
 271

ABSTRACT

Cloud computing enables the use of computing resources
through the web, which is delivered as software, platform and
infrastructure services. With increasing demand and adoption
of cloud services, cloud service user faces many issues on
selecting a particular service. In this paper, we provide a
system, OSSR-P, which search and rank the platform as a
service type services according to user requirements. OSSR-P
system is based on PaaS service ontology which is developed
and populated by parsing the service description document and
WSDL document of PaaS services. The user requirements are
parsed and generated as SPARQL queries which then retrieve
the service list from the ontology repository. The retrieved
services are ranked according to the requirements matching.
The performance evaluation of OSSR-P shows that it provides
and maintains consistent results irrespective of the number of
requirements given by the user.
Key words: Cloud Service, Ontology, Service Search, PaaS
Service, SPARQL.

1. INTRODUCTION

The software and hardware usage of a user has been moved
from a personal computer to the internet due to the emergence
of cloud computing. Cloud computing is a paradigm which
evolves from the combination of grid computing and
service-oriented architecture (SOA), where grid computing
emphasizes the shared use of computational resources and
SOA deals with delivering functionality as web service for the
users through various standards like SOAP, UDDI etc. [16].
The need for Cloud computing is to reduce the cost of
computing and also to ensure availability, reliability and
flexibility of services [7]. Cloud computing provides services
to users through the internet under three kinds - Software as a
Service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS). Normally a cloud service is
explained through service description document and WSDL
document. Service description document describes
components of the service under sections like services offered,
cost The service etc., where WSDL documents describe
technical attributes of the service[15]. Due to the diverse
nature of cloud services, selecting an appropriate cloud service
becomes a difficult task for an inexperienced user. To solve

this issue, semantic technologies can be used. In the Semantic
Web, knowledge is represented using ontology [3], which is
viewed as a formal specification of a domain knowledge
conceptualization. Semantic Web Services are providing a
declarative, ontological structure for describing web services
in a machine-readable format that facilitate the interpretation
of web service description based on their meanings [8]. In this
paper, we provide a semantic system OSSR-P which search for
PaaS kind cloud services and rank the services that are found
according to the user requirements. PaaS kind services are
consist of the software and services which are used by
developers to build new applications, normally through an
API. PaaS kind services reduce the developer's requirements
regarding deployment, configuration and scaling of
applications. Normally PaaS kind services are composed of
PaaS utilities along with the underlying infrastructure. In this
proposed system the information about a particular PaaS kind
service is updated on the PaaS service ontology which we
developed, using parsing the service description document and
WSDL document of that service using PoS tagging system.
The service requester issues the request through the interface
that is provided on the system. Then the semantic service
searching system search for the PaaS kind cloud services and
ranks them according to the user requirement and the results
are provided to the user in a table format which lists the
services according to the rank. There is a need to develop an
ontology for defining cloud services and the concepts; their
relationships are to be derived from the documents that are
available from cloud service providers. The remainder of this
paper is organized as follows. Section 2 describes various
related works that are available; section 3 describes the PaaS
ontology structure, section 4 describes various subsystems of
the system, section 5 describes the service searching and
ranking methodology of the system, section 6 describes the
experimental analysis of the system and section 7 concludes
the paper.

2. RELATED WORK

There have been several methods proposed by many
researchers for the problem of selecting an appropriate service
which involves multi-criteria decision-making situation. The
method proposed in [17] developed QoS ontology and a
QoS-based ranking algorithm for evaluating Web services.

Mohammed Gouse Galety1 Saravana Balaji B2 Saleem Basha M S3
1Assistant Professor, Department of Computer Networks, Lebanese French University, Iraq

2Assistant Professor, Department of Information Technology, Lebanese French University, Iraq
3Assistant Professor, Department of Computing & Informatics, Mazoon College, Oman

OSSR-P: Ontological Service Searching and Ranking System for PaaS Services

 ISSN 2278-3091
Volume 8, No.2, March - April 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse28822019.pdf

https://doi.org/10.30534/ijatcse/2019/28822019

Mohammed Gouse Galety et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 271 - 276

 272

The QoS- based ranking algorithm adopted the Analytic
Hierarchy Process (AHP), a multiple criteria decision-making
technique, as an underlying mechanism for developing a
flexible and dynamic ranking algorithm. In this system,
business requirements are described in OWL-T, an
OWL-based task template language, in terms of a high-level
task template including various component tasks. The
proposed QoS ontology and the ranking algorithm can be used
in various applications in order to facilitate automatic and
dynamic discovery and selection of Web services. The method
proposed in presented an ontology-based framework called
SEMantic web services and Multi-Agent System framework
(SEMMAS), which provides seamless integration of the
technologies by making use of ontologies to facilitate their
interoperation. As the framework becomes independent from
both the domain and the actual application, it is applied to
powerful distributed systems, and it is cost-effective. A
weighted semantic similarity algorithm has been proposed in
[13]. It is developed to support a more automated and veracity
service discovery process, by distinguishing among the
potentially useful and the likely irrelevant services and by
ordering the potentially useful ones according to their
relevance to the developer’s query. The semantic similarity
between matching pair of web service can be ranked manually
or programmatically by selecting the objective web service. As
a result, the selected web service can be bound into the business
process. In a semantic information system for the
advertisement, retrieval and selection of application services,
and markets that trade resources, in a democratized Grid
e-marketplace environment has been proposed. This system
motivates the development of the Grid4All Semantic
Information System (G4A-SIS), a web service providing
clients with an interface for registering and querying
semantically annotated market and application-specific
services. In addition to the ontology-centred mechanisms
provided for matchmaking and semi-automatic annotation of
web services, the system provides a ranking mechanism to
support the selection of markets and services. To facilitate
arctic research, a Semantic-based web service discovery has
been proposed in [11]. In this method, the knowledge-based
approach and the spatial web portal technology were utilized to
prototype and Arctic SDI (ASDI) by proposing, the buildup of
a hydrology ontology to model the latent semantic relationship
among the data and Smart search and integration service to
chain and visualize the datasets to enable a semiautomatic
science workflow. This method addressed three important
research challenges, service discovery, knowledge base
development, and service decomposition and chaining,
when building an integrated ASDI. The proposed hybrid
approach, which combines multi-catalogue searching, and
active crawling mechanisms, help to collect rich resources to
support scientific modelling. In the current implementation,
an intuitive performance indicator in terms of availability and
response time is used to rank the quality of the datasets
retrieved by semantic reasoning. Decision support in
e-business has been proposed in [19]. It has an ontology

similarity assessment algorithm to map concepts and
properties between ontologies of semantic web services. In
order to get promising results they have followed a two-phase
procedure, syntactic analysis measuring the difference
between tokens by the edit distance and then semantic analysis
based on WordNet as semantic relation and similarity
assessment of tree-structured graphs with the Tversky
similarity model.

3. PAAS SERVICE ONTOLOGY STRUCTURE

The traditional software development model makes the
developer to stick with the development environment, where
the PaaS services remove these aspects and manage the
platform requirements altogether. PaaS service providers
provide a computing platform that includes a set of
development, middleware, and deployment capabilities. The
PaaS services are also capable of supporting interoperability,
migration etc. Before selecting a PaaS service, a user has to
know about that service provider in many aspects. The aspects
of a PaaS service are application development framework,
language supported, databases supported, several parallel
applications, portability etc. [4]. Normally the aspects of a
PaaS service are provided through service description
document and WSDL documents. As the number of PaaS
service providers are increasing, searching and comparing
different PaaS service providers aspects become an overhead
for a user. To address this issue, we are proposing the system
OSSR-P which searches for the PaaS services and ranks them
according to user requirement based on PaaS service ontology.
The proposed PaaS service ontology has classes and resources
in the view of a developer. The classes that are defined for the
PaaS ontology are framework supported, languages supported,
a platform supported, development kind, PaaS stack, database
supported, no of application instances etc. The properties
relating to the resources of various concepts are also defined
under the PaaS service ontology. The PaaS ontology structure
developed based on OWL-S[18] with major concepts, and few
resources is given in figure 1.

Figure 1: PaaS Service Ontology

Mohammed Gouse Galety et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 271 - 276

 273

4. SYSTEM ARCHITECTURE
The system architecture of OSSR-P is given in figure 2. This
system consists of five sub systems, a user query interface and
an ontology repository which stores the ontology information
of PaaS services. The subsystems of OSSR-P are:

a. Service Document Analyzer
b. Ontology Updating System
c. User Query Analyzer
d. Query Generator
e. Service Ranking System

4.1 SERVICE DOCUMENT ANALYZER
This system is built up using the PoS tagger called Stanford
log-linear part of speech tagger [10]. This system is made with
a crawler which searches the web for PaaS service providers
and will retrieve the service description documents and the
WSDL documents of the corresponding service. The document
portions are then separated according to the parameters that
are defined under the PaaS ontology. Then these documents
are parsed using the PoS tagger, and the nouns (NN, NNS,
NNP and NNPS) are retrieved. The properties that relate the
resources are identified based on the verbs (VB, VBN, and
VBZ) of the PoS tagger. Then these values are sent to the
ontology updating system where they are added with the
ontology repository according to class as resources.

4.2 ONTOLOGY UPDATING SYSTEM
Ontology updating system is responsible for ontology
population. Ontology population is an important part of the
semantic web systems which enables the identification of text
related to concepts of the domain ontology. It is performed by
identifying the key terms in the text

Figure 2: OSSR-P: Architecture

Moreover, relating them to the concepts of the ontology, which
is called ontology-based information extraction [12]. The
entities that are transferred from service document analyzer
are updated in the PaaS service ontology.

4.3 USER QUERY ANALYZER
This system parses the query given by the user which then
identifies the entities of the query. The query generator will use

the entities from this system and SPARQL [14] queries are
generated accordingly.

4.4 UERY GENERATOR
This system accepts input from user query analyzer and the
query interface system. Based on the type of input given
whether, from user query analyzer or query interface system, it
will generate SPARQL queries accordingly. The query
generation algorithms are described in the next section.

4.5 SERVICE RANKING SYSTEM
This system retrieves the results from the ontology repository
and ranks the services based on the type of query issuing
methodology used by the user. The service ranking algorithms
are described in the next section. The query generator will use
the entities from this system and SPARQL [14] queries are
generated accordingly.

4.6 QUERY GENERATOR
This system accepts input from user query analyzer and the
query interface system. Based on the type of input given
whether, from user query analyzer or query interface system, it
will generate SPARQL queries accordingly. The query
generation algorithms are described in the next section.

4.7 SERVICE RANKING SYSTEM
This system retrieves the results from the ontology repository
and ranks the services based on the type of query issuing
methodology used by the user. The service ranking algorithms
are described in the next section.

4.8 USER QUERY INTERFACE
The user query interface system consists of two kinds of query
issuing systems. The first kind accepts the service request
document from the user and the second kind provides the
interface which consists of various concepts of systems and the
resources of the system along with the weight giving the option
for each resource of concepts. The resources under the
concepts are updated frequently if there is an ontology
updating happens at the ontology repository. If the user issues
a service request document, then the Stanford PoS tagger [10]
will parse the document and identifies the nouns and the verbs.
Then the identified entities are transferred to the query
generator. If the user uses the query interface, then the
resources along with weight for each resource are selected by
the user. Then the entities along with weight are transferred to
the query generation system.

4.9 ONTOLOGY REPOSITORY
The PaaS service ontology repository is an OWL database
which contains the OWL schema of the PaaS service ontology
and the OWL file of the resources of the ontology, which is
accessed through Jena for the storing the resources on the PaaS
service ontology.

Mohammed Gouse Galety et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 271 - 276

 274

5. SERVICE SEARCHING AND RANKING
METHODOLOGY

This section describes the PaaS service searching and Ranking
methodology. The adaption of service requirements of the user
by the system is in two kinds. In the first kind, the service user
issues the service requirements in a text file format called the
service requirement document. The searching system accepts
the document, and it is analyzed by the Stanford PoS tagger
system. The PoS tagger returns the nouns and verbs of the
documents. The nouns and verbs are assigned as the resources
and their properties under the predefined PaaS service
ontology concepts. Then the identified entities are transferred
to query generator which generates the SPARQL queries and
the service returned are ranked by the service ranking system
based on the algorithm A.. In this method the ranking of
services is based on several concepts that are matched with the
requirements of the user, that is, the service that matches with
a higher number of concepts that are requested by the user is in
the first place of the service list.

The second kind which is a user query interface used by the
user for giving the requirements. This interface lists all the
concepts of the PaaS service ontology along with the resources
available under them. The user can select the concepts and the
resources according to his need and have to give the weight age
to each of the resources he selected. Then the concepts and the
resources are transferred to the query generator which
generates the SPARQL query and the services returned are
ranked by the service ranking system based on the algorithm
B.. In this method, the rank is based on the weight assigned by
the user for each concept he requested. The retrieved PaaS
services are returned according to their rank to the user along
with their corresponding URL [1] of the service provider.

for every request
set concept[] = {concepts}
set resources[] = {resources from request}
set property[] = {properties from request}
set services[] = {}
for each resource and property{
SELECT ? service WHERE{
Object Property Assertion (:property?concept?resource)}
for each service returned{
if service is not in services[] then
add service to services[];
set servicevalue = 1;
else
servicevalue=servicevalue+1;
end
}
}
reorder services in services [] based on servicevalue;
return services[];
end;

Algorithm A

for every request
set concept[] = {concepts}
set resources[] = {resources from request}
set property[] = {properties from request}
set resourceweight[]={weight of resources from request}
set services[] = {}
for each resource and property{
SELECT ? service WHERE{
Object Property Assertion (:property?concept?resource)}
for each service returned{
if service is not in services[] then
add service to services[];
weight=resourceweight[resource];
set servicevalue = 1;
else
weight=weight+resourceweight[resource];
servicevalue=servicevalue+1;
end
}
}
For each service returned {
Weight=weightservicereturn;
}
reorder services in services [] based on servicevalue;
return services[];
end;

Algorithm B

6. EXPERIMENTAL ANALYSIS

OSSR-P system has been implemented using Jena semantic
web framework [9] and SPARQL for querying the PaaS service
ontology repository through ARQ. Apache Tomcat was used to
host the CS- ontology repository. The systems of OSSR-P are
given access through a JAVA API which has the functionality
of querying. The PaaS service ontology repository has been
populated by parsing the service description documents and
WSDL documents of various PaaS services listed under [20]
which provide details about cloud service providers under
different categories along with manual searching of PaaS
service providers in the WWW. The PaaS service ontology
consists of 25 concepts, 73 properties and sub-properties along
with 125 resources (service providers). For any information
retrieval system, the effectiveness of the system is
evaluated using precision and recall [2] where

 # of relevant item retrieved
Precision = -------------------------------------- (1)
 # of retrieved items

 # of relevant items retrieved
Recall = --- (2)

total # of relevant items

Mohammed Gouse Galety et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 271 - 276

 275

The performance of OSSR-P system is evaluated using the
following measures – precision, recall and query response time
– the time required by the OSSR-P for answering a single
requirement issued by the user. For evaluation purpose, we
have generated 50 queries of different requirements, from few
numbers of requirements to all the concepts that are listed
under OSSR-P, which are issued through both the kinds of user
query interface system. Figure 3 depicts the precision graph,
figure 4 depicts the recall graph, and figure 5 depicts the query
response time of the system. From the results, it is clear that
the system provides ranked services according to user
requirements with consistent precision and recall irrespective
of the number of requirements issued by the user. The query
response time of the system is also directly proportional to the
number of requirements issue by the user.

Figure 3: Precision Graph

Figure 4: Recall Graph

Figure 5: Query Response Time

7. CONCLUSION

Selecting an appropriate PaaS service under diverse nature of
cloud service providers is a cumbersome task for a user. To
address this issue, we have developed a system called OSSR-P
which searches for the PaaS services according to user
requirements and ranks them based on the number of
requirements that are matched. This system is based on PaaS
service ontology which is populated by parsing the service
description document and WSDL document of the PaaS
service provider. This system accepts user request through two
ways, by accepting the service request document or directly
issuing the request through the user query interface. Then this
system searches for the appropriate services according to user
requirement and ranks the services based on the type of service
request issuing method used by the user. The performance
evaluation of the system shows that this system retrieves the
services more precisely according to the requirements of the
user. This system can be extended by parsing the SLA
documents of the service providers for updating the concepts of
the PaaS service ontology under technical attributes like the
cost of the service, the uptime of the service etc. For selecting
and ranking service, considering user feedback about that
service is a good practice. The OSSR-P system can be extended
to update the concepts of the ontology under user feedback
criteria.

REFERENCES

[1] Berners-Lee, T., Masinter, L., and M. McCahill, "Uniform

Resource Locators (URL)", RFC 1738, December 1994.
https://doi.org/10.17487/rfc1738

[2] Christopher D. Manning, Prabhakar Raghavan, Hinrich
Schütze, “Introduction to Information Retrieval”,
Cambridge University Press, 2009.
https://doi.org/10.1017/CBO9780511809071

[3] Dieter Fensel, et al., “An Ontology Infrastructure for the
Semantic Web”, IEEE Transactions on Knowledge and Data
Engineering, 2001, Vol.19 No.2 pp.261272.
https://doi.org/10.1109/5254.920598

Mohammed Gouse Galety et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 271 - 276

 276

[4] Dan Orlando, “Cloud computing service models, Part 2:
Platform as a Service”, IBM developer works, Jan 2011.

[5] Francisco Garcıa-Sanchez, Rafael Valencia-Garcıa, Rodrigo
Martınez-Bejar, Jesualdo T. Fernandez-Breis, “An ontology,
an intelligent agent-based framework for the provision of
semantic web services”, Expert Systems with Applications,
2009.
https://doi.org/10.1016/j.eswa.2008.01.037

[6] George A. Vouros, Andreas Papasalouros, et.al, “A semantic
information system for services and traded resources in Grid
e-markets”, Future Generation Computer Systems, 2010.
https://doi.org/10.1016/j.future.2010.03.004

[7] B. Hayes, Cloud computing, Communications of the ACM
51 (7), 2008.
https://doi.org/10.1145/1364782.1364786

[8] Hai H.Wang, NickGibbins, TerryR.Payne , Domenico
Redavid, “A formal model of the Semantic Web Service
Ontology (WSMO)”, Information Systems 2012.
https://doi.org/10.1016/j.is.2011.07.003

[9] Jena - A Semantic Web Framework for Java,
http://incubator.apache.org/jena/

[10] Kristina Toutanova, et al., “Feature-Rich Part-of-Speech
Tagging with a Cyclic Dependency Network.”, in
Proceedings of HLT-NAACL 2003, pp. 252-259.
https://doi.org/10.3115/1073445.1073478

[11] W. Li, C.Yang, et al. “Semantic-based web service
discovery and chaining for building an Arctic spatial data
infrastructure”, Computers & Geosciences, 2011.
https://doi.org/10.1016/j.cageo.2011.06.024

[12] Maynard, D, et al., “NLP Techniques for Term Extraction
and Ontology Population”, in Buitelaar, P, Cimiano, P., eds.:
Bridging the Gap between Text and Knowledge - Selected
Contributions to Ontology Learning and Population from
Text, IOS Press, 2008.

[13] Min Liu, Weiming Shen, Qi Hao, Junwei Yan, “A weighted
ontology-based semantic similarity algorithm for web
service”, Expert Systems with Applications, 2009.
https://doi.org/10.1016/j.eswa.2009.04.034

[14] Prudhommeaux, E., and Seaborne, A. (2008). “SPARQL
query language for RDF”, W3C recommendation, W3C,
available at
http://www.w3.org/TR/2008/REC-RDF-SPARQL-query-20
080115.

[15] M. Risch, J. Altmann, “Enabling Open Cloud Markets
through WS-Agreement Extensions”, Service Level
Agreements in Grids Workshop, in conjunction with GRID
2009, CoreGRID Springer Series, Banff, Canada, 2009.
https://doi.org/10.1007/978-1-4419-7320-7_10

[16] L. Srinivasan and J. Treadwell, "An overview of Service
Oriented Architecture, Web Services and Grid Computing",
http://h71028.www7.hp.com/ERC/downloa
ds/SOA-Grid-HP-WhitePaper.pdf

[17] Vuong Xuan Tran, Hidekazu Tsuji, Ryosuke Masuda, “A
new QoS ontology and its QoS-based ranking algorithm for

Web services”, Simulation Modelling Practice and Theory,
2009.

[18] World Wide Web Consortium, “OWL- S: Semantic Markup
for Web Services”, World Wide Web Consortium (W3C)
Member Submission, 2004, available at
http://www.w3.org/submission/owl-s.

[19] Yi Zhao, Zhong Li, Xia Wang, Wolfgang A. Halang,
“Decision support in e-business based on assessing
similarities between ontologies”, Knowledge-Based
Systems, 2012.
http://www.cloudbook.net/directories/product-services/clou
d-computing-directory.
https://doi.org/10.1016/j.knosys.2011.08.020

[20] Saravanan S., Hailu M., Gouse G.M., Lavanya M., Vijaysai
R. (2019) Optimized Secure Scan Flip Flop to Thwart Side
Channel Attack in Crypto-Chip. In: Zimale F., Enku
Nigussie T., Fanta S. (eds) Advances of Science and
Technology. ICAST 2018. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and
Telecommunications Engineering, vol 274. Springer, Cham.
https://doi.org/10.1007/978-3-030-15357-1_34

[21] Saravanan S., Hailu M., Gouse G.M., Lavanya M., Vijaysai
R. (2019) Design and Analysis of Low-Transition Address
Generator. In: Zimale F., Enku Nigussie T., Fanta S. (eds)
Advances of Science and Technology. ICAST 2018. Lecture
Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, vol 274.
Springer, Cham.
https://doi.org/10.1007/978-3-030-15357-1_19

[22] Dr G. Mohammed Gouse, Chiai Mohammed Haji, Dr
Saravanan, Improved Reconfigurable based Lightweight
Crypto Algorithms for IoT based Applications, Journal of
Advanced Research in Dynamical Control Systems,
Volume: 10 Issue: 12 Pages: 186-193

[23] B.Manoj, K.V.K.Sasikanth, M.V.Subbarao and V Jyothi
Prakash,Analysis of Data Science with the use of Big Data,
International Journal of Advanced Trends in Computer
Science and Engineering, Volume 7 No. 6 (2018),Pages: 87
– 90
https://doi.org/10.30534/ijatcse/2018/02762018

[24] A.S. Elhassan and W.S. Elhassan, Assessment Instruments
for Accreditation: A Data Management System Design &
Implementation, International Journal of Advanced Trends
in Computer Science and Engineering, Volume 8 No. 1.1
(2019) S I, Pages: 1 – 7.
https://doi.org/10.30534/ijatcse/2019/0181.12019

