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ABSTRACT 

Proteases of human pathogens are becoming 
increasingly important drug targets [1]. Especially, the 
human immunodeficiency virus type 1 (HIV-1) aspartic 
protease which is an important enzyme owing to its 
imperative part in viral development and a causative agent 
of the deadliest disease known as acquired immune 
deficiency syndrome (AIDS). Hence, it is necessary to 
understand the substrate specificity and to interpret this 
knowledge in practical and useful ways [2]. Therefore, a 
rational design of an efficient inhibitor requires a good 
understanding of the HIV-1 protease specificity, i.e., 
knowing which amino acid sequences are cleaved by the 
protease and which are not [3]. This is, however, difficult 
since it cleaves at several different sites that have little or 
no sequence similarity.  

Experimental methods of identification of HIV-1 
protease cleavage sites are generally time-consuming and 
labor-intensive, that's why using machine learning methods 
to predict cleavage sites and optimize results has become 
highly desirable [4]. 

Key words: HIV-1 protease, Cleavage sites, Recurrent 
Neural Networks, Long Short-Term    Memory, Machine 
learning, Pseudo amino acid composition. 

1. INTRODUCTION 

Proteases of human pathogens are becoming 
increasingly important drug targets, hence it is necessary to 
understand their substrate specificity and to interpret this 
knowledge in practically useful ways. New methods are 
being developed that produce large amounts of cleavage 
information for individual proteases and some have been 
applied to extract cleavage rules from data. However, the 
hitherto proposed methods for extracting rules have been 
neither easy to understand nor very accurate. To be 
practically useful, cleavage rules should be accurate, 
compact, and expressed in an easily understandable way 
[5]. 

HIV-1 protease is the principle etiologic agent of AIDS 
discovered by Gallo and coworkers in 1984 [6]. It is able 
to infect and destroy the human immune system, and 
allows life threating infection. HIV-1 PR, a homodimeric 
enzyme belonging to aspartate family also known as 
aspartyl retropepsin, plays a crucial role in viral maturation 
[7]. HIV constructs many of its protein in one long piece 
consisting of several tandemly linked proteins. HIV-1 PR 
has a responsibility to cleave Gag and Gag-Pol 
polyproteins into their component proteins responsible for 
the maturation of new virions, which can then infect new 
cells [4]. Thus, an HIV-specific protease is necessary for 
the HIV to make more functional viruses. Without HIV-1 
PR, it is not possible for HIV to replicate due to 
unavailability of infectious virion and it remains 
uninfected. 

Currently, researchers have partially succeeded to 
develop HIV protease inhibitors that are accessible for 
HIV treatment. However, they have conditional drawbacks 
such as poor bioavailability and excruciating 
infectiousness [8] that lead researchers to proceed with 
their endeavors to create novel and more potent 
compounds. Also, due to the tremendous amount of 
potential peptides, it is difficult to discover inhibitors by 
ordinary ways to deal with testing various types of peptides 
one by one, which is more labor-intensive and time-
consuming. 

The purpose of our study is to understand the substrate 
specificity of human immunodeficiency virus (HIV)-1 
protease because it is important when designing effective 
HIV-1 protease inhibitors. Furthermore, characterizing and 
predicting the cleavage profile of HIV-1 protease is 
essential to generate and test hypotheses of how HIV-1 
affects proteins of the human host.  

The extraction of HIV-1 protease cleavage has two 
motives: one is to describe the experimental data available 
to prove the power of the algorithm that will be used, the 
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other is to design a method of predict new cleavage sites. 
In the latter case, which is by far the most common 
motivation, the test data must be different from the data 
used to form the algorithm. A correct evaluation of the 
methods must be done on test data that have not been 
involved in the formation of the algorithms. This is not 
usually done especially that the currently available 
computer methods for predicting protease cleavage of 
HIV-1 can be improved. 

2. BACKGROUND 

To help medicine and find solutions to solve the 
problem of HIV protease identification, researchers tend to 
adopt in silico approaches to predict HIV-1 protease 
cleavage sites [10]. In recent years, there are studies that 
have incorporated biological features related to this case to 
machine learning algorithms and that have provided better 
predictive performance compared to traditional 
approaches. 

Machine learning algorithm is one that can learn from 
experience with respect to some class of tasks and a 
performance measure. Machine learning methods are 
suitable for molecular biology data due to the learning 
algorithm's ability to construct classifiers / hypotheses that 
can explain complex relationships in the data. Recently, 
several works have approached the HIV-1protease 
specificity problem by applying techniques learning 
machine. In [21], [22] the authors used a standard 
feedforward multilayer perceptron (MLP) to solve this 
problem, achieving an error rate of 12%. In [4] the authors 
confirm the result of [23], [22] using the same data and the 
same MLP architecture, showing that a decision tree was 
not able to predict the cleavage as well as MLP. In [12] the 
authors showed thatHIV-1 protease cleavage is a linear 
problem and that thebest classifier for this problem is 
linear-SVM (L-SVM). 

You et al. [11] incorporated machine learning 
algorithms including artificial neural network (ANN) and 
support vector machine (SVM) to examine the specificity 
of an HIV-1 protease for the discovery and development of 
effective protease inhibitors. Kontijevkis et al. [4] used an 
extensive dataset collected from HIV proteome research, 
and designed a rule-based predictive model on rough sets 
to analyze the specificity of HIV-1 protease. 

Several bioinformatics researchers have attacked this 
problem using a diversity of methods [9]. It was early on 
claimed that the problem required non-linear methods. 
However, it was demonstrated that the relatively few 
experimental data (362 octamers at the time) did not 
support a non-linear model [12]. Few years later, when 
more experimental data were available, linear methods 
[linear support vector machines (LSVMs)] still performed 

better than non-linear ones [5]. This was when the methods 
were evaluated through out-of-sample testing on a large 
dataset from human proteins [20]. 

So It was speculated that linearity could be a 
characteristic for the HIV-1 protease cleavage problem [9]. 
(Note that linear and non-linear relate to when the standard 
orthogonal encoding is used). 

Other studies were used with less precision on the 
results obtained: In the article [25], authors presented a 
web server for predicting cleavage by many different 
proteases, using support vector regression together with 
many different features. Features were encoded with bi-
profile Bayesian feature extraction and selected using a 
Gini score. They used the larger dataset from Schilling and 
Overall plus other published data on cleavage of full 
proteins. Niu et al. (2013) in the article [26] used a 
correlation-based feature subset selection method 
combined with genetic algorithms to search for the best 
subset in a large set of features. This gave better 
performance than the standard methods when evaluated 
with cross-validation. Other authors [27] used a sequence 
representation and introduced a feature selection method 
(that removed features). They reported improved 
prediction results with this when tested with cross-
validation on a small dataset with only cleaved octamers. 

3. METHODOLOGY AND EXPERIMENTS 

3.1 Datasets 

The datasets used, which are the most important part, 
are available at the UCI Machine Learning Repository. The 
tools used are all standard and easily available. 

In the present study, two benchmark datasets were used 
in our proposed method. The benchmark datasets are 
collections of octamers containing cleavage and non-
cleavage sites as shown in Table 1. The 746 and 1625 
datasets contain 746 (401 cleaved and 345 non-cleaved) 
and 1625 (374 cleaved and 1251 non-cleaved). 

 
Table 1: Two benchmark datasets for HIV-1 cleavage site 

prediction. 

Amino acids are the essential components of peptides and 
proteins, and each of 20 amino acids has unique but 
different properties. The combination of the properties of 
various residues within a protein can influence 
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diversification and characteristics of the protein structure 
and function. The aim of the study is to develop a better 
prediction model using various combinations of features 
that can predict the HIV-1 protease cleavage sites. 

3.2 Methods 

In [12] authors assert that neural networks are not to be 
used for classifying this database. Traditional neural 
networks assume that all inputs (and outputs) are 
independent of each other. But for many tasks that’s a very 
bad idea. As in the case of this database. RNNs are called 
recurrent (Figure 1.) because they perform the same task 
for every element of a sequence, with the output being 
depended on the previous computations. Another way to 
think about RNNs is that they have a “memory” which 
captures information about what has been calculated so far. 

Figure 1:  Operation and logic of RNNs 

LSTM (Figure 2.) replaces the normal RNN cell and uses 
an input, forget, and output gate. As well as a cell state. 

Figure 2:  Operation and logic of LSTM (A single 
memory block is shown for clarity) 

These gates each have their own set of weight values. 
The whole thing is differentiable (meaning we compute 
gradients and update the weights using them) so we can 
backprop through it. 

We want our model to be able to know what to forget, 
what to remember. So when new a input comes in, the 
model first forgets any long-term information it decides it 
no longer needs. Then it learns which parts of the new 
input are worth using, and saves them into its long-term 
memory. And instead of using the full long-term memory 

all the time, it learns which parts to focus on instead. 
Basically, we need mechanisms for forgetting, 
remembering, and attention. That's what the LSTM cell 
provides us. 

By this method, we want to predict if an octamer (a 
sequence of 8 amino acids) will cleave based on the 
sequence composed of 8 letters representing amino acids. 
There are 20 possible amino acids in each seqeunce (A, C, 
D, E , F ,…). So one-hot encode our sequences by putting 
1 in the corresponding letter and 0 otherwise. This means 
each sequence will be represented by a (8 x 20) 
dimensional matrix. 

We will the use character sequences which make up 
each case as our X variable, with Y variable as 1/-1 
indicating if the case will cleave or not. We use a stacked 
LSTM model and a final dense layer with softmax 
activation (many-to-one setup). Categorical cross-entropy 
loss is used with adam optimizer. A 20% dropout layer is 
added for regularization to avoid over-fitting. 

3.3 LSTM Network Architectures 

The LSTM contains special units called memory 
blocks in the recurrent hidden layer. The memory blocks 
contain memory cells with self-connections storing the 
temporal state of the network in addition to special 
multiplicative units called gates to control the flow of 
information. Each memory block in the original 
architecture contained an input gate and an output gate. 

The input gate controls the flow of input activations 
into the memory cell. The output gate controls the output 
flow of cell activations into the rest of the network. Later, 
the forget gate was added to the memory block [17]. This 
addressed a weakness of LSTM models preventing them 
from processing continuous input streams that are not 
segmented into subsequences. The forget gate scales the 
internal state of the cell before adding it as input to the cell 
through the self-recurrent connection of the cell, therefore 
adaptively forgetting or resetting the cell’s memory. In 
addition, the modern LSTM architecture contains peephole 
connections from its internal cells to the gates in the same 
cell to learn precise timing of the outputs [18]. 
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Figure 3: LSTM RNN architectures 

The goal of the LSTM is to estimate the conditional 
probability p(y1, . . . , yT′ |x1, . . . , xT ) where (x1, . . . , 
xT ) is an input sequence and y1, . . . , yT′ is its 
corresponding output sequence whose length T′ may differ 
from T. The LSTM computes this conditional probability 
by first obtaining the fixed-dimensional representation v of 
the input sequence (x1, . . . , xT ) given by the last hidden 
state of the LSTM, and then computing the probability of 
y1, . . . , yT′ with a standard LSTM-LM formulation whose 
initial hidden state is set to the representation v of x1, . . . , 
xT :

 
Figure 4:  Equation LSTM 

In this equation, each p(yt|v, y1, . . . , yt−1) distribution 
is represented with a softmax over all the words in the 
vocabulary. We use the LSTM formulation from Graves 
[19].  

4. EXPERIMENTS AND RESULTS 

In this study, we propose a prediction method based on 
a Recurrent Neural Network architecture to improve and 
optimize the results of HIV-1 protease cleavage sites. 

The data contains lists of octamers (8 amino acids) and 
a flag (-1 or 1) depending on whether HIV-1 protease will 
cleave in the central position (between amino acids 4 and 
5). 

 

 

 

Figure 5: Schematic representation of the HIV-1 protease 
and substrate subsists. The scissile bond is located between 
the P’1 and the P1 subsists. 

The octamer is represented using one-hot encoding, 
where each amino acid is encoded to a 20-bit vector, with 
19 bits set to zero and one bit set to one. This maps each 
octamer to an 8 by 20 binary matrix.  

Two benchmark datasets were used in our experiments 
[13]: one containing 746 octamers and another 1625 (The 
datasets are available at the UCI Machine Learning 
Repository). 

In the proposed approach, we use an LSTM (Long 
Short-Term Memory) based (RNN) Recurrent Neural 
Network architecture [14]. Unlike feedforward neural 
networks, RNNs take as their input not just the current 
amino acid, but also every other one they perceived 
previously in time [12]. Moreover, LSTM which is a 
particular type of Recurrent Neural Networks contains 
special units called memory blocks in the recurrent hidden 
layer. The memory blocks contain memory cells with self-
connections storing the temporal state of the network. This 
way, our built model learns the long-term context and 
dependencies between the amino acids composing each 
octamer input sequence. 

In addition, LSTMs have multiplicative units called 
gates which control the flow of information into the 
memory cell and out of the cell to the rest of the network 
[15]. The gates block or pass on information based on its 
stregth and significance which they filter using their own 
set of weights. These weights are adjusted via the recurrent 
networks learning process which we carefully optimize 
[16]. Namely, the cells learn when to allow data to enter, 
leave or be deleted through the iterative process of making 
predictions, backpropagating error, and adjusting weights 
via iterative optimization [11]. 

We use the character sequences which make up each 
octamer case as our input variable, while the output 
variable is 1/-1 indicating if the case will cleave or not. We 
use a stacked LSTM model, a final dense layer with 
Softmax activation (many-to-one setup) and categorical 
cross-entropy loss is used with ADAM optimizer. A 20% 
dropout layer is added for regularization to avoid over-
fitting. In addition, we use stratfied cross-validation to 
evaluate the objective performance of cleavage site 
prediction. And calculated the specificity, sensitivity and 
AUC (Area Under the ROC Curve) to quantify how good 
the model does on the test data. We implemented our deep 
learning model using Keras, a high level neural network 
API, with Tensorflow as a backend.  

We used the algorithm stacked LSTM model and a 
final dense layer with softmax activation (many-to-one 
setup) on all data. Categorical cross-entropy loss is used 
with adam optimizer. A 20% dropout layer is added for 
regularization to avoid over-fitting. 
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Compared to SVM, RNN shows a clear improvement 
in cross validation (Figure 5). In other words, in almost all 
results deep recurrent networks show improvement 
compared to SVM. To overcome the lower results of linear 
SVM classifier on dataset operated by Rögnvaldsson et al. 
(2015) in [13], he has trained another nonlinear SVM 
classifier and has shown that 746 and 1625 dataset are 
linear while Schilling and Impens are nonlinear. 

On the contrary, our approach is to train a single 
nonlinear classifier (RNN). There is a single reason for 
this. The application hasn’t changed and the datasets are 
only samples of a whole population. While we accept that 
746 and 1625 are more likely to be linear, in practice one 
doesn’t know if a completely new sample would behave in 
accordance to linear models. So we can conclude that a 
properly regularised RNN architecture can be appropriate 
for all datasets. In other words, a single model should 
suffice. 

 

Figure 5. Performance comparison of Recurrent Neural 
Network and SVM [13] on the two separate databases. 

Table 2 shows our approach alongside Oğul [28]. To 
the best of our knowledge, Oğul  has achieved the best 
results thus far on 1625 dataset. It is to be noted that, 
compared to VCMC, deep Recurrent Neural Network 
(RNN) classifier has almost the same performance on 1625 
dataset. But, while Oğul has focused its attention to a 
single dataset and had only reported VCMC’s accuracy on 
1625 dataset, LSTM results are tested on two datasets. It is 
easy to tune the classifier for a single dataset and boost the 
performance on it while losing the performance on other 
datasets. 

Therefore, we recommend testing on multiple datasets. 
Thus, it can be argued that RNN’s results are more 
comprehensive and the resulting classifier is more 
generalised. 

 

Table 2 : Accuracy results for RNN and VCMC. 
 746 (%) 1625 (%) 

LSTM 96,4 97,09 
VCMC NA 97 

 
N/A represents results that are not available and are 
not reported by the original authors (Oğul, Ref [28]) 

Thus, below the results obtained on the global tests 
(dataset) with extracts of source code: 

 

Table 3: Results that show the accuracy rate 
Test accuracy : 0,96717 
 Precision Recall F1-score 

0 0,92 0,99 0,95 
1 0,99 0,96 0,97 

AVG 0,97 0,97 0,97 

Table 3: Results that show the accuracy rate 
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            Figure 6. ROC curve 

 
            Figure 7. Model accuracy 

 
            Figure 8. Model loss 

 
 

 

5.     CONCLUSION 
 

Many of the drugs that are used by HIV infected 
humans can be catalogued as protease inhibitors. These 
drugs mainly restrict the protease activity and therefore 
reduce the formation of mature proteins. By studying the 
protease and predicting its cleavage sites, one can hope to 
achieve better drugs. Predicting HIV-1 protease cleavage 
problem has been addressed by many machine learning 
approaches but its classification false positive and the lack 
of an approach with good generalisation remains a 
challenge. Furthermore, the experiments demonstrate that 
the proposed approach shows a clear improvement in 
predicting cleavage by HIV-1 protease. They also show that 
the size of training data and the choice of the hyper-
parameters are very important factors when it comes to 
performance. In addition, the results obtained indicate a 
better precision with a very low error rate. We have tested 
this approach on several datasets and achieved 96,7% 
accuracy. 
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