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ABSTRACT 
This paper presents a new method to identify the types of 
noise present in microarray images based on Convolution 
Neural Network known as CNN-INC. It does not demand any 
pre-processing of noisy images except resizing if needed. The 
size of dataset and the parameters of training options are 
selected to achieve 100% test accuracy (Zero ERROR).The 
CNN training speed is maintained substantially higher 
without compromising on accuracy. Experimental analysis 
shows that the proposed algorithm gives promising results 
compared to existing methods.  
 
Key words: Microarrays, Noise types, Convolution Neural 
Network, Confusion matrix. 
 
1. INTRODUCTION 
Image noise is an undesirable, but unavoidable affliction that 
degrades and distorts digital images. Intrusion of noise can 
occur during image acquisition, processing, transmission and 
display. The presence of noise in a digital image diminishes 
its visual quality by masking the finer details. Noise in a 
medical image impairs its diagnostic capabilities. Other 
adverse effects of noise in digital images [1] are well known. 
Therefore, denoising is the most important pre-processing 
step in any image processing endeavor. Many efficient and 
popular denoising methods [1] are available. However the 
effective working of these denoising methods depends on the 
specific characteristics of the afflicting noise. For the purpose 
of understanding, analysis and assisting in denoising, image 
noises are classified into several types [1]-[5] based on their 
qualitative features. Some examples for noise types are, 
Gaussian, Salt & Pepper, Speckle, and Poisson and so on. 
Once the type of noise is known, it is much easier to eliminate 
it fully. There is no need for multi-stage searching and 
filtering to arrive at the correct noise type. Thus, to determine 
the type of noise is a crucial phase in the denoising process. In 
this work, we present a new method of noise-type detection 
(identification) based on deep learning. We use 
Convolutional Neural Network (CNN), as the deep learning 
tool, to find the type or class of noise present in Microarray 

 
 

noisy images. The proposed new method is designated as 
CNN-INC which stands for Convolutional Neural Network 
for Image Noise Classification. In CNN-INC, the successive 
layers of the Convolutional Neural Net are specially designed 
for image noise type classification instead of general image 
classification [6]. 
 
2. RELATED WORKS 
 
A few papers are available on image noise type identification. 
Chen and Das [7] have described noise type identification 
based on statistical features. In [7], noise samples are 
extracted from the noisy image and using them kurtosis and 
skewness are obtained. Based on these statistical 
characteristics, the noise type is determined. The problem in 
this approach is the need for multiple filters to separate noise 
samples from the noisy image. It is a sort of trial and error 
process. Vasuki et al. [8] have used statistical features of noise 
samples as the input to a Feed Forward Neural Network that 
acts as a pattern classifier. In this case also the extraction of 
noise samples is a trial and error process involving multiple 
filters. In [9], Wang et al. use Singular Value Decomposition, 
Wavelet- transformation and a Back Propagation Neural 
Network to classify the noisy type. This method is 
computationally expensive and suited for white noise and 
Gaussian blur. It may not work for all types of noises. Dibakar 
Sil et al. [10] use CNN for image noise type classification 
using the existing standard CNNs VGG-16 and 
Inception-v3.In [11], Balsiger et al explores Spatio-temporal 
space for reconstructing magnetic resonance fingerprinting 
using CNN. But the architecture of these CNNs are mainly 
designed for object detection/classification and not specially 
built for image noise type classification. Therefore the 
training accuracy cannot reach very high values compared to 
our proposed method CNN-INC. In [12], Zhang et al. have 
introduced FFDNet whose main objective is denoising of 
AWGN noise. Here, the noise type detection is restricted to 
Gaussian only whereas CNN-INC detects other common 
types of noise also. FFDnet requires fine-tuned noise level 
maps and down-sampled sub-images as the inputs, thus 
involves additional preprocessing unlike our CNN-INC 
which does not demand any pre-processing of noisy images 
except resizing.  
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3.   RESEARCH METHOD  
 
Microarray (MA) Images are special class of images which 
represent the expression levels of the corresponding genes in 
a compact and organized 2d format [13]. A typical MA image 
is shown in Figure 1 (a). The main-array has 16 sub-arrays. A 
single sub array in color and its gray scale equivalent are 
shown in Figure 1(b) and 1(c) respectively. In our CNN_INC 
method, for easy usage, we use gray scale MA sub-array 
images as the candidates for denoising. In our scheme, an MA 
image or simply an ‘image’ means a gray scale MA sub-array 
image.   

 
3.1 Types of Image Noises 
 
In CNN-INC, the following image noise types are considered 
for classification as shown in Table 1 
 
Table 1:  Types of Noises considered for classification 
Noise Type Id 
or Noise Class  
Represented by 

q 

Types of Noises 
Represented by 

noise(q) 
Mean Variance Density 

1 No noise (clean 
image) ---- ---- ---- 

2 Gaussian 0 0.15 ----- 
3 Salt & pepper ---- ---- 0.15 
4 Poisson ---- ---- ---- 
5 Speckle ---- 0.15 ---- 
  MIXTURES 

6 Gaussian + 
Salt & pepper 

0 
---- 

0.15 
---- 

---- 
0.15 

7 Gaussian + 
Speckle 

0 
---- 

0.15 
0.15 

---- 
---- 

8 Salt & pepper+ 
Speckle 

0 
---- 

---- 
0.15 

0.15 
---- 

The Noise type Id or Noise Class is represented by q.Here, q 
varies from 1 to Q where Q is the total number of classes. In 
the present case, Q = 8 that represents 8 different types of 
noises. Symbol noise(q)represents the corresponding noises. 
For example,                    

noise(1)= “No Noise” (see row 1 of Table 1) 
noise(2)= “Gaussian” (see row 2 of Table 1) 
noise(3)= “Salt & pepper” (see row 2 of Table 1) 
                                  

------------------------------------------------------------ 
noise(q) = Noise represented by class q 
                                  

------------------------------------------------------------ 

noise(Q)= noise(8) = “Salt & pepper and Speckle” (see row 
8 of Table 1) 
 
The objective is to determine the type (or class id) of noise, 
represented by q, which is present in the given noisy 
microarray (MA) image. 
  

3.2 Clean and Noisy Microarray Images  
 

Clean MA Images are represented by A{i}’s for i = 1 to N 
where N is the total number of distinct clean images. These 
A{i}’s can be called mother images. Each mother image A{i} 
generates Q noisy images (daughter images)represented by 
B{i, q}’s for q = 1 to Q as shown in the block diagram of 
Figure 2. A{i}’s and B{i, q}’s are grayscale images 
represented by the corresponding matrices of size HxW. The 
elements of these matrices belong to the data type uint8. 
 

 
 

In Figure 1, the ith Clean Image is represented by A{i} for i = 
1 to N where N is large, as we need a substantially large 
number of image samples (both clean and noisy) for the 
correct working of CNN-INC. For each A{i}, noise(q) is 
added for q = 1 to Q to get the corresponding B{i, q}’s 
(two subscript format). 
Noisy images are obtained from the clean mother image using 
the addNoise(…) function which is based on the 
Matlabfunctionimnoise(…).  The details are shown in Table 
2. Generation of noisy images from the clean mother images 
is given in Algorithm 1. 

Algorithm 1:  Noisy Image Generation 
Inputs:N number of Distinct Clean Microarray Images 
(mother images), A{i}’s  
Output: K number of Noisy Microarray Images, B(i, q}’s  
where K = N*Q 

For i = 1 to N 
For q = 1 to Q 
// get B{i, q} using the addNoise(…) function 
B{i, q} = addnoise(A{i}, noise(q))                  (1) 
Endfor q 
Endfor i 
 

B{i, q}  

Noisy MA Image 

Noise(q) 

A {i} 
Clean MA Image 
(Mother Image) 

  

Addition of Noise 

Figure 2:  Addition of noise to clean MA images to get the noisy 
images 

(a) Main Array 

Figure 1: A typical MA image  

(Credit: Andre Nantel/ Shutterstock.com) 

(b) Sub-array (color) 

(c) Gray Scale Sub-array 
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In Equation (1) of Algorithm 1, the addition of noise is carried 
out using the addNoise(…) function which uses the 
Matlabimnoise(…) function as shown in Table 2. 
 
Table 2:  addNoise(…) function using imnoise(…) for different 
types of noises 
Q noise(q) Mean Variance Density B{i, q) = addNoise(A{i}, 

noise(q)) 

1 
No noise  
(clean 
image) 

---- ---- ---- 
B{i,1} = A{i}  

2 Gaussian 0 0.15 ----- B{i, 2} = imnoise(A{i}, 
‘gaussian’, 0, 0.15) 

3 Salt & 
pepper ---- ---- 0.15 B{i, 3} = imnoise(A{i}, 

‘Salt & pepper’,  0.15) 

4 Poisson ---- ---- ---- B{i, 4} =  imnoise(A{i}, 
‘Poisson’) 

5 Speckle ---- 0.15 ---- B{i, 5} =  imnoise(A{i}, 
‘Speckle’,  0.15) 

  Mixtures  

6 

Gaussian 
and 
Salt & 
pepper 

0 
---- 

0.15 
---- 

---- 
0.15 

B{i, 6} = imnoise(B{i 2}, 
‘Salt & pepper’,  0.15) 

7 
Gaussian 
and 
Speckle 

0 
---- 

0.15 
0.15 

---- 
---- 

B{i, 7} = imnoise(B{i, 2}, 
‘Speckle’,  0.15) 

8 

Salt & 
pepper 
and 
Speckle 

0 
---- 

---- 
0.15 

0.15 
---- 

B{i, 8} = imnoise(B{i, 3}, 
‘Speckle’,  0.15) 

  
In the case of mixtures, imnoise(…) function is applied to an 
already noise-added image  as shown in Table 2 for q =  6, 7 
and 8.imnoise(…) function takes care of the data type of the 
image matrices and adds noise appropriately taking care of 
scaling/normalization [14] etc.  
In Algorithm 1, for each i, the number of noisy images 
generated is Q andivaries from 1 to N. Therefore the total 
number of Noisy MA Images represented by K, are N*Q. 
Thus, 

K = Total number of distinct noisy images = N*Q                        
                        (2) 
For satisfactory working of CNN-INC, the images used 
should be distinct. Therefore, the clean images (used to 
generate noisy images)are selected from a large dataset 
repository [MicroZip] and properly resized. 
Noisy image B{i, q}is obtained by adding noise(q) to the 
clean image A{i}. Since the Id or class of noise(q) is q, the 
Noise Class Id of B{i, q}is q itself. In CNN-INC we use the 
symbol c(i, q) to represent the Noise Class of B{i, q}. Thus, 

 
c(i, q) = Noise Class of B{i, q} = q                               (3) 

 
In (4), c(i, q) = q is a scalar in the range 1 to Q for i = 1 to N. 
For given values of i, and q, the corresponding images and 
Class Ids are shown in Table 3, for i = 1 to Nand for q = 1 to Q. 
Thus the range of A{i} is from A{1} to A{N), that of B{i, q} 
is from B{1, 1} to B{N, Q}. Class Id variable c{i, q) varies  
from 1 to Q periodically for each successive values of  i.  
 
 

Table 3:  Clean Images, Noisy Images and the corresponding Class Id’s 
for i = 1 to N and q = 1 to Q 

I 1 2 --- N 
A{i} A{1} A{2} --- A{N} 

Q 1 2 --- Q 1 2 --- Q --- 1 2 --- Q 
B{i, 
q} 

B{1, 
1} 

B{1, 
2} 

--- B{1, 
Q} 

B{2, 
1} 

B{2, 
2} 

--- B{2, 
Q} 

--- B{N, 
1} 

B{N, 
2} 

--- B{N, Q} 

c(i, q) 1 2 --- Q 1 2 --- Q --- 1 2 --- Q 
 
From Table 3, we see that a single unique clean image A{i} 
generates a set of Q (in the present case, Q = 8) noisy images, 
B{i, 1} to B{i, Q}.Therefore, noisy images [ B{i, 1}, B{i, 
2},…, B{i, Q}]  can be treated as the noisy children of A{i}. 
In Table 3, subscript i increase progressively from 1 to N. 
Therefore, B{i, q} can be treated as the qth element of  the ith 

cycle. This fact holds for all i' s from i = 1 to N.  
 
3.3 Special Noisy Microarray Images B(i,1) 
 
An important feature of B{i, 1}’s  for i = 1 to N, is that no 
noise is added to get B{i, 1}’s from A{i}’s and hence B{i, 1}= 
A{i} for all values of i from 1 to N. That means, for each 
A{i}, out of its Q noisy children B{i, 1) is a child with zero 
noise. Since, This special property of B{i, q}’s for q = 1 is 
expressed as, 
B{i, 1} = A{i} = Clean Image itself, for i = 1 to N            (4) 
This special property is intentionally incorporated as will be 
explained later in the training of the CNN-INC net  
 
Functional relation between noisy image and its clean 
version:- 
 
From (1), we know that the pixel values of noisy image B{i, 
q} depends on its clean version A{i} and the added noise(q) 
which is identified by its class Id q. Therefore the noisy image 
B{i, q} can be expressed as, 
 

                      (5) 
 
where,i varies from 1 to N and q from 1 to Q. Here F is a 
non-linear function with a high degree of non-linearity. 
Assuming that matrix is unique over i and q (This is 
assured when the size of B{i, q} is large), Equation (5) can be 
used to express q as, 

 
                                                                         (6) 

 
Here,  is the functional inverse of F(…).   
From (3) and (6),  
 

                         (7)                            
 
Substituting for A{i} in (7) from (4), we get,        
 

            (8)                             
 
Since B{i, 1} is constant over q = 1 to Q, Equation (8) can be 
reformulated as, 
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               (9)                                                                             
 
Where,  
 

            (10)                                                                        
 
Here, E(…) is a complex piecewise non-linear function that 
relates B{i, 1} to q. 
Equation (9) means, the Noise Class Id q can be theoretically 
calculated by knowing B{i, q}’s. This fact is used to explain 
how the CNN-INC method extracts the Class Id of the noise 
from B{i, q}’s.  
 
3.4 Convolution Neural Network  
 
A representative diagram of a CNN is shown in Figure 3.A 
CNN is formed by inter connected neurons in multiple 
cascaded layers. . For details refer [15]. 

 
 
In CNN-INC, the CNN is used as a classifier which is 
designated as CNN-INCnet. The basic block diagram of the 
CNN-INCnet is shown in Figure 4. 

 
Solving a classification problem using CNN-INC has 4 
phases. 
 
 
 
 
 

3.5 Four Phases of CNN-INC 
 
The four phases are:  

 
1. Creation or setup of CNN_INCnet 
2. Training Phase of CNN_INCnet 
3. Testing Phase of CNN_INCnet 
4. Application of CNN_INCnet 

 
3.5.1. Creation of CNN-INCnet 

 
CNN uses layered architecture with different functionalities 
for different layers. In this work, CNN-INCnet has 7 
convolution layers along with the input layer, the output layer 
(classification Layer) and other necessary layers. A short 
description of different layers used in CNN-INCnet is listed 
below. For further details about various layers see references 
[17]-[20]. 

 
1) ImageInputLayer([H,W, 1])   
The input layer accepts the noisy input images of size H*W. 
The CNN-INCnet requires the input to be a 3D array. Hence, 
H*W*1 is used in place of just H*W. 
TheimageInputLayer([H,W,1]) function builds the Image 
Input Layer. 

 
2) Convolution Layer 
This layer constructs the first2d convolution layer which has 
10 convolution filters of size 5x5. Padding by zeros is used to 
keep the size of the output of this layer same as that of its 
input. 

 
3) Batch Normalization Layer 
The function of this layer is to normalize each input stream 
and it is inserted between the convolution2dlayer and the 
succeeding ReLulayer. The batch normalization layer 
constructs the First Batch Normalization Layer [17].  
 
4) Relu Layer 
Relu stands for Rectified Linear Unit. This layer performs 
nonlinear activation. The signal transfer function of Relu 
layer and that of an ideal single diode rectifier are same. 
Statement ‘reluLayer’ constructs this layer. 
 
5) Maximum Pooling Layer 
The max pooling layer down-samples the input by dividing it 
into rectangular regions and it computes the maximum of 
each region. 

 
6) Average Pooling Layer 
This layer is similar to the maxPooling Layer, but extracts the 
average of each pool instead of its maximum value.  
 
 
 

Input 
Layer 
 Hidden  Layers 

 

Output 
Layer 
 

Figure 3: Representative Diagram of a CNN (Courtecy: 
Holzinger, et al. [16]) 

 

Test 
Dataset 

ytest 

xtest 

Training Progress 
 Indicators  Mini-batch loss 

Training 
Dataset 

xtrain CNN-INCnet 
Training Phase 

(Learning Phase) 
ytrain 

Figure 4: Basic Block diagram of CNN-INCnet Classifier 
System 

‒ 

+ yout CNN-INCnet 

Testing Phase 
 error 

(a). Training Phase  

(b). Testing Phase  

Mini-batch accuracy  
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7) Fully Connected Layer 
Here, all the neurons from the previous layer are exhaustively 
connected as the inputs to this layer.  

 
8) Softmax Layer 
Softmax layer implements softmax(…) function [21] that 
calculates the matching probabilities of different classes with 
respect to the input class in a multi-class classification 
problem.  

 
9) Classification Layer 
The ultimate layer of the CNN-CC is the ClassificationLayer. 
This Layer receives the probability values from the previous 
softmax layer and assigns each value to the corresponding 
class out of Q distinct classes of the problem under 
consideration. Once created, CNN-INCnet is ready for 
Training, Testing and Application. 

 
3.5.2. Training Phase of CNN-INCnet 
 
In CNN-INC, Noisy image matrices B{i, q}’s and the 
corresponding integer sequence c(i, q)’s [see Table 3] for i = 1 
to N, form the dataset for training/testing. To separate the 
training and test dataset, the range of the subscript variable i 
is split into two sub ranges as, 

 
i = [1 to N] = [ [1 to R], [R+1 to N] ]           (11)                                  

 
Data from the first sub range [1 to R] is used for testing and 
the data from the remaining range [R+1 to N] is used for 
testing. In (10), R is set at (about) 90% of N and the length of 
the remaining range, represented by S is (N ‒ R) which is 
shown in Table 4. The corresponding training and test data, 
B{i, q}’s and c(i, q}’s are also shown in Table 4. Here, for 
each i, the q varies from 1 to Q. Thus a given i, we have Q 
number of B{i, q}’s and c(i, q)’s.  
 

Table 4:  Training and test data set ranges 

Total count N 

Sub-range 
Count R = 90% of N S = N ‒ R 

Operation Training (i = 1 to R) Testing (i = R+1 to N) 

I 1 2 --- R R+1 R+2 --- N 

B{i, q}’s B{1, q}’sB{2, q}’s--- B{R, q}’sB{R+1, q}’sB{R+2, q}’s--- B{N, q}’s 

c{i, q}’s c{1, q}’s c{2, q}’s --- c{R, q}’s c{R+1, q}’s c{R+2, q}’s --- c{N, q}’s 

 
CNN-INCnet is trained by applying two inputs,xtrain and 

ytrainas shown in Fig.2. Inputs xtrain and ytrain are the 
training dataset for CNN-INCnet and it learns the causal 
relation between them in the form of a function [18, 27]  

 
ytrain{i, q} = G(xtrain{i, q})               (12) 

 
In CNN-INC, xtrain{i, q}, the input to function G(…) , is B{i, 
q} and ytrain{i, q} is s c(i, q) for i = 1 to R . That is, 

 
xtrain(i, q) = B{i, q}     for i = 1 to R            

(13) 
ytrain{i, q} = c(i, q)      for i = 1 to R            

(14) 
 
Then, from (4), (13), (14) and (12), 

      
q = c(i, q) = G(B{i, q})for i = 1 to R                                         (15) 

 
Comparing (15) and (10), it can be seen that function 
G(…)represents E(…) and the recovery c(i, q) from B{i, q} is 
logically justified. Therefore, after proper training the 
CNN-INCnet using B{i, q}’s for i = 1 to R as the training 
input (xtrain) and c{i, q}’s (also for i = 1 to R) as the response 
input (ytrain), it is possible to recover the class Id’sof B{i, 
q}’s for i> R or any other noisy image.  

 
For the CNN-INC net, the input training data has to be 4 
dimensional [22, 23]. Therefore the actual training data set 
has to be reshaped. In CNN-INC, the size of B{i, q} matrix is 
HxW. The total number of matrices used for training, 
corresponding to i = 1 to R and q = 1 to Q is R*Q. Hence the 
total size of the training data set due to B{i, q}’s is 
H*W*R*Q. Then, the training set is reshaped, according to 
the requirement of CNN as,  
xtrainCNN = reshape(B{i, q}|i = 1 to R and q = 1 to Q, H, W, 1, R*Q)                               

          (16) 
Since c(i, q) is a scalar, the size of dataset due to c(i, q)’s for i 
= 1 to R and q = 1 to Q is R*Q. Therefore they train set is 
reshaped according to the CNN requirement as,  
 
ytrainCNN = reshape(c(i, q)|i = 1 to R and q = 1 to Q , R*Q, 1)                                           

      (17) 
Here, ytrainCNN is a column vector of length R*Q. Once the 
CNN-INCnet layers are selected and training data set ready, 
as given by (13) and (14), the training options [21] are chosen 
before starting the training process. 
 
3.5.3 Testing Phase for CNN-INCnet 
 
During testing, the input to CNN-INCnet is the data set xtest 
which is formed by the samples, B{i, q}’s for i = R+1, R+2, 
and so on up to N as already shown in Table 4.  The xtest 
samples are enumerated as, 
 
xtest{1, q} = B{R+1, q} 
xtest{2, q} = B{R+2, q} 
 --------------------------  
xtest{S, q} = B{R+S, q}                  
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Where S = N‒R = total number of test samples. Introducing 
its own index j, for xtext values, the above relation is 
expressed as, 
  
xtest{j, q} = B{R+j, q} = B{i, q}                                       
(18) 

for j = 1 to S and i = R+1 to R+S. Index j of  (16) is related to 
index i as j = i ‒ R for i = R+1 to R+S where R+S = N. In (18), 
index j varies from 1 to S and for each j, the second index q 
varies from 1 to Q , therefore the size of the dataset xtest is 
size(xtest) = S*Q                                                                     (19) 

This information is required for reshaping xtest as needed by 
the classify(net,xtest)function. 

 
Similarly, ytest{j, q} is given by, 

ytest{j, q} = c{R+j, q} = c{i, q} = c{R+j, q}                             (20) 

ytest{j, q}’s are already known and used to determine the 
error incurred by CNN-INCnet if any. In (20), index j varies 
from 1 to S and for each j, the second index q varies from 1 to 
Q, therefore the size of the dataset ytest is 
 
size(ytest) = S*Q                                                            
(21) 
 
The data set ytestcan be treated as a matrix of size SxQ whose 
elements are ytest{j, q}’s 
During the test phase, the output from CNN-INCnet is yout{j, 
q} which corresponds to the input xtest{j, q} as, 

yout{j, q} = G(xtest{j, q}) = G(B{i, q})                                      (22) 
 
The function G(…) has been learnt by CNN_INCnet during 
training phase. If there is no error (CNN-INCnet is trained 
perfectly), from (22) and (15), 
yout{j, q} = c{R+j, q) = q                          (23) 

for j = 1 to S and q = 1 to Q. (size of yout is S*Q).  When (23) 
is satisfied for all j’s and q’s, it is assured that the 
CNN-INCnet is trained perfectly. Under this condition the 
error{j, q} (See Fig. 4) would be zero. The error term given 
by,  

error{j, q} = ytest{j, q} ‒ yout{j, q}                                  (24) 
 
for j = 1 to S and q = 1 to Q. If the training of CNN-INCnet is 
not sufficient, error{j, q} will be non-zero. The test ERROR is 
taken as the total number of non-zero terms in error{j, q}’s. 
That is, 
 
ERROR = Number of non-zero terms of error{j, q}’s over j = 
1 to S and q = 1 to Q                                   
(25) 
 

Essentially, ERROR gives the number of misclassifications 
out of a total of S*Q samples. Therefore the percentage error 
is given by, 
 %ERROR = 100*ERROR/(S*Q)                               
(26) 
 
In CNN-INC, we ensure that the classification ERROR is 
zero. If not, the CNN-INCnet is retrained with suitable fine 
tuning.  
For the test phase, the xtest input should be reshaped 
according to the requirement of the standard 
classify(...)function as, 

xtestCNN = reshape(xtest{j, q}j = 1 to S and q = 1 to Q , H, W, 1, 
S*Q)                                                (27) 

During the test phase, the actual output from CNN-INCnet, 
designated as youtCNN is, 

youtCNN =classify(net, xtestCNN)              (28) 

The size of youtCNN is S*Q and it is reshaped to get youtand 
yout{j, q}’s for calculating the error as given by (24). 
 
2.5.4 Testing Phase for CNN-INCnet 

After the training and testing (with zero error) of 
CNN-INCnet has been completed, it is competent to classify 
the noise type of the present noisy micro-sub-array image.Let 
us denote the present Sub-Array Noisy Image by ni. Let ni be 
contaminated by one of the noise types as listed in Table 1. Let 
the exact noisy type be represented by q(ni). Here, q(ni)  is 
unknown but it is given that q(ni) belongs to the range 1 to Q. 
Since, CNN-INCnet trained/tested using gray scale images of 
size HxW, an important requirement of NI is it should also be 
a grayscale image of size WxN.Now, ni is reshaped to match 
the input size of CNN-INCnet as, 

niCNN = reshape(ni, H, W, 1, 1)                                                 (29) 

Then, niCNN is applied as the input argument to the function 
classify(...) to get the noise class (type) of q(ni)as, 

q(ni) = classify(net,niCNN)                                       (30) 

q(ni) obtained from (30) is an integer in the range 1 to Q and 
once q(ni) is found its noise type is determined from Table 1.  

The basic working of CNN_INC is given in Algorithm 
CNN-INC 
------------------------------------------------------------------------- 

Algorithm CNN-INC 
------------------------------------------------------------------------- 
Input: Large set of noise free Micro Array (MA) images. 
Output:  Noise type of a given noisy micro sub-array image. 

1. Select a large N which is the number of micro 
sub-arrays for training/testing 

2. Get N number of distinct clean grayscale sub-arrays 
images  from the given MA image set 
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3. Add different types of noises as given in Table 1, so 
that each clean image spawns Q number of noisy 
images. // total number of noisy images would be 
N*Q 

4. Split N*Q noisy images into two groups as R*Q and 
S*Q for training and testing respectively where  R = 
round(0.9* N) and S = N‒R.   

5. Construct CNN-INCnet with different layers as 
described in earlier section 3.5.1 

6. Prepare the data set for training as explained in 
section 3.5.2 

7. Train CNN-INCnet 
8. Test CNN-INCnet to determine the error. 
9. If error is zero, 

goto step 11 
else 

10. Adjust the CNN_INCnet parameters appropriately 
towards zero error and goto step 7. 

11. Training/testing completed.   
   //CNN-INCnet is ready for classifying the noise 
type of an unknown noisy sub-array image 

12. Apply the unknown noisy sub-array image as input 
to CNN-INCnet to get its noise type.  

13. Over. 
------------------------------------------------------------------------- 

4. RESULTS AND DISCUSSION  
Table 5 shows the parameters used in a basic CNN-INC 
experiment. Typical values [22] are used for those parameters 
of CNN-INCnet that are not given in Table 5. Image height 
and width means the size of the corresponding matrix in 
terms of number of rows and columns of that matrix. 
 
Table 5: VALUES OF VARIOUS PARAMETERS/VARIABLES 

 
PARAMETERS/VARIABLES SYMBOL VALUES 

IMAGE HEIGHT  H 160 
IMAGE WIDTH W 256 

NUMBER OF NOISE TYPES OR CLASSES  (SEE 
TABLE 1) Q 8 

NUMBER OF CLEAN MOTHER IMAGES USED 
TO GET CNN-INC DATA SET N 3,840 

FIRST PART OF N USED FOR TRAINING R 3,600 
SECOND PART OF N USED FOR TETING S 240 

NOISE CLASS IDENTIFIER Q  {1 TO Q} 
NO. OF TRAINING DATASETS R*Q 28,800 

NO.OF TEST DATASETS  S*Q 1,920 
TOTAL NUMBER OF DATA SETS N*Q 30,720 

DATA DIMENSIONS FOR INPUT LAYER H, W, 1 160, 160, 1 
MAX. NO. OF EPOCHS [36] ----- 50 

 
4.1. Experiment 1 

 
In this experiment, the CNN-INCnet is constructed as 
described in section 3.5.1 using the parameters of Table 5 and 
it is trained as in section 3.5.2. During the, the training 

process, Mini-batch Accuracy and Mini-batch Loss [24] are 
progressively displayed for successive iterations. 
Here, CNN-INC parameter Q is varied from Q = 2 to 8 with 
other parameters same as in Table 5. Here,CNN-INC 
parameter Q is varied from Q = 2 to 8 with other parameters 
same as in Table 5. Now, in each case, CNN-INCnet is trained 
to determine the minimum number of epochs and the training 
iterations needed to achieve 100% accuracy with zero error on 
testing. For Q = 2, the training progress information is shown 
in Table 6 
 
Table 6: VARIATION OF TRAINING PARAMETERS FOR Q = 2 

 

EPOCH ITERATION 
TIME 

ELAPSED 
(HH:MM:SS) 

MINI-BATCH 
ACCURACY 

MINI-BATCH 
LOSS 

BASE 
LEARNING 

RATE 

1 1 00:00:02 51.00% 0.7027 0.0020 

1 50 00:00:53 100.00% 0.1424 0.0020 

2 85       
00:01:28 100.00% 0.0968 0.0020 

 
CNN-INC net training/testing for zero error is continued for 
Q = 3, 4, 5, 6, 7, 8. As a sample, the training progress table for 
Q = 6 is show in Table 7. The training progress tables for 
other Q’s are similar.  
 
Table 7: VARIATION OF TRAINING PARAMETERS FOR Q = 6 

 

EPOCH ITERATION 
TIME 

ELAPSED 
(HH:MM:SS) 

MINI-BATCH 
ACCURACY 

MINI-BATCH 
LOSS 

BASE 
LEARNING 

RATE 
1 1 00:00:07 10.00% 1.8751 0.0020 

1 50 00:00:57 51.00% 1.3043 0.0020 

1 100 00:01:47 77.00% 1.0289 0.0020 

1 150 00:02:39 78.00% 0.8957 0.0020 

1 200 00:03:29 99.00% 0.7294 0.0020 

2 250 00:04:19 96.00% 0.6599 0.0020 

2 300 00:05:10 100.00% 0.5308 0.0020 

2 350 00:06:00 100.00% 0.4048 0.0020 

2 400 00:06:52 100.00% 0.3196 0.0020 

3 450 00:07:42 100.00% 0.2245 0.0020 

3 500 00:08:34 100.00% 0.1572 0.0020 

3 550 00:09:26 100.00% 0.1085 0.0020 

3 600 00:10:16 100.00% 0.0843 0.0020 

4 649 00:11:12 100.00% 0.0642 0.0020 

 
 
The summary of the result is shown in Table 8. Training 
duration, which is machine dependent, is also shown in Table 
8 for understanding the effect of variable Q on Training 
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Duration. The third column of Table 8 gives the minimum 
number of training iterations needed just to reach the zero 
error status in test phase.  
 

Table 8: Minimum Number of  Training Iterations versus 
Number of Classes (Q) 
 
No. of 
Classes 

(Q) 

No. of 
Epochs 

Min No. 
of 

Iterations 
for Zero 

Error 

Training 
Duration 

No. of 
Images 

in 
Training 

set 
R*Q = 

3600*Q 

No. of 
Images 

in 
Testing 

set 
S*Q = 
240*Q 

2 2 85 1 min 28 
seconds 

7,200 480 

3 2 207 3 min 33 
seconds 

10,800 720 

4 3 315 5 min  23 
seconds 

14,400 960 

5 4 543 9 min 24 
seconds 

18,000 1,200 

6 4 649 11 min 
12 

seconds 

21,600 1,440 

7 8 1850 31 min 
25 

seconds 

25,200 1,680 

8 11 2795 50 min 
53 

seconds 

28,800 1,920 

 
 Minimum Number of Training Iterations (MNTI) for zero 
error versus Q is plotted in Figure 5.In Figure 5, the plot 

divides the graph into two regions. The northwest region in 
green background is the error free region where the number of 
iterations would be greater than the minimum required. On 
the other hand, the southeast region in magenta background is 
the error bound region where the number of iterations would 
be lesser than the minimum required. The steep increase in 

MNTI for Q =7 and 8 is due to the mixed nature of noises in 
the noisy images as listed in Table 1. 
 
Experiment 2 
 
Here Q = 8 and the other parameters are same as in Table 5. 
The CNN-INCnet is trained for values from 480 to 1920 in 
steps of 480. In each case, the training process is terminated 
when the corresponding NTI value reaches its specified value. 
For successive values of NTI’s the resulting classification 
error, denoted by ERROR in (26), is determined and is shown 
in Table 9. Here the total number of test samples is S*Q = 
240*8 =1920. 
 

Table 9:  ERROR VERSUS NTI FOR Q = 8 
 

 

NTI 480 960 1440 1920  
ERROR 82 61 12 3  
%ERROR 4.2708

% 
3.1771

% 
0.6250

% 
0.1563

% 
 

 
From Table 9, it can be seen that the classification ERROR, 
during testing phase, decreases monotonically as the Number 
of Training Iterations increases.  
 
Confusion Matrices 

 
The distribution of misclassification errors over different 
classes, for Number of Training Iterations (NTI) = 500, 1000, 
1500 and 2000are shown by the Confusion Matrices [22, 23] 
in Figure 6(a), 6(b), 6(c) and 6(d) respectively. For instance, 
In Figure 6(b), 23 samples from true class 2, are misclassified 
as belonging to class 7, and 38 samples from true class 7 are 
misclassified as belonging to class 2. 
 

 

 
 
Experiment 3 
 
Our method CNN-INC is compared withVGG-16 [27] and 
Inveption-v3 [28] with respect to ‘Training Accuracy’ [29] 

(a) 

(d) (c) 

(b) 

Figure 6:  Confusion Matrices 

Figure 5: MNTI for zero error versus Q 
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during training progress. Here Q is set to 7 and the maximum 
epoch is set to 34. 
From Figure 7, it can be seen that CNN-INC reaches 100% 
accuracy at 30th epoch while the VGG-16 and Inception-v3 
methods lag behind. The reason for the superior performance 
of CNN-INC is that it is specially designed for Microarray 
Images which have regular visible spots arranged in a grid. 
On the other hand VGG-16 and Inception-v3 networks are 
designed for general purpose image recognition and 
classification. 
 

5. CONCLUSION 
 
A new method, CNN-INC has been presented for the 
classification of different types of noises in Microarray 
Images. The basic noise types considered are Gaussian, Salt & 
Pepper, Speckle, Poisson and their mixtures. The special 
feature of CNN-INC is that it classifies the mixtures of noises 
as well as basic noise types. The CNN-INCnet is specially 
designed for Microarray Images which has certain uniform 
grid structure. At present 8 types of noises are covered for 
classification. Since one of the type is noise free status, 
CNN-INC can recognize a noise free (clean) image also. 
CNN-INC requires no pre-processing of images except 
resizing if needed. The CNN-INC method can be extended to 
classify additional types of noises. Compared to other 
methods, CNN-INC achieves 100% training accuracy and test 
error zero with reasonable training period.  
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