
        Fadi Imad et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1186 - 1193 
 

1186 
 

 

 
ABSTRACT 

Stereo vision systems that capture 3D space data are of great 
use as computer interface systems for emerging technologies 
such as VR and Robotics. They are inexpensive, yet practical 
implementation is challenged by high CPU processing power 
requirement. Thus, in this paper a scheme is developed to 
exploit GPUs in the processing of high definition images 
required to track an object position and orientation in 3D 
space in real-time. This is done by porting and optimizing 
essential processing algorithms to operate efficiently in 
parallel on a GPU. The object detected is a pen, with the 
position of the tip and it's orientation tracked in real-time. 
The writing captured by the system is than compared to the 
one from commercial digitizing tablet. The results achieved 
indicated that pen tip can be tracked in 3D space with a 
percentage error below 1.7% within a distance of 40cm from 
the stereo camera shooting at a frame rate of 30 frames per 
second. 

Key words : Stereo vision, real-time vision, parallel 
computing, 3D tracking.  

1. INTRODUCTION 

Traditional human computer interface devices such as knobs, 
sliders, joysticks, keyboards and mice have been for long the 
most commonly used for many tasks. However, these 
interface devices fail to meet the requirements or cripple 
many emerging technologies which require manipulation in 
3D space such as virtual reality and control of robots and 
drones etc. Many researchers proposed visual techniques as a 
viable solution for 3D tracking and robotics control as these 
require no special hardware beside the widely available 
consumer grade web cameras. A similar system is proposed 
where cameras are used to construct a low-cost stereo vision 
system to track the position and orientation of an object in 3D 
space. To ease the process of testing the system performance 
the object to be tracked was chosen to be a pen so the actual 
pen traces could be compared against captured motion of pen 
tip. 

 
 

Stereo vision systems which capture handwriting has been 
previously investigated such as systems by M. Moriya et 
al.[1], Dave Jay et al.[2]and Fadi Imad et al..[3] Yet these 
systems were challenged by the inability of CPU to process 
stereo HD frames at a high frame rate for accurate real-time 
tracking. This can be visible in the data points being sparse 
thus the generated writing becomes unclear. Among the 
solutions implemented to solve this matter was resampling 
the data to compensate for the drop of frame rate like in the 
work done by G. A. Fink et al. [4]. Yet, this solution was only 
viable when the system is not operating in real-time. Since 
real time stereo vision requires a lot of processing power to 
achieve high accuracy and high frame rate simultaneously. 
Thus, the use of GPU is proposed to allow for higher accuracy 
and frame rate.  
The structure of GPU consists of thousands of less powerful 
cores, unlike CPU which has a few powerful cores. These 
cores allow the GPU to offer more processing power by 
allowing many sessions of the program to run in parallel as 
shown in Figure 1.  

 
Figure 1: GPU Processing Versus CPU 

This is very efficient when the same computation has to be 
performed on many elements of the data, which is the case of 
many image processing algorithms that operate on pixels 
independently or rely only on the neighborhood around 
pixels. Since many desktop computers and laptops nowadays 
come with fairly powerful Graphics Processing Units 
utilizing them will not inflict any additional cost. Researchers 
such as Hongjian Wang et al.[5] and Ge Li et al.[6] have 
utilized GPU in stereo vision, however their applications 
required a full depth map which requires huge amount of 
computation to solve correspondence problem which is not 

 
 

GPU Accelerated Stereo Vision System to Capture Handwriting Information 

Fadi Imad 1, Sharifah Mumtazah Syed Ahmad 2, Shaiful Jahari Hashim 3, Khairulmizam Samsudin4 

Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia 
1fadiaburaid@gmail.com 

2s_mumtazah@upm.edu.my 
3sjh@upm.edu.my 

4khairulmizam@upm.edu.my 

 
                 ISSN 2278-3091 

Volume 8, No.4, July – August 2019 
International Journal of Advanced Trends in Computer Science and Engineering 

Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse29842019.pdf 
https://doi.org/10.30534/ijatcse/2019/29842019 

 

 

 



        Fadi Imad et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1186 - 1193 
 

1187 
 

 

the case with our application of stereo vision as computer 
interface. For tracking object’s location and orientation in 3D 
space tracking 2 points is sufficient.  
This paper presents an efficient parallel processing scheme to 
allow for the use of GPU in Pen tip position and orientation 
tracking. The developed structure enables visual pen input 
capture in real time. The paper is organized in the following 
order: In Section 2 the system components and their 
configuration are described. Then in Section 3 the algorithms 
applied are explained. After that, in Section 4 the system 
performance was evaluated. Finally, the findings and 
observations are presented in Section 5. 

2. SYSTEM DESCRIPTION 

2.1 System components 

 
Figure 2: Experimental Setup 

The system hardware consists of three major components as 
displayed in Figure 2. The main component is the stereo 
camera pair which is made of two identical of the-shelf 
webcams. The webcams have a resolution of up to 1920×1080 
at 30 frames per second. They were mounted as close as 
possible to the coplanar configuration with a lateral 
displacement of 10 cm. 
 

Figure 3: Stereo Camera Configuration 

The second component is the pen to be tracked. To allow for 
detecting the pen position based on color filtering the pen was 
labeled with two colored markers made of non-glossy colored 
tape to avoid ambient light reflection which affects the color 
contrast. Green and yellow colors were purposely chosen for 
the markers in order to avoid interference from background 
objects as green and yellow objects are rarely used indoors. [7] 
Connected Component Labeling (CCL) algorithm which is 
used in detecting blobs is serial by nature as it performs two 
raster scans when processing pixels. To avoid this, a 
parallelized CCL algorithm by Ondˇrej ˇS´tava et al. [8] was 

tested, and the improvement in comparison to using CPU was 
found to be minor. The algorithm reduced processing time by 
slicing high resolution images into smaller tiles which are 
then processed by GPU threads. However, this step was 
followed by a slower iterative merging process to give the 
connected components in different tiles the same labels by 
processing the boundaries of tiles. Therefore, CCL was 
abandoned and two labels of different colors on the pen were 
used to differentiate the two blobs. 
The final component is a desktop computer to process the 
captured images. The computer is equipped with a quad core 
i7 processor, 8 GB of RAM and Nvidia GTX 1080 graphics 
card with 2560 CUDA cores. Image processing and digitizing 
software was developed in C++ using OpenCV library to 
capture and display images.[9] The actual image processing 
algorithm kernel was written in CUDA C. The system 
components were placed on a desk which also represents the 
writing surface. The desk is large and covered with grid paper 
to ease the testing and evaluation of the detection range and 
accuracy.  

2.2 Stereo camera system calibration 

The first crucial step that precedes the use of stereo cameras is 
the calibration process. Calibration was performed to 
compute the extrinsic and intrinsic parameters of the camera. 
The extrinsic parameters of a camera specify the position and 
the orientation of the camera pair with respect to each other in 
the coordinate system. The rotation matrix generated enables 
us to rotate and rectify the image frames to be coplanar 
although the cameras are not in perfect coplanar 
configuration. In addition, the translation matrix allows us to 
find the baseline displacement between the cameras to higher 
accuracy. The intrinsic parameters describe the inherent 
properties of the camera optics, including the focal length, the 
image center, the image scaling factor and the lens distortion 
coefficients. Distortion coefficients are used to remove the 
distortion due to lens imperfections which produces curved 
lines where straight lines should take place. Whereas the 
other parameters are used to solve for 3D information in the 
later steps. The intrinsic and extrinsic parameters can be 
found by relating the 3D points in the real world and their 
corresponding 3D projections. For this an object of known 
geometry had to be used. The calibration methods we 
followed used the rectangular checkerboard patterns (Tsai 
grid[10]) as shown in Figure 4, while depending on Zhang's 
[11] Camera Calibration algorithm to solve the following 
equation: 

                                                                (1) 
 

                       



        Fadi Imad et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1186 - 1193 
 

1188 
 

 

0 11 12 13 1

0 21 22 23 2

31 32 33 3

0
0

1 0 0 1
1

x

y

X
u a u r r r t

Y
v a v r r r t

Z
r r r t

 
       
              
            

 

          (2) 

u and v represent the point projection in pixels, X, Y and Z are 
known as world homogeneous coordinates.[12] While K and 
[R|T] represent the intrinsic and extrinsic parameters 
respectively. The extrinsic parameters matrix consists or R 
which is the rotation matrix and T which is the translation 
matrix. (u0, v0) is a principal point which represent the center 
of the image and ax, ay are focal lengths expressed in 
pixel-related units. rnn are the rotation parameters, while tn 
represents the translation parameters. 
 

Figure 4: Stereo Camera Calibration Checkerboard 

During the calibration process multiple images of the 
calibration checkerboard were captured in different 
orientations. The edges of the black squares were detected and 
used along with the known size of the square in real world to 
solve for the calibration parameters. The parameters were 
used to construct the 3D projection matrix which was then 
saved in a file for later use. 

3. TRACKING ALGORITHM 
The algorithm developed tracks pen tip position and 
orientation in the 3D space from a pair of 2D images. The 
images used for tracking were captured at a resolution of 
1280×720 pixels. Each camera captures 30 video frames per 
second. The sequence of processes followed in the algorithm 
is displayed in Figure 5. Initially the camera calibration 
matrices were read from the files generated earlier and were 
used to construct transformation maps. Then a program loop 
was initiated, and frames were captured. After that the frames 
were undistorted and rectified using the maps constructed 
previously. Next the colored labels were filtered from the rest 
of the image using Hue, Saturation and Value (HSV) color 
space. Then in steps 6 to 7 morphological operations were 
performed in filtering noise and in edge detection. Following 
that the centroids of the detected labels were found. After that, 
the centroids and edges were used to detect the pen tip in each 
frame. Finally, the pen tip positions in the two frames were 
used to find the 3D position and orientation of the tip using 
triangulation.  

To achieve 3D tracking while maintaining a high frame rate 
the GPU was used when repetitive calculations were 
performed on image pixels. This was the case with steps 4 to 9 
of the algorithm. On the other hand, the CPU was used when 
a single calculation was performed to utilize the higher 
processing speed and to avoid the unnecessary latency 
associated with copying variables to GPU memory. 
Furthermore, all steps which does not have to be repeated in 
the capturing and processing loop such as variable 
declarations and generation of transformation maps were 
placed outside the loop.  

 

 
Figure 5: General Flowchart of Tracking Algorithm 

3.1 Generating transformation maps 

The calibration files generated earlier which contain the 
calibration parameters matrices were read into 2D arrays. To 
avoid unnecessary repetition of complex matrix calculations 
in the GPU whenever the corrected location of a pixel is to be 
found after distortion removal and rectification, 
transformation maps which contain the position of the pixel 
pertain to the corrected pixel in the original image. This was 
done by firstly removing the distortion. There are two types of 
distortion considered radial and tangential. Radial distortion 
can either be negative (pincushion) or positive (barrel) and it 
increases the further the pixel is from the image center as 
shown in Figure 6. 



        Fadi Imad et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1186 - 1193 
 

1189 
 

 

Figure 6: Types of Radial Distortion 
 
Whereas tangential distortion is caused by the lens not being 
perfectly aligned with the camera sensor. Using the distortion 
coefficients, the distortion could be corrected according to the 
following equations:  
For radial distortion 

                           (3) 
 

                           (4) 
 
For Tangential distortion 

                          (5) 
 

                         (6) 
 

Where (x, y) are the coordinates in the input image and 
(xcorrected, ycorrected ) is the position on the corrected output 
image and  r is the radial distance from the center of the 
image. k1, k2 and k3 are the radial distortion coefficients, while 
p1 and p2 are the tangential distortion coefficients. These 
coefficients were obtained through the calibration process 
(see Sect.2.2). After the undistortion was described in the 
transformation maps the rotation and translation matrices 
were used to make both camera image planes coplanar. This 
makes all the epipolar lines parallel and allows for fining 
depth using triangulation. The pixels are shifted to simulate 
rotating cameras vertically and horizontally to achieve zero 
angles between their 3D axes. Then translating a camera to 
have zero translation between their axes in all directions 
except the direction of baseline displacement. Finally, these 
translations and translations were incorporated into the 
transformation maps.  
 
3.2. Undistorting and rectifying images 
 
After the transformation maps were created the algorithm 
enters into the capture and image processing loop. Two 
images were captured by the stereo camera then passed to the 
GPU along with the x and y transformation maps of each to be 
undistorted and rectified. Each GPU thread takes a pixel from 
the target image find the location of its corresponding pixel in 
the original image from the x and y transformation maps. 
Then the pixel value is copied from the original image and 
placed in the target pixel as illustrated in Figure 7. The same 
process was repeated for all the target image pixels in parallel 
and since the process involves only coping of pixel values and 
no repetitive complex undistortion and transformation 
calculations this increases the speed considerably. 

3.3 HSV thresholding 
 

The next step after correcting for distortion and camera 
transformations was to detect the colored markers on the pen. 
To do so the image color representation is changed from RGB 
to HSV which is good in separating color components and 
more robust to lighting changes.[13] Then the colors of the 
two labels were filtered and labeled on a single channel 
grayscale image frame. Green pixels were given a value of 
255 (white) and yellow were given the value of 127 (gray). 
This process was written in a CUDA C kernel to run once for 
every pixel in a separate GPU thread. Algorithm 1 presents 
the pseudo-code and the output is displayed in Figure 8. 

 
Figure 7: Image Undistortion and Rectification Process 

 
 

 
 
 
 
 

Algorithm 1: 
r ← rgbaPixel[xcoordinate; ycoordinate; channel1] 
g ← rgbaPixel[xcoordinate; ycoordinate; channel2] 
b ← rgbaPixel[xcoordinate; ycoordinate; channel3] 
maxrgb ← maximum(r, g, b) 
minrgb ← minimum(r, g, b) 
diff ← maxrgb - minrgb 
V ← maximum(r, g, b) 
if V = 0 then 

H ← 0 
S ← 0 

else 
S ← diff/V 

if diff < 0.001 then 
H ← 0 

else 
if maxrgb = r then 

H ←60 * ((g * b)/diff) 
if H < 0 then 

H ← H + 360 
else if maxrgb = g then 

H ← 60 * (2 + ((b - r)/diff)) 
else 

H ← 60 * (2 + ((b - r)/diff)) 
S ← S * 255 
H ← H/2 
if (H > 45 & H < 90) & (S > 100 & S < 255) & (V > 50 
& V < 255) then 

hsvImage[x, y] ← 255 
else if (H > 20 & H < 30) & (S > 100 & S < 255) & (V 
> 50 & V < 255) then 

hsvImage[x, y] ← 127 
else 

hsvImage[x, y] ←   0 



        Fadi Imad et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1186 - 1193 
 

1190 
 

 

 
 

 
(a) Input image 

 
(b) Output image 

Figure 8: HSV filtering Operation 
 

3.4. Erosion and morphological closing  
 

Morphological operations were applied to each pixel with 
either a value of 255 or 127 of the output from the previous 
step in parallel using a GPU kernel. Firstly, erosion was 
applied to remove any noise from the background. Then 
morphological closing is applied to fill the gaps in the 
connected component. This was done by applying a dilation 
operation followed by erosion. The operations were applied 
using the structuring elements in Figure 9. 
 

 
Figure 9: Structuring elements used 

 

3.5 Edge detection 
 
The edges of the labels were detected from the output of HSV 
filtering. Finding the boundaries of the blobs was done so it 
could be used in the final stages to locate the pen tip which lies 
on the boundary of the green label. The edge was found by 
finding the difference between corresponding pixels in eroded 
and dilated images as shown in Algorithm 2. 

 

3.6 Find connected components centroid 

The centroids were found from the detected edges because 
processing only edges pixels will contribute in reducing 
processing time. To find the centroid of the blob, it is defined 
as a point, whose x value is calculated by summing the x 
coordinates of all pixels in the blob and then dividing by the 
total number of pixels and similarly for y. In mathematical 
terms the centroid, (xc, yc) is calculated as follow: 
 

1

1 N

c i
i

x x
N 

                                                                    (7) 

1

1 N

c i
i

y y
N 

                                                                    (8) 

 
The total number of white and gray pixels and the sum of x 
and y values of each were found using the GPU as shown in 
Algorithm 3, while the final calculation was performed on the 
CPU. This was done since the final calculations were not 
repetitive. 
 

3.7 Detecting the pen tip 
To finally detect pen tip in each frame, the equation of the line 
connecting the two centroids was found. Then the line was 
extended from the centroid near the tip of the pen until it 
crosses the edge. The position of the tip was at a small 
distance from the crossing point as shown in Figure 10. This 
process is iterative however due to the number of pixels along 
the line being small it can be performed on the CPU without 
impacting the performance. 

 
 

Algorithm 2: 
pxldilate ← dilateImage[x, y] 
pxlerode  ← erodeImage[x, y] 
if (pxldilate = 255) & (pxlerode = 0) then 

edgeImage[x, y] ←  255 
 

Algorithm 3: 
ngraypxl ← 0// number of gray pixels 
sumgrayx ← 0// sum of x of gray pixels 
sumgrayy ← 0//sum of y of gray pixels 
nwhitepxl← 0// number of white pixels 
sumwhitex← 0// sum of x-coordinates of white pixels 
sumwhitey← 0// sum of y-coordinates of white pixels 
if edgeImage[x; y] = 127 then 

ngraypxl← ngraypxl + 1 
sumgrayx← sumgrayx + x 
sumgrayy← sumgrayy + y 

else if edgeImage[x; y] = 255 then 
nwhitepxl← nwhitepxl + 1 
sumwhitex← sumwhitex + x 
sumwhitey← sumwhitey + y 



        Fadi Imad et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1186 - 1193 
 

1191 
 

 

 
Figure 10: Detecting the pen tip 

 

3.8 Finding pen tip 3D coordinates 
 

By having the location of pen tip in both frames 
triangulation could be performed to get depth information. By 
knowing the focal length of the cameras and the baseline 
displacement from the calibration process carried out earlier 
3D position can be found for the setup in Figure 11 as follow: 

 
                                                               (9) 

 
From equivalent triangles 

  
f bz

disparity


                                                              (10)             

  
xl zx

f


                                                                       (11) 

  
yl zy

f


                                                                      (12)  

Figure 11: Top View of the stereo setup 
 

3.9 Finding pen orientation 
 
The orientation of the pen can be represented by 2 angles the 
altitude and azimuth as shown in Figure 12. 

The altitude is the angle of elevation from the writing surface 
and the pen. While the azimuth is the angle formed between 
the pen projection on the writing surface and the positive of y 
axis. Knowing the points p1 (x1, y1, z1) and p2 (x2, y2, z2) the 
altitude and azimuth were calculated as follow: 
 
 

 
 

2 2 2
2 1 2 1 2 1( ) ( ) ( )Distance x x y y z z         (13) 

 

1 2 1( )sin z zAltitude
Distance

 
                                          (14) 

 
1 2 1

2 1

( )tan
( )
x xAzimuth
y y

 



                                          (15) 

Figure 12: Pen Orientation Representation 
 
4. TESTING AND EVALUATION 
 
To evaluate the system two tests were performed one for the 
accuracy of the position tracking and the other is for the 
tracking speed. 

4.1 System accuracy  
 
To test the accuracy of the system, a device that has higher 
accuracy has to be used. Therefore, Wacom® Intous tablet 
was utilized for measurement. The colored markers were 
attached to Wacom stylus and the tablet is placed in front of 
the stereo camera.  The tablet was connected to another 
computer to not inflict additional processing load on the main 
computer. Then some straight lines were drawn using a ruler 
along x axis and y axis. The length of the lines tracked by both 
the tablet and the stereo vision system were recorded. The 
results obtained were then compared and are shown in Table 
1. 
 

Table 1: Experimental Results Comparing Wacom Tablet 
Measurements to Measurements Obtained from the Stereo 

Camera 

 Wacom 
Obtained 
Length 
(mm) 

Camera 
Obtained 
Length 
(mm) 

Error 
 
(mm) 

Percent 
Error 
( %) 

Distance to 
Stereo Pair 

(mm) 

x 
(D

ep
th

) 52.75 53.23 0.48 0.9 250 
53 53.65 0.65 1.2 300 

51.50 52.36 0.86 1.7 350 
50.75 51.64 0.89 1.7 400 

y 

50.25 50.87 0.62 1.2 250 
51.50 52.22 0.72 1.4 300 
51.00 51.85 0.85 1.7 350 
50.75 51.63 0.88 1.7 400 



        Fadi Imad et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1186 - 1193 
 

1192 
 

 

The data collected in Table 1 indicated that the accuracy of 
writing data obtained by the stereo system had an error of less 
than 1mm when writing was within 400mm from the 
cameras. This is a significant improvement compared to the 
similar system using CPU by Fadi et al3 with image 
resolution of 640×480 pixels where error was in the range of 
4mm within the same range from the cameras. 
 
Following the initial test and additional visual test was 
conducted by drawing a shape on the tablet and tracking it in 
real-time using the stereo cameras. The graphs for the data 
collected from both systems were overlaid on a single plot 
shown in Figure 13. The data achieved align with the 
previous data as the error has increased as the distance x from 
the tablet increased. 

 

Figure 13: Tablet Position Versus Stereo Camera 
 

After examining the system position detection accuracy, the 
tilt angle detecting accuracy was examined. Wacom® stylus 
was tilted back and forth while being tracked by the stereo 
camera. Then the data was collected and plotted in Figure 14. 
Since the tablet stylus has a maximum detection range 
between of 60º and -60º, it cannot detect over these limits. The 
data revealed that the system detection accuracy is within 5º 
of the value detected by the tablet. 

 

Figure 14: Tablet Angle Versus Stereo Camera 
 

4.2 System tracking Speed 
 

To evaluate the frame rate of the system different tracking 
algorithms were tried. Each tracking algorithm was run for 1 
minute, the total number of frames were counted and divided 
by 60 seconds to find the average frame rate. The frame rate 
was tested for resolutions of 640×480 pixels and 1280×720 
pixels. 
 

Table 2: Experimental Results Comparing Frame Rate of 
Different Tracking Algorithms 

Resolution Process
ing on 
CPU 
[3] 

GPU 
Processing 
with CCL on 
CPU 

GPU 
Processing 
with Parallel 
CCL [8] 

GPU 
Processing 
with 2 colored 
labels 

640 × 480 14 FPS 22 FPS 28 FPS 30 FPS 
1280×720 4 FPS 14 FPS 17 FPS 30 FPS 
 
The results in Table 2 indicated that the algorithm developed 
could achieve processing at frame rate which is equal to the 
frame rate captured by the camera without any dropped 
frames. This could be achieved for high definition frames 
allowing for high accuracy and sample rate at the same time. 
 
5. CONCLUSION 
 
To make visual pen input systems a viable option compared to 
other input methods the accuracy had to be improved while 
maintaining the frame rate. This was possible only through 
parallel processing of images in GPU. Serial processing 
algorithms were ported to run in parallel on the GPU. The 
experimental results have proven that the system can achieve 
an error bellow 1mm at a frame rate of 30 FPS. The 30 FPS 
was achieved while some system resources are still available 
for additional post processing such as spatial resampling to 
compensate for device specific sampling frequencies and 
variations in the handwriting speed. This frame rate is still 
short of the current sampling rate of digitizing tablets which 
stands at about 200Hz. The 30Hz achieved is sufficient for 
most applications, however higher sampling rate is necessary 
for detecting applications with faster writing speed such as 
signatures.  
 

REFERENCES 
1. M. Moriya, T. Hayashi, H. Tominaga and T. Yamasaki, 

Video tablet based on stereo camera - human-friendly 
handwritten capturing system for educational 
use, Fifth IEEE International Conference on Advanced 
Learning Technologies (ICALT'05), pp. 909-911, 2005. 
https://doi.org/10.1109/ICALT.2005.303 

2. Dave Jay, Venkatesh KS and Jain Garima, Online 3D 
signature verification by using stereo camera & 
tablet,  proceedings of 23rd International Conference in 
Central European Computer Graphics, Visualization and 
Computer Vision, pp. 239-246, 2015. 



        Fadi Imad et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1186 - 1193 
 

1193 
 

 

3. Fadi Imad, Sharifah Mumtazah Syed Ahmad, Shaiful 
Hashim, Khairulmizam Samsudin, Marwan Ali, 
Real-Time Pen Input System for Writing Utilizing 
Stereo Vision, Journal of Computers, 13(9), 1000-1009, 
2018. 

4. G. A. Fink, M. Wienecke and G. Sagerer, Video-based 
on-line handwriting recognition, Proceedings of Sixth 
International Conference on Document Analysis and 
Recognition, Seattle, WA, pp. 226-230, 2001. 

5. Hongjian Wang, Naiyu Zhang, Jean-Charles Créput, 
Yassine Ruichek, Julien Moreau, Massively parallel 
GPU computing for fast stereo correspondence 
algorithms, Journal of Systems Architecture, 65, 46-58, 
2016. 
https://doi.org/10.1016/j.sysarc.2016.03.002 

6. Ge Li, Xuehe Zhang, Changle Li, Hongzhe Jin, Jie Zhao, 
Design and application of parallel stereo matching 
algorithm based on CUDA, Microprocessors and 
Microsystems, 47, Part A, 142-150, 2016. 
https://doi.org/10.1016/j.micpro.2015.09.006 

7. Aksoy, Yagiz; Aydin, Tunc; Pollefeys, Marc; Smolic, 
Aljoscha., Interactive High-Quality Green-Screen 
Keying via Color Unmixing, ACM Transactions on 
Graphics (TOG), 36(4), 2016 
https://doi.org/10.1145/3072959.2907940 

8. Ondˇrej ˇS´tava and Bedˇrich Beneˇs, Connected 
Component Labeling in CUDA, in GPU Computing 
Gem, Published by Morgan Kaufmann, ch35, pp 
569-581, 2011. 
https://doi.org/10.1016/B978-0-12-384988-5.00035-8 

9. B. Gary and K. Adrian, Learning OpenCV: Computer 
Vision with the OpenCV, 1st ed., Published by O'Reilly 
Media, ch12, pp 415-452, 2008.  

10. Tsai, An Efficient and Accurate Camera Calibration 
Technique for 3D Machine Vision. Proceedings of 
IEEE Conference on Computer Vision and Pattern 
Recognition, Miami Beach, FL, pp. 364-374, 1986. 

11. Z. Zhang. A flexible new technique for camera 
calibration. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 22(11), pp.1330–1334,2000. 
https://doi.org/10.1109/34.888718 

12. Ramesh Jain, Rangachar Kasturi, Brian G. Schunck, 
Machine Vision, Published by McGraw-Hill, ch11, 
1995. 

13. P. Sebastian, Y. V. Voon, and R. Comley, Colour space 
effect on tracking in video surveillance, International 
Journal on Electrical Engineering and Informatics, 2, 
298-312,2012. 
https://doi.org/10.15676/ijeei.2010.2.4.5 

14. Amir Hesam Yaribakht, Mohd Shahidan Abdullah, 
Alireza Ghobadi, A Novel Color Image Watermarking 
Method based on Digital Wavelet Transform and 
Hungarian Algorithms, International Journal of 
Advanced Trends in Computer Science and Engineering. 
Volume 8, No.2, pp.154–164, 2019. 
https://doi.org/10.30534/ijatcse/2019/09822019 

15. Llorente, Cesar & Dadios, Elmer, Development and 
characterization of a computer vision system for 
human body detection and tracking under low-light 
condition. International Journal of Advanced Trends in 
Computer Science and Engineering. Volume 8, No.2, 
pp.251–254, 2019. 
https://doi.org/10.30534/ijatcse/2019/24822019 
 


