
Deepak Thakur et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6151 – 6155

6151


ABSTRACT

Privacy is a big concern as hackers are stealing data and
misusing it by engineering malicious applications. There is a
rapid increase in malware attacks like spyware, premium-rate
SMS Trojans, botnets, aggressive adware, privilege
escalation, and banking trojans which were distributed
through the applications present on Google play store as well
as unofficial application stores. Malware uses dominant
techniques such as packing, encryption, a transformation of
code, environment-aware approaches to evade detection. The
traditional methods such as static and dynamic analysis of
Android malware consume high computation resources and
time. Moreover, cybercriminals use automation tools to
generate numerous malware variants of the same family. This
paper proposes a method to advance the classification of
Android malware using visualization techniques. The
visualization technique tends to transform Android malware
into different image sections. The GIST algorithm is used to
extract the features from the image sections. The extracted
features are classified using machine learning algorithms
such as K-Nearest Neighbors, Support Vector Machines,
Random Forests, and Naive Bayes. This study evaluates the
classification performance metrics of each classifier against
every image file section. Experiment results show that the
Android manifest image files have achieved a high accuracy
of 92.7% with the SVM classifier.

Key words : malware, texture, classification, machine
learning, computer vision

1. INTRODUCTION

The widespread of smartphones can be credited to the
availability of daily usage apps, such as calls, SMSs,
navigation, games, etc, in one place for the ease of the user.
Android has an open marketplace due to which it has a huge

community and intensely popular APIs. This, however, has
repercussions because the financial benefits of such a huge
community attracted a lot of malware applications from the
year 2010 and so on. Based on research conducted by
academic researchers and anti-malware companies, the basic
algorithms (based on signatures) and static analysis are quite
vulnerable to being attacked by malware [1]. The existing
techniques of dealing with malware like encryption, code
transformation, environmental approaches etc are known to
make other types of malware that might or might not be
already discovered [2]–[4]. Thus behavior, anomaly, and
dynamic-analysis-based algorithms are used. Pinpointing out
one specific method to deal with the problems is not feasible
due to which multiple choices are available [5].

Developers have been motivated by the growth of Android
to develop clever solutions commonly known as apps. The
google play store agrees to host third party applications at a
very menial fee due to which attackers have no problems
getting to the root of downloads. The play store has more than
3.2 million apps and all available for download. The iOS app
store verifies the uploaded applications manually, unlike
android and thus security starts to get jeopardized. It depends
on Bouncer, which is a virtually simulated environment to
protect the store from malicious attacks. Malware knows how
to exploit these apps to fuel their own benefit and extract
sensitive data that might damage the image of the developer.
Also, Android’s open-source functionality allows the
installation of third-party apps, opening up stores of
unofficial and potentially dangerous application stores. This
protection from third-party apps that might cause harm is a
matter of concern [6].

This paper proposes a method to advance the classification
of Android malware using visualization techniques [7]. The
visualization technique tends to transform Android malware
into different image sections. The GIST algorithm [8] is used
to extract the features from the image sections. The extracted
features are classified using machine learning algorithms
such as K-Nearest Neighbors, Support Vector Machines [9],
Random Forests, and Naive Bayes.

Classification of Android Malware using its Image Sections

Deepak Thakur1, Jaiteg Singh2, Parvez Faruki3, Tanya Gera4
1Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India,

deepak.thakur@chitkara.edu.in
2Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India,

jaiteg.singh@chitkara.edu.in
3Department of Technical Education, AVPT Institute, Rajkot, Gujarat, India, parvezfaruki.kg@gmail.com

4Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India,
tanya.gera@chitkara.edu.in

ISSN 2278-3091
Volume 9, No.4, July – August 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse288942020.pdf

https://doi.org/10.30534/ijatcse/2020/288942020

Deepak Thakur et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6151 – 6155

6152

The rest of the paper is organized as follows: section 2
discusses the related work; section 3 contains the
methodology of the work; section 4 discusses the results;
section 5 concludes the findings.

2. RELATED WORK

In [10] security rules were formed by the authors. Security
properties of an application were compared with security
rules. Application is declared as malicious if it does not match
up the criteria of security rules. In [11] security checks were
performed on a remote server where the replica of the exact
phone is there on the virtual environment. Sensitive info was
recorded using Tracer Tool and send to the cloud for
replaying it. The authors performed the static and dynamic
analysis of the application [12]. Classes.dex is extracted to
convert into the human-readable format. The application was
made to run in a sandbox and made use of a monkey runner to
study malicious behavior. In [13], authors monitored the data
(when the phone is connected over the network), battery
consumption, CPU usage, and the processes currently
running on the phone. Machine learning algorithms were
applied to classify an application as benign or malicious. The
authors used a crawler to download applications from five
different stores [14]. They generated the behavioral footprints
from 10 known Android Malware families. The proposed
DroidRanger extracts the fundamental properties associated
with each application. They also detected samples of known
malware using permission-based filtering and by generating
behavioral footprints and matching. They detected samples of
unknown malware using heuristics based filtering and
dynamic execution monitoring. The authors made use of
metadata like the developer’s information and other
information available at market places to distinguish Android
apps as malicious or benign. They do not perform sandboxing
or code inspection in their work. Moreover, they implemented
machine learning algorithms based on metadata collected.
The authors first converted the apk file into smali file by
making use of a tool named Baksmali [15]. Raw opcode
sequences were then extracted from smali files. Their
algorithm worked on smali files. They employed LSTM- a
deep learning technique [16], [17] to make the system learn
from opcode sequences to classify an app as malicious or
benign. As entire raw opcode sequence may not possess
malicious behavior, they also build the filter to separate the
opcode subsequence which does not contain malicious
behavior.

A literature survey suggests that traditional techniques
make use of static and dynamic analysis. These techniques are
dependent upon the feature engineering process which is a
tedious task. Also, static analysis requires reverse engineering
and dynamic analysis requires the execution of the
application to detect malicious behavior. Visualization

techniques helps to determine the non-intuitive features by
visualizing the malware as an image. This paper uses the
visualization technique to transform the maware into image
and extracted the GIST features to classify the malware.

3. METHODOLOGY

The malware applications in the DREBIN dataset [18] were
first converted into grayscale images. The four different types
of images were created using Certificate (CR), Android
Manifest (AM), Resources (RS), and Classes.dex (CL) files
Android application structure. The 8-bit long substring is
converted into decimal numbers ranging from 0 to 255. In this
work, the width of the image is set to 192. The images of
different malware families are depicted in Figure 1. GIST
features are also known as handcrafted features that are used
to extract the information from the images. We have used
512-texture descriptors for the classification purpose. The
following machine learning algorithms were used to classify
the GIST features:

Random Forest (RF): A forest is an ensemble of many
trees. In a forest, several trees are being added together and
each tree is trained separately on a bag of the data that is a
random subset. The trees are trained in parallel and each tree
trained does not depend on the other trees. The forest creates
many trees on subsets of the data both bagged observations
and subsets of variables. This is done to increase the
difference in the trees in order to improve predictive power.
The probability of the target response is averaged from each
tree to create the final predicted probability. This lowers the
interpretability of the forest compared to that of a single tree.
There is still some interpretability because the forest can be
viewed as an average of the trees inside of it.

GingerMaste
r malware

family

Plankton
malware
family

Opfake
malware
family

GoldDream
malware
family

Figure 1 : Illustration of malware images

Support Vector Machine (SVM-RBF): Another popular
machine learning algorithm is the support vector machine. It
is a classification model that constructs a hyperplane to
separate observations into classes. There is an infinite number
of orientations for the hyperplane that would still separate
these points completely. A margin is defined around this
plane and formulate an optimization problem that strives to

Deepak Thakur et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6151 – 6155

6153

maximize the margin. The more we can separate the classes,
the more accurate our model will tend to be when applied to
new data. The points that define the margin are called support
vectors. SVM still attempts to construct the best separating
hyperplane by introducing the concept of a penalty for
observations that fall on the wrong side of the margin. Note
that the size of the margin governs a trade-off between
correctly classifying the training data and generalizing to
future data. A wide margin will result in more training points
being misclassified but we'll generalize much better and we
should always keep in mind that applying your models to
future data is the ultimate goal as opposed to achieving the
best fit for the existing data.

KNN: KNN is one of the popular machine learning
algorithms where K represents the number from 1 to n. The
algorithm means that classified data point is as good as its K
neighbors. There are three types of algorithm called
supervised learning, unsupervised learning, and
reinforcement learning. Reinforcement learning is sometimes
also called semi-supervised learning. KNN or K nearest
neighbor is a supervised learning algorithm and it tries to
predict the classification of new sample data points form a
particular population set. KNN is also called a lazy algorithm
that does not learns itself or take decisions rather when it gets
the test instance, it uses the stored instance in memory in
order to find the possible classification of data points.

Naïve Bayes (NB): The naive bayes algorithm is a machine
learning algorithm for classification problems. Naïve bayes is
robust enough to fast and quick predictions. It comes under a
supervised machine learning group. It is based on the
concepts of probabilistic logics. The backbone of naïve bayes
is bayes theorem. Bayes theorem is the form of mathematical
probabilistic technique where the probability of an event is
calculated. Naive bayes uncovers the set of probabilities.
These probabilities get input to the training set and we get the
predictions as the result of that. It uses probability to make
predictions for each attribute from each class set. The data
model which is yielded is called the predictive model with a
probabilistic problem at the foundation. Each attribute in a
class is independent and does not have any correlation among
them.

4. RESULTS

The DREBIN dataset was used to conduct the experiments.
Four types of Malware images were formed using files
Certificate (CR), Android Manifest (AM), Resources (RS),
and Classes.dex (CL). GIST descriptors were used to extract
the features from the malware images. Four classifiers namely
KNN, SVM, RF, and NB were used to perform the
classification.

The classifier naive bayes did not perform well on CR
malware images and show the classification accuracy of
47.1% as shown in Figure 2 . The precision and recall of naïve

bayes are observed as 43.83% and 58.05% respectively. The
classification accuracy of the classifiers KNN and RF are
observed to be 80.1% and 82.92% on CR malware images.
SVM is the top performer against the CR malware images
files. SVM delivered the accuracy of 83.08%. The precision
and recall of SVM are observed as 72.51% and 68.97%
respectively.

Figure 2 : Classification performance on CR malware images

In the next phase of experimentation, GIST features were
extracted from malware images created using classes.dex
(CL) files. The classification performance using four
classifiers is depicted in Figure 3. The classifier naïve bayes
showed the poor classification accuracy of 67.06%. The
accuracy of KNN and SVM is observed to be 90.74% and
89.37% respectively. The RF obtain the highest classification
accuracy of 91.06% with precision and recall of 90.68% and
82.82% respectively for CL malware images.

Figure 3 : Classification performance on CL malware images

The classification performance is also observed on RS
malware images as shown in Figure 4. The RS malware

Deepak Thakur et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6151 – 6155

6154

images were classified using GIST descriptors and classifiers.
The classifier NB had attained the lowest accuracy of 45.73%.
The classifiers RF, KNN, and SVM have achieved decent
classification results with an accuracy of 88.14%, 87.88%,
and 83% respectively.

Figure 4 : Classification performance on RS malware images

The three classifiers namely SVM, KNN, and RF worked
extremely well on malware images created using AM files as
shown in Figure 5. SVM, KNN, and RF attained the accuracy
of 92.7%, 92.38%, and 91.01% using the GIST descriptors.
Even NB performed better on AM malware images. It
attained an accuracy of 76.81%.

 Figure 5 : Classification performance on AM malware images

In a nutshell, the combination GIST+NB could not perform
well on any of the malware images used in this work. The
maximum accuracy achieved by all classifiers is on AM
malware images only. The RF achieved the highest precision
of 93.16%. Therefore, it can be concluded that the AM file
contains essential information for the classification of
malware images.

5. CONCLUSION
In this work, Android malware images are created using
different sections of malicious applications. Four types of
malware images generated are – Android Manifest (AM),
Classes.dex (CL), Resources (RS), and Certificate (CR). The
GIST algorithm is used to extract the features from the
malware images. To perform the classification various
machine learning classifiers such as SVM, KNN, RF, and NB
are used in this work. This paper compares the results
obtained by different classifiers. The model GIST +SVM
outperformed all other classifiers and attained the
classification accuracy of 92.7% on AM malware images. In
our future work, we will explore the other handcrafted
features and deep learning techniques to classify the malware
images.

REFERENCES

[1] D. Maiorca, D. Ariu, I. Corona, M. Aresu, and G.

Giacinto, “Stealth attacks: An extended insight into
the obfuscation effects on Android malware,”
Comput. Secur., vol. 51, pp. 16–31, 2015.

[2] D. Wermke, N. Huaman, Y. Acar, B. Reaves, P.
Traynor, and S. Fahl, “A Large Scale Investigation of
Obfuscation Use in Google Play,” 2018.
https://doi.org/10.1145/3274694.3274726

[3] J. Crussell, C. Gibler, and H. Chen, “AnDarwin:
Scalable Detection of Android Application Clones
Based on Semantics,” IEEE Trans. Mob. Comput.,
vol. 14, no. 10, pp. 2007–2019, 2015.

[4] Z. Ren, G. Chen, and W. Lu, “Malware visualization
methods based on deep convolution neural networks,”
Multimed. Tools Appl., pp. 1–19, 2019.

[5] P. Faruki et al., “Android security: A survey of issues,
malware penetration, and defenses,” IEEE Commun.
Surv. Tutorials, vol. 17, no. 2, pp. 998–1022, 2015.

[6] J. Fu, J. Xue, Y. Wang, Z. Liu, and C. Shan,
“Malware visualization for fine-grained
classification,” IEEE Access, vol. 6, pp.
14510–14523, 2018.

[7] D. Vasan, M. Alazab, S. Wassan, H. Naeem, B.
Safaei, and Q. Zheng, “IMCFN: Image-based
malware classification using fine-tuned convolutional
neural network architecture,” Comput. Networks, vol.
171, no. April, p. 107138, 2020.
https://doi.org/10.1016/j.comnet.2020.107138

[8] S. Yajamanam, V. R. S. Selvin, F. Di Troia, and M.
Stamp, “Deep Learning versus Gist Descriptors for
Image-based Malware Classification.,” in ICISSP,
2018, pp. 553–561.

[9] S. Ibrahim, M. H. C. Rozan, and N. Sabri,
“Comparative analysis of support vector machine
(SVM) and convolutional neural network (CNN) for
white blood cells classification,” Int. J. Adv. Trends
Comput. Sci. Eng., vol. 8, no. 1.3, pp. 394–399, 2019.

Deepak Thakur et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 6151 – 6155

6155

https://doi.org/10.30534/ijatcse/2019/6981.32019
[10] W. Enck, M. Ongtang, and P. Mcdaniel, “On

Lightweight Mobile Phone Application Certification
∗ † Categories and Subject Descriptors,” Proc. 16th
ACM Conf. Comput. Commun. Secur. CCS ’09, , New
York, NY, USA, ACM., pp. 235–245, 2009.

[11] G. Portokalidis, P. Homburg, K. Anagnostakis, and
H. Bos, “Paranoid Android: Versatile Protection For
Smartphones,” Annu. Comput. Secur. Appl. Conf.,
pp. 347–356, 2010.

[12] T. Bläsing, L. Batyuk, A. D. Schmidt, S. A. Camtepe,
and S. Albayrak, “An android application sandbox
system for suspicious software detection,” Proc. 5th
IEEE Int. Conf. Malicious Unwanted Software,
Malware 2010, pp. 55–62, 2010.

[13] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y.
Weiss, “‘Andromaly’: A behavioral malware
detection framework for android devices,” J. Intell.
Inf. Syst., vol. 38, no. 1, pp. 161–190, 2012.

[14] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey,
You, Get Off of My Market: Detecting Malicious
Apps in Official and Alternative Android Markets,”
Proc. 19th Annu. Netw. Distrib. Syst. Secur. Symp.,
no. 2, pp. 5–8, 2012.

[15] J. Yan, Y. Qi, and Q. Rao, “LSTM-based hierarchical
denoising network for Android malware detection,”
Secur. Commun. Networks, vol. 2018, 2018.
https://doi.org/10.1155/2018/5249190

[16] B. Dudi and D. V Rajesh, “Medicinal Plant
Recognition Based On CNN And Machine
Learning,” Int. J. Adv. Trends Comput. Sci. Eng.
ISSN, pp. 2278–3091, 2019.

[17] A. Abd Almisreb, N. Jamil, S. M. Norzeli, and N. M.
Din, “Deep transfer learning for ear recognition: A
comparative study,” Int. J. Adv. Trends Comput. Sci.
Eng., vol. 9, no. 1.1 Special Issue, pp. 490–495, 2020.

[18] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon,
and K. Rieck, “Drebin: Effective and Explainable
Detection of Android Malware in Your Pocket,”
Proc. 2014 Netw. Distrib. Syst. Secur. Symp., 2014.
https://doi.org/10.14722/ndss.2014.23247

