x) e  

 

    


 

*
k k

*
k k

2
,

2 *
k k,

1min C(x) || w || . (x). (x) b
2
1min C(x) || w || . | | . (x) b
2

 

 

    

     

4.EXPERIMENTAL RESULTS

Experimental results are carried out on the software failure
datasets taken form the DS1 reported by K.Okumoto. During
56 weeks of testing, a total of 124 faults are identified to test
the stability. The second , third and fourth datasets
DS2,DS3,DS4 are taken from Rome air development
center(RADC) projects.

Table 1: DS1 for fault prediction based on severity level

W CF Label
1 16 L
2 24 L
3 27 L
4 55 M
5 41 L
6 49 L
7 54 M
8 58 M
9 69 M

10 75 H
11 81 H
12 86 H
13 90 H
14 93 H
15 96 H
16 98 H
17 99 H
18 100 H
19 100 H
20 100 H

 Y. Geetha Reddy et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1095 – 1100

1098

Table 2: DS2 for fault prediction based on severity level

W CF Label
1 28 L
2 29 L
3 29 L
4 29 L
5 29 L
6 37 M
7 63 M
8 92 H
9 116 H
10 125 H
11 139 H
12 152 H
13 164 H
14 164 H
15 165 H
16 168 H
17 170 H
18 176 H

Table 3: DS3 for fault prediction based on severity level

W F label
40 71 M
41 72 M
42 74 M
43 74 M
44 80 M
45 84 M
46 84 M
47 84 M
48 84 M
49 85 H
50 86 H
51 89 H
52 90 H
53 90 H
54 92 H
55 108 H
56 120 H
57 128 H
58 129 H
59 139 H
60 146 H

Table 4: DS4 for fault prediction based on severity level

W F Label
33 79 L
34 80 L
35 82 L
36 83 L
37 83 L
38 84 L
39 84 L
40 85 M
41 85 M
42 87 M
43 87 M
44 87 M
45 89 M
46 89 M
47 91 H
48 91 H
49 94 H

Figure 2: Mean time to failure rate and runtime of the
proposed model to the exponential model.

Figure 3: Comparison of proposed fault prediction model on

all datasets.

 Y. Geetha Reddy et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1095 – 1100

1099

Figure 2, describes the mean time to failure rate of the
proposed model to the traditional exponential model on
testing data. From the figure, it is clear that the present model
has low error rate and better mean time to failure rate than the
traditional model.

Figure 4: Comparison of proposed fault prediction model to

existing weighted SGRM model on all datasets.

Figure 5: Comparison of proposed fault prediction model to

existing improved weighted SGRM model on all datasets.

5.CONCLUSION

Software reliability fault prediction plays a vital role in small-
and large-scale software applications. In this paper, a hybrid
support vector regression-based quartile deviation model is
implemented on the different software reliability datasets.
Most of the traditional machine learning based fault
prediction models are integrated with standard software
reliability growth measures for reliability severity
classification. However, these models are used to predict the

reliability level of binary class with less standard error.
Experimental results proved that the proposed reliability fault
prediction model has better performance in terms of
prediction and time are concerned.

REFERENCES

[1]J. Cho, S. M. Shin, S. J. Lee, and W. Jung, “Exhaustive test
cases for the software reliability of safety-critical digital
systems in nuclear power plants,” Nuclear Engineering and
Design, vol. 352, p. 110151, Oct. 2019, doi:
10.1016/j.nucengdes.2019.110151.
[2]L. V. Utkin and F. P. A. Coolen, “A robust weighted
SVR-based software reliability growth model,” Reliability
Engineering & System Safety, vol. 176, pp. 93–101, Aug.
2018, doi: 10.1016/j.ress.2018.04.007.
[3]E.Abuta and J. Tian, “Reliability over consecutive releases
of a semiconductor Optical Endpoint Detection software
system developed in a small company,” Journal of Systems
and Software, vol. 137, pp. 355–365, Mar. 2018, doi:
10.1016/j.jss.2017.12.006.
[4]C.Jin and S.-W. Jin, “Parameter optimization of software
reliability growth model with S-shaped testing-effort function
using improved swarm intelligent optimization,” Applied
Soft Computing, vol. 40, pp. 283–291, Mar. 2016, doi:
10.1016/j.asoc.2015.11.041.
[5]M. S. Alhammadi, B. S. Almaqrami, and B. Cao,
“Reliability of Beta-angle in different anteroposterior and
vertical combinations of malocclusions,” Orthodontic Waves,
vol. 78, no. 3, pp. 111–117, Sep. 2019, doi:
10.1016/j.odw.2019.02.002.
[6]D. Amara and L. B. ArfaRabai, “Towards a New
Framework of Software Reliability Measurement Based on
Software Metrics,” Procedia Computer Science, vol. 109, pp.
725–730, Jan. 2017, doi: 10.1016/j.procs.2017.05.428.
[7]J.-E. Byun, H.-M. Noh, and J. Song, “Reliability growth
analysis of k-out-of-N systems using matrix-based system
reliability method,” Reliability Engineering & System Safety,
vol. 165, pp. 410–421, Sep. 2017, doi:
10.1016/j.ress.2017.05.001.
[8]F.Febrero, C. Calero, and M. Ángeles Moraga, “Software
reliability modeling based on ISO/IEC SQuaRE,”
Information and Software Technology, vol. 70, pp. 18–29,
Feb. 2016, doi: 10.1016/j.infsof.2015.09.006.
[9]A.Lanna, T. Castro, V. Alves, G. Rodrigues, P.-Y.
Schobbens, and S. Apel, “Feature-family-based reliability
analysis of software product lines,” Information and Software
Technology, vol. 94, pp. 59–81, Feb. 2018, doi:
10.1016/j.infsof.2017.10.001.
[10]V. Ivanov, A. Reznik, and G. Succi, “Comparing the
reliability of software systems: A case study on mobile
operating systems,” Information Sciences, vol. 423, pp.
398–411, Jan. 2018, doi: 10.1016/j.ins.2017.08.079.
[11]S.Lazarova-Molnar and N. Mohamed, “Reliability

 Y. Geetha Reddy et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1095 – 1100

1100

Assessment in the Context of Industry 4.0: Data as a Game
Changer,” Procedia Computer Science, vol. 151, pp.
691–698, Jan. 2019, doi: 10.1016/j.procs.2019.04.092.
[12]Q. Li and H. Pham, “NHPP software reliability model
considering the uncertainty of operating environments with
imperfect debugging and testing coverage,” Applied
Mathematical Modelling, vol. 51, pp. 68–85, Nov. 2017, doi:
10.1016/j.apm.2017.06.034.
[13]C.Mirchandani, “Adaptive Software Reliability Growth,”
Procedia Computer Science, vol. 140, pp. 122–132, Jan.
2018, doi: 10.1016/j.procs.2018.10.309.
[14]V.Nagaraju, V. Shekar, J. Steakelum, M. Luperon, Y.
Shi, and L. Fiondella, “Practical software reliability
engineering with the Software Failure and Reliability
Assessment Tool (SFRAT),” SoftwareX, vol. 10, p. 100357,
Jul. 2019, doi: 10.1016/j.softx.2019.100357.
[15]P. Rani and G. S. Mahapatra, “A novel approach of
NPSO on dynamic weighted NHPP model for software
reliability analysis with additional fault introduction
parameter,” Heliyon, vol. 5, no. 7, p. e02082, Jul. 2019, doi:
10.1016/j.heliyon.2019.e02082.
[16]S. W. A. Rizvi, V. K. Singh, and R. A. Khan, “Fuzzy
Logic Based Software Reliability Quantification Framework:
Early Stage Perspective (FLSRQF),” Procedia Computer
Science, vol. 89, pp. 359–368, Jan. 2016, doi:
10.1016/j.procs.2016.06.083.
[17]B. B. Sagar, R. K. Saket, and Col. Gurmit Singh,
“Exponentiated Weibull distribution approach based
inflection S-shaped software reliability growth model,” Ain
Shams Engineering Journal, vol. 7, no. 3, pp. 973–991, Sep.
2016, doi: 10.1016/j.asej.2015.05.009.
[18]A.Vojdani and G. H. Farrahi, “Reliability assessment of
cracked pipes subjected to creep-fatigue loading,” Theoretical
and Applied Fracture Mechanics, vol. 104, p. 102333, Dec.
2019, doi: 10.1016/j.tafmec.2019.102333.
[19]J. Wang, Z. Wu, Y. Shu, and Z. Zhang, “An optimized
method for software reliability model based on
nonhomogeneous Poisson process,” Applied Mathematical
Modelling, vol. 40, no. 13, pp. 6324–6339, Jul. 2016, doi:
10.1016/j.apm.2016.01.016.
[20]J. Wang and C. Zhang, “Software reliability prediction
using a deep learning model based on the RNN
encoder–decoder,” Reliability Engineering & System Safety,
vol. 170, pp. 73–82, Feb. 2018, doi:
10.1016/j.ress.2017.10.019.
[21]J. Yang, Y. Liu, M. Xie, and M. Zhao, “Modeling and
analysis of reliability of multi-release open source software
incorporating both fault detection and correction processes,”
Journal of Systems and Software, vol. 115, pp. 102–110, May
2016, doi: 10.1016/j.jss.2016.01.025.
[22]O.Yazdanbakhsh, S. Dick, I. Reay, and E. Mace, “On
deterministic chaos in software reliability growth models,”
Applied Soft Computing, vol. 49, pp. 1256–1269, Dec. 2016,
doi: 10.1016/j.asoc.2016.08.006.

[23]M. Zhu and H. Pham, “A two-phase software reliability
modeling involving with software fault dependency and
imperfect fault removal,” Computer Languages, Systems &
Structures, vol. 53, pp. 27–42, Sep. 2018, doi:
10.1016/j.cl.2017.12.002.
[24]B. Zou, M. Yang, E.-R. Benjamin, and H. Yoshikawa,
“Reliability analysis of Digital Instrumentation and Control
software system,” Progress in Nuclear Energy, vol. 98, pp.
85–93, Jul. 2017, doi: 10.1016/j.pnucene.2017.03.006.

