
Priya Nandihal et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6279 – 6288

6279

ABSTRACT
This paper presents a new method to identify the types of
noise present in microarray images based on Convolution
Neural Network known as CNN-INC. It does not demand any
pre-processing of noisy images except resizing if needed. The
size of dataset and the parameters of training options are
selected to achieve 100% test accuracy (Zero ERROR).The
CNN training speed is maintained substantially higher
without compromising on accuracy. Experimental analysis
shows that the proposed algorithm gives promising results
compared to existing methods.

Key words: Microarrays, Noise types, Convolution Neural
Network, Confusion matrix.

1. INTRODUCTION
Image noise is an undesirable, but unavoidable affliction that
degrades and distorts digital images. Intrusion of noise can
occur during image acquisition, processing, transmission and
display. The presence of noise in a digital image diminishes
its visual quality by masking the finer details. Noise in a
medical image impairs its diagnostic capabilities. Other
adverse effects of noise in digital images [1] are well known.
Therefore, denoising is the most important pre-processing
step in any image processing endeavor. Many efficient and
popular denoising methods [1] are available. However the
effective working of these denoising methods depends on the
specific characteristics of the afflicting noise. For the purpose
of understanding, analysis and assisting in denoising, image
noises are classified into several types [1]-[5] based on their
qualitative features. Some examples for noise types are,
Gaussian, Salt & Pepper, Speckle, and Poisson and so on.
Once the type of noise is known, it is much easier to eliminate
it fully. There is no need for multi-stage searching and
filtering to arrive at the correct noise type. Thus, to determine
the type of noise is a crucial phase in the denoising process. In
this work, we present a new method of noise-type detection
(identification) based on deep learning. We use
Convolutional Neural Network (CNN), as the deep learning
tool, to find the type or class of noise present in Microarray

noisy images. The proposed new method is designated as
CNN-INC which stands for Convolutional Neural Network
for Image Noise Classification. In CNN-INC, the successive
layers of the Convolutional Neural Net are specially designed
for image noise type classification instead of general image
classification [6].

2. RELATED WORKS

A few papers are available on image noise type identification.
Chen and Das [7] have described noise type identification
based on statistical features. In [7], noise samples are
extracted from the noisy image and using them kurtosis and
skewness are obtained. Based on these statistical
characteristics, the noise type is determined. The problem in
this approach is the need for multiple filters to separate noise
samples from the noisy image. It is a sort of trial and error
process. Vasuki et al. [8] have used statistical features of noise
samples as the input to a Feed Forward Neural Network that
acts as a pattern classifier. In this case also the extraction of
noise samples is a trial and error process involving multiple
filters. In [9], Wang et al. use Singular Value Decomposition,
Wavelet- transformation and a Back Propagation Neural
Network to classify the noisy type. This method is
computationally expensive and suited for white noise and
Gaussian blur. It may not work for all types of noises. Dibakar
Sil et al. [10] use CNN for image noise type classification
using the existing standard CNNs VGG-16 and
Inception-v3.In [11], Balsiger et al explores Spatio-temporal
space for reconstructing magnetic resonance fingerprinting
using CNN. But the architecture of these CNNs are mainly
designed for object detection/classification and not specially
built for image noise type classification. Therefore the
training accuracy cannot reach very high values compared to
our proposed method CNN-INC. In [12], Zhang et al. have
introduced FFDNet whose main objective is denoising of
AWGN noise. Here, the noise type detection is restricted to
Gaussian only whereas CNN-INC detects other common
types of noise also. FFDnet requires fine-tuned noise level
maps and down-sampled sub-images as the inputs, thus
involves additional preprocessing unlike our CNN-INC
which does not demand any pre-processing of noisy images
except resizing.

 Image Noise Type Identification in Microarray Images Using
CNN-INC

Priya Nandihal 1, Dr. Vandana Sreenivas2, Dr. Jagadeesh Pujari3
1 Research Scholar, SDMCET, INDIA,talk2priya.nandihal@gmail.com

2 Assistant Professor, SDMCET, INDIA, vsreenivas6@gmail.com
3 Professor, SDMCET, INDIA, jaggudp@gmail.com

ISSN 2278-3091
Volume 9, No.4, July – August 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse307942020.pdf

https://doi.org/10.30534/ijatcse/2020/307942020

Priya Nandihal et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6279 – 6288

6280

3. RESEARCH METHOD

Microarray (MA) Images are special class of images which
represent the expression levels of the corresponding genes in
a compact and organized 2d format [13]. A typical MA image
is shown in Figure 1 (a). The main-array has 16 sub-arrays. A
single sub array in color and its gray scale equivalent are
shown in Figure 1(b) and 1(c) respectively. In our CNN_INC
method, for easy usage, we use gray scale MA sub-array
images as the candidates for denoising. In our scheme, an MA
image or simply an ‘image’ means a gray scale MA sub-array
image.

3.1 Types of Image Noises

In CNN-INC, the following image noise types are considered
for classification as shown in Table 1

Table 1: Types of Noises considered for classification
Noise Type Id
or Noise Class
Represented by

q

Types of Noises
Represented by

noise(q)
Mean Variance Density

1 No noise (clean
image) ---- ---- ----

2 Gaussian 0 0.15 -----
3 Salt & pepper ---- ---- 0.15
4 Poisson ---- ---- ----
5 Speckle ---- 0.15 ----
 MIXTURES

6 Gaussian +
Salt & pepper

0

0.15

0.15

7 Gaussian +
Speckle

0

0.15
0.15

8 Salt & pepper+
Speckle

0

0.15

0.15

The Noise type Id or Noise Class is represented by q.Here, q
varies from 1 to Q where Q is the total number of classes. In
the present case, Q = 8 that represents 8 different types of
noises. Symbol noise(q)represents the corresponding noises.
For example,

noise(1)= “No Noise” (see row 1 of Table 1)
noise(2)= “Gaussian” (see row 2 of Table 1)
noise(3)= “Salt & pepper” (see row 2 of Table 1)

--
noise(q) = Noise represented by class q

--

noise(Q)= noise(8) = “Salt & pepper and Speckle” (see row
8 of Table 1)

The objective is to determine the type (or class id) of noise,
represented by q, which is present in the given noisy
microarray (MA) image.

3.2 Clean and Noisy Microarray Images

Clean MA Images are represented by A{i}’s for i = 1 to N
where N is the total number of distinct clean images. These
A{i}’s can be called mother images. Each mother image A{i}
generates Q noisy images (daughter images)represented by
B{i, q}’s for q = 1 to Q as shown in the block diagram of
Figure 2. A{i}’s and B{i, q}’s are grayscale images
represented by the corresponding matrices of size HxW. The
elements of these matrices belong to the data type uint8.

In Figure 1, the ith Clean Image is represented by A{i} for i =
1 to N where N is large, as we need a substantially large
number of image samples (both clean and noisy) for the
correct working of CNN-INC. For each A{i}, noise(q) is
added for q = 1 to Q to get the corresponding B{i, q}’s
(two subscript format).
Noisy images are obtained from the clean mother image using
the addNoise(…) function which is based on the
Matlabfunctionimnoise(…). The details are shown in Table
2. Generation of noisy images from the clean mother images
is given in Algorithm 1.

Algorithm 1: Noisy Image Generation
Inputs:N number of Distinct Clean Microarray Images
(mother images), A{i}’s
Output: K number of Noisy Microarray Images, B(i, q}’s
where K = N*Q

For i = 1 to N
For q = 1 to Q
// get B{i, q} using the addNoise(…) function
B{i, q} = addnoise(A{i}, noise(q)) (1)
Endfor q
Endfor i

B{i, q}

Noisy MA Image

Noise(q)

A {i}
Clean MA Image
(Mother Image)

Addition of Noise

Figure 2: Addition of noise to clean MA images to get the noisy
images

(a) Main Array

Figure 1: A typical MA image

(Credit: Andre Nantel/ Shutterstock.com)

(b) Sub-array (color)

(c) Gray Scale Sub-array

Priya Nandihal et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6279 – 6288

6281

In Equation (1) of Algorithm 1, the addition of noise is carried
out using the addNoise(…) function which uses the
Matlabimnoise(…) function as shown in Table 2.

Table 2: addNoise(…) function using imnoise(…) for different
types of noises
Q noise(q) Mean Variance Density B{i, q) = addNoise(A{i},

noise(q))

1
No noise
(clean
image)

---- ---- ----
B{i,1} = A{i}

2 Gaussian 0 0.15 ----- B{i, 2} = imnoise(A{i},
‘gaussian’, 0, 0.15)

3 Salt &
pepper ---- ---- 0.15 B{i, 3} = imnoise(A{i},

‘Salt & pepper’, 0.15)

4 Poisson ---- ---- ---- B{i, 4} = imnoise(A{i},
‘Poisson’)

5 Speckle ---- 0.15 ---- B{i, 5} = imnoise(A{i},
‘Speckle’, 0.15)

 Mixtures

6

Gaussian
and
Salt &
pepper

0

0.15

0.15

B{i, 6} = imnoise(B{i 2},
‘Salt & pepper’, 0.15)

7
Gaussian
and
Speckle

0

0.15
0.15

B{i, 7} = imnoise(B{i, 2},
‘Speckle’, 0.15)

8

Salt &
pepper
and
Speckle

0

0.15

0.15

B{i, 8} = imnoise(B{i, 3},
‘Speckle’, 0.15)

In the case of mixtures, imnoise(…) function is applied to an
already noise-added image as shown in Table 2 for q = 6, 7
and 8.imnoise(…) function takes care of the data type of the
image matrices and adds noise appropriately taking care of
scaling/normalization [14] etc.
In Algorithm 1, for each i, the number of noisy images
generated is Q andivaries from 1 to N. Therefore the total
number of Noisy MA Images represented by K, are N*Q.
Thus,

K = Total number of distinct noisy images = N*Q
 (2)
For satisfactory working of CNN-INC, the images used
should be distinct. Therefore, the clean images (used to
generate noisy images)are selected from a large dataset
repository [MicroZip] and properly resized.
Noisy image B{i, q}is obtained by adding noise(q) to the
clean image A{i}. Since the Id or class of noise(q) is q, the
Noise Class Id of B{i, q}is q itself. In CNN-INC we use the
symbol c(i, q) to represent the Noise Class of B{i, q}. Thus,

c(i, q) = Noise Class of B{i, q} = q (3)

In (4), c(i, q) = q is a scalar in the range 1 to Q for i = 1 to N.
For given values of i, and q, the corresponding images and
Class Ids are shown in Table 3, for i = 1 to Nand for q = 1 to Q.
Thus the range of A{i} is from A{1} to A{N), that of B{i, q}
is from B{1, 1} to B{N, Q}. Class Id variable c{i, q) varies
from 1 to Q periodically for each successive values of i.

Table 3: Clean Images, Noisy Images and the corresponding Class Id’s
for i = 1 to N and q = 1 to Q

I 1 2 --- N
A{i} A{1} A{2} --- A{N}

Q 1 2 --- Q 1 2 --- Q --- 1 2 --- Q
B{i,
q}

B{1,
1}

B{1,
2}

--- B{1,
Q}

B{2,
1}

B{2,
2}

--- B{2,
Q}

--- B{N,
1}

B{N,
2}

--- B{N, Q}

c(i, q) 1 2 --- Q 1 2 --- Q --- 1 2 --- Q

From Table 3, we see that a single unique clean image A{i}
generates a set of Q (in the present case, Q = 8) noisy images,
B{i, 1} to B{i, Q}.Therefore, noisy images [B{i, 1}, B{i,
2},…, B{i, Q}] can be treated as the noisy children of A{i}.
In Table 3, subscript i increase progressively from 1 to N.
Therefore, B{i, q} can be treated as the qth element of the ith

cycle. This fact holds for all i' s from i = 1 to N.

3.3 Special Noisy Microarray Images B(i,1)

An important feature of B{i, 1}’s for i = 1 to N, is that no
noise is added to get B{i, 1}’s from A{i}’s and hence B{i, 1}=
A{i} for all values of i from 1 to N. That means, for each
A{i}, out of its Q noisy children B{i, 1) is a child with zero
noise. Since, This special property of B{i, q}’s for q = 1 is
expressed as,
B{i, 1} = A{i} = Clean Image itself, for i = 1 to N (4)
This special property is intentionally incorporated as will be
explained later in the training of the CNN-INC net

Functional relation between noisy image and its clean
version:-

From (1), we know that the pixel values of noisy image B{i,
q} depends on its clean version A{i} and the added noise(q)
which is identified by its class Id q. Therefore the noisy image
B{i, q} can be expressed as,

 (5)

where,i varies from 1 to N and q from 1 to Q. Here F is a
non-linear function with a high degree of non-linearity.
Assuming that matrix is unique over i and q (This is
assured when the size of B{i, q} is large), Equation (5) can be
used to express q as,

 (6)

Here, is the functional inverse of F(…).
From (3) and (6),

 (7)

Substituting for A{i} in (7) from (4), we get,

 (8)

Since B{i, 1} is constant over q = 1 to Q, Equation (8) can be
reformulated as,

Priya Nandihal et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6279 – 6288

6282

 (9)

Where,

 (10)

Here, E(…) is a complex piecewise non-linear function that
relates B{i, 1} to q.
Equation (9) means, the Noise Class Id q can be theoretically
calculated by knowing B{i, q}’s. This fact is used to explain
how the CNN-INC method extracts the Class Id of the noise
from B{i, q}’s.

3.4 Convolution Neural Network

A representative diagram of a CNN is shown in Figure 3.A
CNN is formed by inter connected neurons in multiple
cascaded layers. . For details refer [15].

In CNN-INC, the CNN is used as a classifier which is
designated as CNN-INCnet. The basic block diagram of the
CNN-INCnet is shown in Figure 4.

Solving a classification problem using CNN-INC has 4
phases.

3.5 Four Phases of CNN-INC

The four phases are:

1. Creation or setup of CNN_INCnet
2. Training Phase of CNN_INCnet
3. Testing Phase of CNN_INCnet
4. Application of CNN_INCnet

3.5.1. Creation of CNN-INCnet

CNN uses layered architecture with different functionalities
for different layers. In this work, CNN-INCnet has 7
convolution layers along with the input layer, the output layer
(classification Layer) and other necessary layers. A short
description of different layers used in CNN-INCnet is listed
below. For further details about various layers see references
[17]-[20].

1) ImageInputLayer([H,W, 1])
The input layer accepts the noisy input images of size H*W.
The CNN-INCnet requires the input to be a 3D array. Hence,
H*W*1 is used in place of just H*W.
TheimageInputLayer([H,W,1]) function builds the Image
Input Layer.

2) Convolution Layer
This layer constructs the first2d convolution layer which has
10 convolution filters of size 5x5. Padding by zeros is used to
keep the size of the output of this layer same as that of its
input.

3) Batch Normalization Layer
The function of this layer is to normalize each input stream
and it is inserted between the convolution2dlayer and the
succeeding ReLulayer. The batch normalization layer
constructs the First Batch Normalization Layer [17].

4) Relu Layer
Relu stands for Rectified Linear Unit. This layer performs
nonlinear activation. The signal transfer function of Relu
layer and that of an ideal single diode rectifier are same.
Statement ‘reluLayer’ constructs this layer.

5) Maximum Pooling Layer
The max pooling layer down-samples the input by dividing it
into rectangular regions and it computes the maximum of
each region.

6) Average Pooling Layer
This layer is similar to the maxPooling Layer, but extracts the
average of each pool instead of its maximum value.

Input
Layer
 Hidden Layers

Output
Layer

Figure 3: Representative Diagram of a CNN (Courtecy:
Holzinger, et al. [16])

Test
Dataset

ytest

xtest

Training Progress
 Indicators Mini-batch loss

Training
Dataset

xtrain CNN-INCnet
Training Phase

(Learning Phase)
ytrain

Figure 4: Basic Block diagram of CNN-INCnet Classifier
System

‒

+ yout CNN-INCnet

Testing Phase
 error

(a). Training Phase

(b). Testing Phase

Mini-batch accuracy

Priya Nandihal et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6279 – 6288

6283

7) Fully Connected Layer
Here, all the neurons from the previous layer are exhaustively
connected as the inputs to this layer.

8) Softmax Layer
Softmax layer implements softmax(…) function [21] that
calculates the matching probabilities of different classes with
respect to the input class in a multi-class classification
problem.

9) Classification Layer
The ultimate layer of the CNN-CC is the ClassificationLayer.
This Layer receives the probability values from the previous
softmax layer and assigns each value to the corresponding
class out of Q distinct classes of the problem under
consideration. Once created, CNN-INCnet is ready for
Training, Testing and Application.

3.5.2. Training Phase of CNN-INCnet

In CNN-INC, Noisy image matrices B{i, q}’s and the
corresponding integer sequence c(i, q)’s [see Table 3] for i = 1
to N, form the dataset for training/testing. To separate the
training and test dataset, the range of the subscript variable i
is split into two sub ranges as,

i = [1 to N] = [[1 to R], [R+1 to N]] (11)

Data from the first sub range [1 to R] is used for testing and
the data from the remaining range [R+1 to N] is used for
testing. In (10), R is set at (about) 90% of N and the length of
the remaining range, represented by S is (N ‒ R) which is
shown in Table 4. The corresponding training and test data,
B{i, q}’s and c(i, q}’s are also shown in Table 4. Here, for
each i, the q varies from 1 to Q. Thus a given i, we have Q
number of B{i, q}’s and c(i, q)’s.

Table 4: Training and test data set ranges

Total count N

Sub-range
Count R = 90% of N S = N ‒ R

Operation Training (i = 1 to R) Testing (i = R+1 to N)

I 1 2 --- R R+1 R+2 --- N

B{i, q}’s B{1, q}’sB{2, q}’s--- B{R, q}’sB{R+1, q}’sB{R+2, q}’s--- B{N, q}’s

c{i, q}’s c{1, q}’s c{2, q}’s --- c{R, q}’s c{R+1, q}’s c{R+2, q}’s --- c{N, q}’s

CNN-INCnet is trained by applying two inputs,xtrain and

ytrainas shown in Fig.2. Inputs xtrain and ytrain are the
training dataset for CNN-INCnet and it learns the causal
relation between them in the form of a function [18, 27]

ytrain{i, q} = G(xtrain{i, q}) (12)

In CNN-INC, xtrain{i, q}, the input to function G(…) , is B{i,
q} and ytrain{i, q} is s c(i, q) for i = 1 to R . That is,

xtrain(i, q) = B{i, q} for i = 1 to R

(13)
ytrain{i, q} = c(i, q) for i = 1 to R

(14)

Then, from (4), (13), (14) and (12),

q = c(i, q) = G(B{i, q})for i = 1 to R (15)

Comparing (15) and (10), it can be seen that function
G(…)represents E(…) and the recovery c(i, q) from B{i, q} is
logically justified. Therefore, after proper training the
CNN-INCnet using B{i, q}’s for i = 1 to R as the training
input (xtrain) and c{i, q}’s (also for i = 1 to R) as the response
input (ytrain), it is possible to recover the class Id’sof B{i,
q}’s for i> R or any other noisy image.

For the CNN-INC net, the input training data has to be 4
dimensional [22, 23]. Therefore the actual training data set
has to be reshaped. In CNN-INC, the size of B{i, q} matrix is
HxW. The total number of matrices used for training,
corresponding to i = 1 to R and q = 1 to Q is R*Q. Hence the
total size of the training data set due to B{i, q}’s is
H*W*R*Q. Then, the training set is reshaped, according to
the requirement of CNN as,
xtrainCNN = reshape(B{i, q}|i = 1 to R and q = 1 to Q, H, W, 1, R*Q)

 (16)
Since c(i, q) is a scalar, the size of dataset due to c(i, q)’s for i
= 1 to R and q = 1 to Q is R*Q. Therefore they train set is
reshaped according to the CNN requirement as,

ytrainCNN = reshape(c(i, q)|i = 1 to R and q = 1 to Q , R*Q, 1)

 (17)
Here, ytrainCNN is a column vector of length R*Q. Once the
CNN-INCnet layers are selected and training data set ready,
as given by (13) and (14), the training options [21] are chosen
before starting the training process.

3.5.3 Testing Phase for CNN-INCnet

During testing, the input to CNN-INCnet is the data set xtest
which is formed by the samples, B{i, q}’s for i = R+1, R+2,
and so on up to N as already shown in Table 4. The xtest
samples are enumerated as,

xtest{1, q} = B{R+1, q}
xtest{2, q} = B{R+2, q}

xtest{S, q} = B{R+S, q}

Priya Nandihal et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6279 – 6288

6284

Where S = N‒R = total number of test samples. Introducing
its own index j, for xtext values, the above relation is
expressed as,

xtest{j, q} = B{R+j, q} = B{i, q}
(18)

for j = 1 to S and i = R+1 to R+S. Index j of (16) is related to
index i as j = i ‒ R for i = R+1 to R+S where R+S = N. In (18),
index j varies from 1 to S and for each j, the second index q
varies from 1 to Q , therefore the size of the dataset xtest is
size(xtest) = S*Q (19)

This information is required for reshaping xtest as needed by
the classify(net,xtest)function.

Similarly, ytest{j, q} is given by,

ytest{j, q} = c{R+j, q} = c{i, q} = c{R+j, q} (20)

ytest{j, q}’s are already known and used to determine the
error incurred by CNN-INCnet if any. In (20), index j varies
from 1 to S and for each j, the second index q varies from 1 to
Q, therefore the size of the dataset ytest is

size(ytest) = S*Q
(21)

The data set ytestcan be treated as a matrix of size SxQ whose
elements are ytest{j, q}’s
During the test phase, the output from CNN-INCnet is yout{j,
q} which corresponds to the input xtest{j, q} as,

yout{j, q} = G(xtest{j, q}) = G(B{i, q}) (22)

The function G(…) has been learnt by CNN_INCnet during
training phase. If there is no error (CNN-INCnet is trained
perfectly), from (22) and (15),
yout{j, q} = c{R+j, q) = q (23)

for j = 1 to S and q = 1 to Q. (size of yout is S*Q). When (23)
is satisfied for all j’s and q’s, it is assured that the
CNN-INCnet is trained perfectly. Under this condition the
error{j, q} (See Fig. 4) would be zero. The error term given
by,

error{j, q} = ytest{j, q} ‒ yout{j, q} (24)

for j = 1 to S and q = 1 to Q. If the training of CNN-INCnet is
not sufficient, error{j, q} will be non-zero. The test ERROR is
taken as the total number of non-zero terms in error{j, q}’s.
That is,

ERROR = Number of non-zero terms of error{j, q}’s over j =
1 to S and q = 1 to Q
(25)

Essentially, ERROR gives the number of misclassifications
out of a total of S*Q samples. Therefore the percentage error
is given by,
 %ERROR = 100*ERROR/(S*Q)
(26)

In CNN-INC, we ensure that the classification ERROR is
zero. If not, the CNN-INCnet is retrained with suitable fine
tuning.
For the test phase, the xtest input should be reshaped
according to the requirement of the standard
classify(...)function as,

xtestCNN = reshape(xtest{j, q}j = 1 to S and q = 1 to Q , H, W, 1,
S*Q) (27)

During the test phase, the actual output from CNN-INCnet,
designated as youtCNN is,

youtCNN =classify(net, xtestCNN) (28)

The size of youtCNN is S*Q and it is reshaped to get youtand
yout{j, q}’s for calculating the error as given by (24).

2.5.4 Testing Phase for CNN-INCnet

After the training and testing (with zero error) of
CNN-INCnet has been completed, it is competent to classify
the noise type of the present noisy micro-sub-array image.Let
us denote the present Sub-Array Noisy Image by ni. Let ni be
contaminated by one of the noise types as listed in Table 1. Let
the exact noisy type be represented by q(ni). Here, q(ni) is
unknown but it is given that q(ni) belongs to the range 1 to Q.
Since, CNN-INCnet trained/tested using gray scale images of
size HxW, an important requirement of NI is it should also be
a grayscale image of size WxN.Now, ni is reshaped to match
the input size of CNN-INCnet as,

niCNN = reshape(ni, H, W, 1, 1) (29)

Then, niCNN is applied as the input argument to the function
classify(...) to get the noise class (type) of q(ni)as,

q(ni) = classify(net,niCNN) (30)

q(ni) obtained from (30) is an integer in the range 1 to Q and
once q(ni) is found its noise type is determined from Table 1.

The basic working of CNN_INC is given in Algorithm
CNN-INC

Algorithm CNN-INC

Input: Large set of noise free Micro Array (MA) images.
Output: Noise type of a given noisy micro sub-array image.

1. Select a large N which is the number of micro
sub-arrays for training/testing

2. Get N number of distinct clean grayscale sub-arrays
images from the given MA image set

Priya Nandihal et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6279 – 6288

6285

3. Add different types of noises as given in Table 1, so
that each clean image spawns Q number of noisy
images. // total number of noisy images would be
N*Q

4. Split N*Q noisy images into two groups as R*Q and
S*Q for training and testing respectively where R =
round(0.9* N) and S = N‒R.

5. Construct CNN-INCnet with different layers as
described in earlier section 3.5.1

6. Prepare the data set for training as explained in
section 3.5.2

7. Train CNN-INCnet
8. Test CNN-INCnet to determine the error.
9. If error is zero,

goto step 11
else

10. Adjust the CNN_INCnet parameters appropriately
towards zero error and goto step 7.

11. Training/testing completed.
 //CNN-INCnet is ready for classifying the noise
type of an unknown noisy sub-array image

12. Apply the unknown noisy sub-array image as input
to CNN-INCnet to get its noise type.

13. Over.

4. RESULTS AND DISCUSSION
Table 5 shows the parameters used in a basic CNN-INC
experiment. Typical values [22] are used for those parameters
of CNN-INCnet that are not given in Table 5. Image height
and width means the size of the corresponding matrix in
terms of number of rows and columns of that matrix.

Table 5: VALUES OF VARIOUS PARAMETERS/VARIABLES

PARAMETERS/VARIABLES SYMBOL VALUES

IMAGE HEIGHT H 160
IMAGE WIDTH W 256

NUMBER OF NOISE TYPES OR CLASSES (SEE
TABLE 1) Q 8

NUMBER OF CLEAN MOTHER IMAGES USED
TO GET CNN-INC DATA SET N 3,840

FIRST PART OF N USED FOR TRAINING R 3,600
SECOND PART OF N USED FOR TETING S 240

NOISE CLASS IDENTIFIER Q {1 TO Q}
NO. OF TRAINING DATASETS R*Q 28,800

NO.OF TEST DATASETS S*Q 1,920
TOTAL NUMBER OF DATA SETS N*Q 30,720

DATA DIMENSIONS FOR INPUT LAYER H, W, 1 160, 160, 1
MAX. NO. OF EPOCHS [36] ----- 50

4.1. Experiment 1

In this experiment, the CNN-INCnet is constructed as
described in section 3.5.1 using the parameters of Table 5 and
it is trained as in section 3.5.2. During the, the training

process, Mini-batch Accuracy and Mini-batch Loss [24] are
progressively displayed for successive iterations.
Here, CNN-INC parameter Q is varied from Q = 2 to 8 with
other parameters same as in Table 5. Here,CNN-INC
parameter Q is varied from Q = 2 to 8 with other parameters
same as in Table 5. Now, in each case, CNN-INCnet is trained
to determine the minimum number of epochs and the training
iterations needed to achieve 100% accuracy with zero error on
testing. For Q = 2, the training progress information is shown
in Table 6

Table 6: VARIATION OF TRAINING PARAMETERS FOR Q = 2

EPOCH ITERATION
TIME

ELAPSED
(HH:MM:SS)

MINI-BATCH
ACCURACY

MINI-BATCH
LOSS

BASE
LEARNING

RATE

1 1 00:00:02 51.00% 0.7027 0.0020

1 50 00:00:53 100.00% 0.1424 0.0020

2 85
00:01:28 100.00% 0.0968 0.0020

CNN-INC net training/testing for zero error is continued for
Q = 3, 4, 5, 6, 7, 8. As a sample, the training progress table for
Q = 6 is show in Table 7. The training progress tables for
other Q’s are similar.

Table 7: VARIATION OF TRAINING PARAMETERS FOR Q = 6

EPOCH ITERATION
TIME

ELAPSED
(HH:MM:SS)

MINI-BATCH
ACCURACY

MINI-BATCH
LOSS

BASE
LEARNING

RATE
1 1 00:00:07 10.00% 1.8751 0.0020

1 50 00:00:57 51.00% 1.3043 0.0020

1 100 00:01:47 77.00% 1.0289 0.0020

1 150 00:02:39 78.00% 0.8957 0.0020

1 200 00:03:29 99.00% 0.7294 0.0020

2 250 00:04:19 96.00% 0.6599 0.0020

2 300 00:05:10 100.00% 0.5308 0.0020

2 350 00:06:00 100.00% 0.4048 0.0020

2 400 00:06:52 100.00% 0.3196 0.0020

3 450 00:07:42 100.00% 0.2245 0.0020

3 500 00:08:34 100.00% 0.1572 0.0020

3 550 00:09:26 100.00% 0.1085 0.0020

3 600 00:10:16 100.00% 0.0843 0.0020

4 649 00:11:12 100.00% 0.0642 0.0020

The summary of the result is shown in Table 8. Training
duration, which is machine dependent, is also shown in Table
8 for understanding the effect of variable Q on Training

Priya Nandihal et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6279 – 6288

6286

Duration. The third column of Table 8 gives the minimum
number of training iterations needed just to reach the zero
error status in test phase.

Table 8: Minimum Number of Training Iterations versus
Number of Classes (Q)

No. of
Classes

(Q)

No. of
Epochs

Min No.
of

Iterations
for Zero

Error

Training
Duration

No. of
Images

in
Training

set
R*Q =

3600*Q

No. of
Images

in
Testing

set
S*Q =
240*Q

2 2 85 1 min 28
seconds

7,200 480

3 2 207 3 min 33
seconds

10,800 720

4 3 315 5 min 23
seconds

14,400 960

5 4 543 9 min 24
seconds

18,000 1,200

6 4 649 11 min
12

seconds

21,600 1,440

7 8 1850 31 min
25

seconds

25,200 1,680

8 11 2795 50 min
53

seconds

28,800 1,920

 Minimum Number of Training Iterations (MNTI) for zero
error versus Q is plotted in Figure 5.In Figure 5, the plot

divides the graph into two regions. The northwest region in
green background is the error free region where the number of
iterations would be greater than the minimum required. On
the other hand, the southeast region in magenta background is
the error bound region where the number of iterations would
be lesser than the minimum required. The steep increase in

MNTI for Q =7 and 8 is due to the mixed nature of noises in
the noisy images as listed in Table 1.

Experiment 2

Here Q = 8 and the other parameters are same as in Table 5.
The CNN-INCnet is trained for values from 480 to 1920 in
steps of 480. In each case, the training process is terminated
when the corresponding NTI value reaches its specified value.
For successive values of NTI’s the resulting classification
error, denoted by ERROR in (26), is determined and is shown
in Table 9. Here the total number of test samples is S*Q =
240*8 =1920.

Table 9: ERROR VERSUS NTI FOR Q = 8

NTI 480 960 1440 1920
ERROR 82 61 12 3
%ERROR 4.2708

%
3.1771

%
0.6250

%
0.1563

%

From Table 9, it can be seen that the classification ERROR,
during testing phase, decreases monotonically as the Number
of Training Iterations increases.

Confusion Matrices

The distribution of misclassification errors over different
classes, for Number of Training Iterations (NTI) = 500, 1000,
1500 and 2000are shown by the Confusion Matrices [22, 23]
in Figure 6(a), 6(b), 6(c) and 6(d) respectively. For instance,
In Figure 6(b), 23 samples from true class 2, are misclassified
as belonging to class 7, and 38 samples from true class 7 are
misclassified as belonging to class 2.

Experiment 3

Our method CNN-INC is compared withVGG-16 [27] and
Inveption-v3 [28] with respect to ‘Training Accuracy’ [29]

(a)

(d) (c)

(b)

Figure 6: Confusion Matrices

Figure 5: MNTI for zero error versus Q

Priya Nandihal et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6279 – 6288

6287

during training progress. Here Q is set to 7 and the maximum
epoch is set to 34.
From Figure 7, it can be seen that CNN-INC reaches 100%
accuracy at 30th epoch while the VGG-16 and Inception-v3
methods lag behind. The reason for the superior performance
of CNN-INC is that it is specially designed for Microarray
Images which have regular visible spots arranged in a grid.
On the other hand VGG-16 and Inception-v3 networks are
designed for general purpose image recognition and
classification.

5. CONCLUSION

A new method, CNN-INC has been presented for the
classification of different types of noises in Microarray
Images. The basic noise types considered are Gaussian, Salt &
Pepper, Speckle, Poisson and their mixtures. The special
feature of CNN-INC is that it classifies the mixtures of noises
as well as basic noise types. The CNN-INCnet is specially
designed for Microarray Images which has certain uniform
grid structure. At present 8 types of noises are covered for
classification. Since one of the type is noise free status,
CNN-INC can recognize a noise free (clean) image also.
CNN-INC requires no pre-processing of images except
resizing if needed. The CNN-INC method can be extended to
classify additional types of noises. Compared to other
methods, CNN-INC achieves 100% training accuracy and test
error zero with reasonable training period.

REFERENCES
1. Rafael C. Gonzalez and Richard E. Woods. “Image

Restoration and Reconstruction,” Digital Image
processing, 3rd Edition, Prentice Hall, August 2007.
https://doi.org/10.5121/sipij.2015.6206

2. Boyat AK, Joshi B K. A review paper: noise models in
digital image processing. Signal & Image Processing:
An International Journal(SIPI), Vol.6,No.2,Apil 2015

3. Mandar D. Sontakke and Meghana S. Kulkarni.
Different types of Noise and Noise Removal
Techniques, International Journal of Advanced

Technology in Engineering and Science, vol.3, No.1, pp.
102-115, January 2015.

4. Arasi, Munya & Babu, Sangita. (2019).Survey of
Machine Learning Techniques in Medical Imaging,
International Journal of Advanced Trends in Computer
Science and Engineering, Vol 8, No. 4, pp. 2107-2116.
https://doi.org/10.30534/ijatcse/2019/39852019

5. B. Dudi and V Rajesh. Medicinal Plant Recognition
based on CNN and Machine Learning, International
Journal of Advanced Trends in Computer Science and
Engineering, Vol. 8, No. 4, 2019, pp. 999-1003.
https://doi.org/10.30534/ijatcse/2019/03842019

6. Jun Liu and Feng Ping. Image Classification
Algorithm Based on Deep Learning-Kernel Function.
Scientific Programming, Vol. 2020,pp 1-14,Jan 2020

7. Yixin, Chen & Das, Manohar. An automated technique
for image noise identification using a simple pattern
classification approach. 50th Midwest Symposium on
Circuits and Systems, pp819-822, 2007.

8. P. Vasuki, C. Bhavana, S. Mohamed Mansoor Roomi
and E. Lakshmi Deebikaa. Automatic noise
identification in images using moments and neutral
networks. International conference on Machine Vision
and Image Processing, Taipei, pp 61-64, 2012.

9. Z. Wang, S. Wu, J. Ye and G. Yun. Distortion types
identification based on singular value decomposition
and BP neural network .3rd International Congress on
Image and Signal Processing, Yantai, pp 2539-2542,
2010.

10. D. Sil, A. Dutta and A. Chandra. Convolutional Neural
Networks for Noise Classification and denoising of
Images, 2019 IEEE Region 10 Conference (TENCON),
Kochi, pp. 447-451.

11. Balsiger, Fabian, Amaresha Shridhar Konar,
Shivaprasad Chikop, Vimal Chandran, Olivier
Scheidegger, Sairam Geethanath, and Mauricio Reyes.
Magnetic resonance fingerprinting reconstruction via
spatiotemporal convolutional neural network,
International Workshop on Machine Learning for
Medical Image Reconstruction, pp. 39-46. Springer,
Cham, 2018.
https://doi.org/10.1007/978-3-030-00129-2_5

12. Zhang, Kai &Zuo, Wangmeng& Zhang, Lei. FFDNet:
Toward a Fast and Flexible Solution for CNN based
Image Denoising, IEEE Transactions on Image
Processing, pp. 1-15, 2018.

13. Fraser, Karl Wang, Zidong Liu. Microarray Image
Analysis: An Algorithmic Approach, Computer
Science and Data Analysis Series, Chapman and
Hall/CRC 2017.

14. Richard E. Woods , Rafael C. Gonzalez, Eddins S.L
Digital Image Processing Using Matlab , Gatesmark
Publishing, Second Edition,2009

15. S. Albawi, T. A. Mohammed and S. Al-Zawi.
Understanding of a convolutional neural network.
International Conference on Engineering and
Technology (ICET), Antalya, pp. 1-6, 2017.

Figure 7: Percentage Training Accuracy versus Training Epochs

Priya Nandihal et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6279 – 6288

6288

16. Holzinger, Andreas & Malle, Bernd & Kieseberg, Peter
& Roth, Peter M. & Müller, Heimo & Reihs, Robert &
Zatloukal, Kurt. (2017). Machine Learning and
Knowledge Extraction in Digital Pathology Needs an
Integrative Approach. Towards integrative machine
learning and knowledge extraction, CANADA, pp
13-50,2015

17. Johan Bjorck, Carla Gomes, Bart Selman, Kilian Q.
Weinberger, Understanding Batch Normalization,
32nd Conference on Neural Information Processing
Systems, Montréal, Canada, pp. 1-12, 2018.

18. Albawi Saad, Tareq. Understanding of a Convolutional
Network. 10.1109/ICEngTechnol.2017.8308186,2017.

19. Nielsen, M.A. (2015) Neural Networks and Deep
Learning. http://neuralnetworksanddeeplearning.com/

20. Jason Brownlee (2019). A Gentle Introduction to
Dropout for Regularizing Deep Neural Networks.
https://machinelearningmastery.com/dropout-for-regula
rizing- deep-neural-networks/.

21. Christopher Bishop. Pattern Recognition and Machine
Learning. Springer, New York, NY, 2006

22. Matlab help. PreProcess images for deep learning.
http://in.mathworks.com/help/deeplearning/ug/preproce
ss-images-for-deep-learning/

23. Matlab help. Train neural network for deep learning.
http://in.mathworks.com/help/deeplearning/ref/trainnet
work/

24. Jason Brownlee (2019). A Gentle Introduction to Early
Stopping to Avoid Overtraining Neural Networks.
https://machine-learning-mastery.com/early-stopping-to
-avoid- overtraining -neural- network-models/

25. Jason Brownlee (2019). Make the Confusion Matrix
Less Confusing. https:// machine learning mastery. com/
confusion-matrix-machine-learning/

26. Jason Brownlee (2019). Impact of Dataset Size on Deep
Learning Model Skill And Performance Estimates.
https://machinelearningmastery.com/
impact-of-dataset-size-on-deep-learning-model-skill-an
d-performance-estimates/

27. W. Yu, K. Yang, Y. Bai, T. Xiao, H. Yao, and Y. Rui.
Visualizing and comparing AlexNet and VGG using
deconvolutional layers in Proc. International
Conference on Machine Learning (ICML), New York
City, NY, USA, Jun. 2016, pp. 1–7.

28. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z.
Wojna. Rethinking the inception architecture for
computer vision in Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, NV,
USA, Jun. 2016, pp. 2818–2826.
https://doi.org/10.1109/CVPR.2016.308

29. Matlab help. Monitor Deep Learning Training
Progress.https://in.mathworks.com/help/deeplearning/u
g/monitor-deep- learning-training-progress.html.

