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ABSTRACT 

 

The use of various AI-based methods for analysis, assessment 

and prediction is becoming increasingly popular not only in 

business but also in people’s daily lives. Particularly popular 

are the artificial neural networks that can be used with 

numerous free software tools and libraries. To perform 

effective training on a neural network, a sufficient training 

dataset is needed but it cannot always be provided. Such is the 

case with an experiment conducted by us for automated 

assessment of students’ knowledge and skills. This motivated 

us to look for a way to generate additional reliable data for 

neural network training. The article presents the GARP 

(Generation of Additional Ray Points) algorithm which 

creates additional input-output samples based on already 

existing ones. It can be used in cases where the output samples 

are expected to be a linear function of the input data.  

 

Key words: neural network training, training dataset 

generation, GARP algorithm, Generation of Additional Ray 

Points  

 

1. INTRODUCTION 

 

The search for effective methods for objective, fair and 

high-quality assessment of students is a goal that led us to the 

creation of models for multi-criteria assessment [1], [2] based 

on Bloom’s taxonomy [3] and the concepts emerging from it 

for Higher Order Thinking Skills (HOTS) and Lower Order 

Thinking Skills (LOTS).  

 

In our experiments for assessing students’ knowledge and 

skills we have defined 4 main assessment components: 

practical LOTS (pLOTS), practical HOTS (pHOTS), 

theoretical LOTS (tLOTS), theoretical HOTS (tHOTS). The 

pHOTS assessment is obtained as a result of solving tasks or 

implementing practical projects. The remaining grades are 

formed through solving a test and assessed with points. The 

limits and values of the components’ assessments, as well as 

the final assessment, use different assessment scales. The 

specific values in our experiment are presented in table 1. 

 

 

What is special is that pHOTS is an assessment made by a 

practice teacher and can have a value – a real number, in the 

grading scale used. The assessments of the test components 

are integers, and the final score is also a number of the 

assessment scale used, but according to the requirements it 

must be an integer. 

 
Table 1. Assessment components and their assessment scales 

 

Assessment 

component 
Definition Assessment scale 

Theoretical 

knowledge – tLOTS 
x1 

An integer in the 

interval [0, 30] 

Practical knowledge – 

pLOTS 
x2 

An integer in the 

interval [0, 15] 

Theoretical skills – 

tHOTS 
x3 

An integer in the 

interval [0, 15] 

Practical skills – 

pHOTS 
x4 

A real number in 

the interval [2, 6] 

Final assessment finalGrade 
An integer in the 

interval [2, 6] 

 

The task of automating the process of assessing learners’ 

knowledge and skills is becoming increasingly important 

when using learning management systems such as Moodle 

[4]. The formation of the final assessment in a 

multi-component assessment should not be a function of the 

total number of points, as most systems offer, instead it should 

involve a more complex procedure taking into account the 

different weights of the individual assessment components or 

a complex IF-THEN logic can be implemented with the tools 

of fuzzy logic [2], [5]. The main problems identified in our 

research are: 

 

• The creation of a complex formula with multiple 

assessment components is not an easy task even for 

pedagogues with experience in this area. Proposing 

standard formulas is not a solution because the 

assessment components in the general case may be 

many, not just 4, as in our case. To integrate 
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multi-component assessment in an existing learning 

management system, an additional plug-in would have 

to be created if the system itself is open source and 

allows integration of user components. 

• Deciding on a final integer assessment is not easy in 

borderline cases – when the calculated value is close to 

an intermediate position, such as 2.5, 3.5, 4.5 and 5.5 at a 

rating scale of 2 to 6. In such cases, the assessor could 

assess the student with a grade that may later seem to 

them unfair. Deviations from a fair value in automated 

assessment may be greater if the decision rules described 

by the mathematical model are not complete. 

 

One possible approach to solving these problems is the use of 

artificial intelligence (AI) algorithms which are trained 

through information provided by the teacher for real 

assessments. Moreover, when there are available assessments 

for the individual assessment components, the assessor makes 

a relatively fair and objective assessment, according to their 

subjective view. Without formulas set by the assessor, on the 

basis of training using the existing data from old assessments 

only, appropriate artificial intelligence algorithms can make a 

final assessment based on the assessments assigned to the 

assessment components. When AI algorithms are used, there 

are difficulties, too, for example: 

 

• Selection of an appropriate AI algorithm and training 

method. This is a technical problem in the 

implementation of an application for assessment 

automation. There are many libraries and systems for 

working with AI algorithms in which the process of 

testing different algorithms can be automated [6], [7], 

[8], [9], [10]. 

• Distrust of the assessor and students to assessments 

made by a software application. This problem can also 

be described as technical. It is a matter of software 

implementation for an assessment system to require the 

assessor to confirm the automatically assigned 

assessments. 

• Insufficient number of samples for training the AI 

algorithms. In our experiments, the data from 130 actual 

assessment were not sufficient for training and 

high-quality assessment of AI. As a result, we received 

an unacceptably high number of final assessments which 

differed from the assessments made by the assessor. 

 

One possible solution to the latter problem is the GARP 

(Generation of Additional Ray Points) method presented in 

this article for algorithmically increasing the number of 

training samples used in the AI algorithms. It is applicable in 

cases where the function for obtaining the final result on 

multiple input components is assumed to be linear. In the 

case of assessment, the method is applicable when the logic 

by which the assessor makes an assessment is linear, i.e. of the 

type , where  is the number of assessment 

components,  – the values of the components,  are their 

weights, and  is a constant. Let us remind that this formula is 

obtained automatically as a result of training an AI algorithm 

and can remain invisible to the average user. 

 

2. MATHEMATICAL MODEL OF THE GARP 

METHOD 

 

Let us consider the more general case in which the assessment 

components are n in number. They can then be presented by n 

dimensions  in an -dimensional Euclidean 

space of factors . An arbitrary point 

  of   is presented as a combination 

of values of the respective factors. We denote the space of the 

input-output samples as , 

where  is the set of possible output values. A point in 

 is of type . 

Defining a more general class of tasks, we not only solve the 

specific problem with the small number of input-output 

samples in the assessment of students, but also for other object 

areas where there are multiple components on whose 

characteristics a supposedly linear result function must be 

applied. 

 

Main problem: Given is a set of input-output samples 

 where  Let f be a 

linear function:  

. 

 

Create an algorithm that generates many additional samples 

, such that with the 

same function f: 

 

. 

Let  and  be two 

arbitrary points, such as  (fig. 1).   

The canonical equation of the straight line defined by them is: 

 
Figure 1. Main elements in the space of input-output samples 
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where are the coordinates of an arbitrary 

point on . 

 

Then, if the point  is located between 

 and , then for its 

coordinates the scalar parametric equations are satisfied: 

 

 
 

Statement 1. 

 

Let  and  are two 

arbitrary points in the set of factors , and g is the 

straight line in , defined by them: 

 

( , . 

 

Let the linear estimation function  have values at the 

points  and  , respectively: 

 

 . 

 

Then, every point 

 

 for which , 

 

determines the input-output pattern 

 

, for which 

. 

 

Proof: 

 

We will present the proof of the case in which .  

The case  is proved in an analogous way. 

 

If we take the point  as the center of the coordinate 

system in  then the coordinates of each point in the space 

of factors are in fact also the coordinates of its radius-vector. 

Therefore, the assessment function defines an correspondence  

 

,  

 

where for each point  is satisfied: 

 

. 

On the other hand, it follows from the equation of lines that 

the point  , and has a radius-vector: 

 

 
 

Thus, from (3), (4) and the fact that the assessment function is 

linear, follows that:  

.  

Since for it is 

obvious that: 

 

 
 

i. e. the function  , with 

functional values 

 

. 

 

Statement 1 tells us three important things:  

 

1. On each line in , defined by two n-tuple of factors 

 and  we 

can choose new points for which to calculate 

corresponding assessments, using the same assessment 

function. 

2. If we form a series of factors on the line, which with 

respect to the parameter can be considered between  

and , the assessments of the factors from this series 

have values between the assessments of  and . 

3. If  and  are two input-output 

samples  and 

, then the elements of each 

additional pattern formed by these two points are 

represented as an ordered pair 

 

where 

 
, and 

 
 

Given the specific application of GARP, we will set one 

condition which in practice has axiomatic value: the increase 

of a student’s knowledge must be related to a proportional 

increase of his / her grade. In terms of the GARP method, this 

means that for every two points  and their 

corresponding assessments , the ratio between the 

lengths (norms) of the vectors  and  must be a 

constant: 
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But then for every two points , for which it is 

satisfied: 

 

, 

 

for corresponding assessments  will be valid:  

 

, 

 

i.e. students with infinitely close knowledge receive infinitely 

similar assessments, namely: 

 

. 

 

Thus, it follows from Statement 1 and Equation (5) that for 

every two points  and 

, a series of m points can be formed in 

 

 

 
 

with coordinates: 

 

, 

 

in which 

 

. 

 

Let’s introduce the following notations: 

 

 
 

Then, due to the nature of the coordinates of the points in the 

sequence follows that they belong to the line , 

defined by  and , and 

from the fact that 

 

, 

 

it follows, that the series  satisfies the conditions of 

Statement 1. Therefore, all n-tuples in have 

assessments for the same assessment function with a value 

defined by Statement 1: 

 

, while 

 

. 

 

What we have to show is that the intermediate points satisfy 

the requirements of the axiomatic condition for reciprocal 

change of the assessment in the corresponding change of 

knowledge. 

 

Let us consider two points in the series of intermediate points 

. For each two points 

 and 

, the length of the 

vector , according to the Euclidean metric is: 

 

. 

 

From (6.3) it follows that  

 

. 

 

Then 

 

, i.e. 

 

. 

 

For the assessments of these two points, taking into account 

the conclusion made from Statement 1 and the chosen type of 

 ,  follows that: 

 

 
 

i.e. = . 

 

Then from  and  follows: 

 

= =C. 

 

In summary, it can be stated that from the condition for 

proportional increase of the grade, corresponding to the 

increase of the students’ knowledge  and 

Statement 1 it follows that:  

 

By lines in , defined by two points  

and , and their respective assessments 

 and  obtained by an unknown linear assessment 

function, we can choose new points  according to 

formulas  and determine their 
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corresponding assessments  by the formula (7). 

 

3. GARP ALGORITHM 

 

Based on the described mathematical model, in the MATLAB 

[10] environment we have implemented the GARP algorithm 

through which additional samples are generated on the basis 

of existing input-output samples. The main steps in the 

algorithm are: 

 

1. Input data for the algorithm are identified – a set of s 

input-output samples of the type . 

2. The set of input-output samples is arranged as follows: 

• The one that is closest to the center of the 

coordinate system in  is selected for the first 

element, i.e. the one whose radius-vector has the 

smallest length ; 

• Each subsequent element in the ordered set is 

determined by taking the nearest neighbor among 

the set of unordered elements as the last ordered 

element. 

3. For each two neighbors  and 

 from the ordered series of n-tuple 

factors, an additional series of new training samples of 

the type  is generated using formulas 

. 

This algorithm creates a list of adjacent points in . They 

define a “broken line” (first-degree spline), on which 

additional points and their corresponding assessments are 

generated. Although the points and assessments created in this 

way are not evenly distributed in space, in many cases they are 

sufficient to improve the process of neural network training. 

To test the effectiveness of the GARP method, two groups of 

experiments were performed with assessments of 130 students 

used to form 130 input-output samples.  

 

In the first group of experiments, only the available 130 

samples were used. A relatively efficient neural network was 

obtained with 75 neurons in the hidden layer. A neural 

network was constructed and trained, which gave error levels 

of 1е-5. However, when tested with additional examples that 

are not close to those used in the neural network training, the 

assessments obtained were inaccurate.  

 

The GARP method was used in the second experiment. Using 

50 randomly selected input-output samples, with the help of 

GARP we generated 7350 additional samples (data sets). The 

neural network was trained, tested and validated only on those 

50 basic and the 7350 input-output samples generated from 

them. After that, we tested the trained network with the 80 

samples not used by GARP. 

 

An efficient network with an error of 1e-7 was obtained when 

using 100 neurons in the hidden layer. As a result, there were 

discrepancies between only 2 of the assessments made by the 

teacher and the neural network. Details on the experiments are 

presented in [1]. 

 

Possible improvements and extensions of the GARP 

algorithm aimed at a more even compaction of the space of 

input-output samples , are: 

 

• Generation of secondary samples determined not only by 

two, but also by more adjacent points; 

• Generation of third-level samples between the generated 

secondary samples; 

• Generating samples not only between close neighbors, 

etc. 

 

The creation of new algorithms for space compaction by 

input-output samples , research and solution of 

possible issues are the subject of future research. 

4. CONCLUSION 

 

In practice, it is often necessary to conduct training on 

artificial intelligence systems, where we do not have a 

sufficient amount of data. In terms of the artificial neural 

networks theory, we need a sufficient number or input-output 

samples. Both the human brain and the artificial neuron 

systems need data to perform a training process, data to 

determine its validity, as well as accurate data to test their 

effectiveness. However, when the data we have is insufficient, 

we will encounter challenges not only with training, but also 

for validation and testing, which in turn will raise reasonable 

doubts about the qualities of the modeled neural networks. 

Using the GARP method, for an unknown function of a linear 

nature  even with a small 

sample of basic examples, we were able to create a large 

number of additional samples for effective training of an 

artificial neural network approximating the function . 
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