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ABSTRACT 
 
Disturbance to the output of a linear voltage regulator (LVR) 
due to an abrupt change in output current can be compensated 
by using an output capacitor. A capacitor has an internal 
parasitic resistive element known as equivalent series 
resistance (ESR). However, the ESR value may change due to 
aging and temperature variations, forming a failure region in 
an LVR. Besides, the performance of each manufactured LVR 
varies due to differences in the manufacturing process. 
Consequently, failure region determination (FRD) for LVRs 
involves time-consuming and costly manual data acquisition 
and requires analysis to determine the failure region 
accurately. In this work, efficient and effective FRD methods 
were developed by applying the concept of virtual sensing. 
Two approaches were used, namely, a data-driven approach 
(DDA) and a model-based approach (MBA). The developed 
FRD methods were as follows: the data interpolation method 
(DDA-DIM), the input-output model-based method 
(MBA-IOM), and the circuit analysis model-based method 
(MBA-CAMM). DDA-DIM utilizes a multilayer perceptron 
and a radial basis function neural network. Meanwhile, 
MBA-IOM and MBA-CAMM estimate the black-box model 
of an LVR and the circuit analysis model, respectively. The 
results of the three methods were compared with the 
benchmark developed using manual FRD. MBA-CAMM was 
determined as the most effective and efficient FRD method 
that applies the virtual sensing concept. 
 
Key words: Linear voltage regulator, failure region, 
data-driven, model-based, virtual sensing.  
 
1. INTRODUCTION 
 
The stability of a linear voltage regulator (LVR) in electronic 
devices primarily depends on the internal circuit design and 
the external electronic components, particularly the output 
capacitor. In general, an LVR converts unstable and noisy 

 
 

input DC voltage and current into stable and noise-free output 
DC voltage and current. An output capacitor is typically 
connected to an LVR’s output terminal to compensate for 
disturbances that occur in an LVR’s output. The disturbance 
is due to an abrupt change of either the output current or input 
voltage. However, the output capacitor used in an LVR’s 
circuit should be accurately selected. The value of this output 
capacitor’s internal resistive parasitic element, called 
equivalent series resistance (ESR), restricted within a specific 
range to ensure LVR stability. Selecting a suitable capacitor is 
essential because the ESR value varies due to aging and 
temperature changes. Such variation in ESR value forms an 
LVR failure region at a specific range of output current and 
ESR [1]–[3]. 
 
LVR manufacturers typically determine LVR failure regions 
using a manual failure region determination (FRD) process 
during the design and manufacturing phases. The manual 
FRD process consumes considerable time and cost and should 
be conducted for each manufacturing lot. This FRD process 
must be conducted manually because an actual LVR model is 
difficult to be estimated. Even if the initial circuit design is 
known, manufacturing variations affect LVR performance. If 
an actual LVR model can be estimated, then LVR 
performance can be obtained for specific operating points 
without manually acquiring data. Several studies have been 
conducted to estimate the circuit model in electronic testing 
research using black-box modeling through a system 
identification (SI) technique and artificial intelligence (AI) 
[4]–[8]. However, these studies have not focused on FRD for a 
power management circuit, such as the failure region of an 
LVR [9]–[14]. 
 
The result of FRD is a unique graph, called the ESR tunnel 
graph. This graph contains several failure and passing 
regions. If a disturbance occurs in the LVR output when the 
LVR is operating in the failure region, then the output 
voltage’s overshoot may not meet the specification. Thus, the 
separating curves in an ESR tunnel graph should be 
accurately and quickly determined. Accordingly, the current 
research aims to develop an effective and efficient method for 
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determining an LVR’s failure region by using the concept of 
virtual sensing.  
 
2. VIRTUAL SENSING 
 
Virtual sensing is an indirect sensing method that is widely 
used to obtain difficult-to-measure parameters without using 
physical sensors. In certain circumstances, a physical sensor 
cannot be utilized due to physical constraints. The concept of 
virtual sensing, also known as soft sensing, can be applied to 
address this issue [15]–[18]. Virtual sensing can be 
categorized into two major approaches: (a) an empirical 
approach, i.e., the entirely data-driven approach (DDA), and 
(b) an analytical approach based on system modeling, i.e., the 
model-based approach (MBA). 
 
DDA is implemented based on the amount of physically 
acquired data for training a black-box model structure using 
different techniques, such as neural networks (NNs) or other 
AI methods [15], [17], [19]. Then, the trained model is used 
to estimate unknown and unmeasured parameters. However, 
noise may affect DDA performance. 
 
Meanwhile, MBA involves system modeling that can 
represent the relationship between system input and output 
variables. Two techniques under MBA can be used to model a 
system. The first technique uses system identification based 
on the input and output data acquired from the system and 
standard model structures [19]–[24]. The second technique 
analytically derives the mathematical equation of a system, 
such as based on the laws of physics. For example, to model 
the LVR circuit, Kirchhoff’s current and voltage laws are 
applied to obtain the output voltage. Although the second 
technique can accurately derive the model, process variation 
and noise are difficult to represent in the model directly. 
 
Virtual sensing, using either DDA or MBA, is widely used in 
various applications. Virtual sensing that uses DDA has been 
adopted for applications that require big data processing, such 
as in wireless communication, remote sensing, and noise 
control [25]–[27]. This situation occurs because performing 
system modeling is intricate in these areas. Other fields also 
use DDA to implement the concept of virtual sensing; 
examples include automotive (to monitor vehicle gear 
condition), structural health monitoring, and aerospace 
[28]–[30]. However, virtual sensing is not commonly used in 
testing and characterizing electronic systems and 
components, such as in determining the failure region of a 
power management circuit. Furthermore, recent studies on 
FRD have not focused on LVR, primarily to determine the 
ESR tunnel graph [10], [31]. An ESR tunnel graph example 
that can be typically found in an LVR manufacturer’s 
datasheet is depicted in Figure 1. As shown in the figure, two 
boundary curves separate the failure and passing regions. 

 

 
 

Figure 1: Example of an ESR Tunnel Graph 
              

3.  METHODOLOGY 
 
In the current research, three methods were developed using 
two approaches based on the concept of virtual sensing: (a) 
DDA and (b) MBA. The first method, which is categorized 
under DDA, is called the data interpolation method 
(DDA-DIM). The second and third methods, which adopt an 
MBA, are the input-output model-based (MBA-IOM) and 
circuit analysis model-based (MBA-CAM) methods. The 
results of the proposed methods were compared with the 
failure region benchmark to measure the effectiveness and 
efficiency of each FRD method and select the best method. 
The benchmark was extracted from the manual FRD process. 
An LVR circuit was constructed and tested to achieve this 
objective. 
 
The LVR test circuit was entirely constructed using discrete 
components, as depicted in Figure 2. The output is adjustable 
based on the selected feedback resistors (R1 and R2), with a 
p-channel metal–oxide–semiconductor field-effect transistor 
(PMOS) used as the pass element to drive the output current. 
The most crucial element is the ESR. ESR is a resistive 
element inside the output capacitor, and thus, it is difficult to 
measure directly. Consequently, an adjustable resistor (RESR) 
was connected in series with the output capacitor to simulate 
ESR variation. Besides, RL is the load in the circuit. 
Meanwhile, a square wave-shaped disturbance signal was 
injected into the LVR output through RS, which was 
connected in series with a function generator. This 
disturbance signal can abruptly change the output current 
with a small magnitude. Furthermore, the circuit shown in 
Figure 2 was transformed into a small-signal analysis circuit, 
depicted in Figure 3. 
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Figure 2: LVR Circuit Constructed with Discrete Components 

 

 
Figure 3: LVR Circuit for Small-signal Analysis 

 

3.1 Development of Failure Region Benchmark 
A failure region benchmark was established before 
implementing the proposed methods. The benchmark was 
based on the current manual FRD method. This method 
includes data acquisition, failure analysis, ESR tunnel graph 
plotting, and failure region estimation process, as shown in 
the flowchart in Figure 4. FRD was started after initializing 
the ESR and the output current values. The four subprocesses 
were repeated until all the LVR’s operating points were 
completed. Each operating point comprises the corresponding 
ESR and output current.  All the data used in this work were 
acquired from circuit simulation using OrCAD™ Capture 
CIS Lite software from Cadence Design Systems. Each 
acquired data was sampled at a sampling time of 1 s and 
collected in a dataset using MATLAB software from 
MathWorks. This work also developed the proposed virtual 
sensing-based methods using MATLAB with NN and SI 
toolboxes. Moreover, all the acquired data were in the time 
domain based on the transient analysis, and not frequency 
response data [32], [33]. 
 
In manual FRD, load transient response data in the form of 
LVR output voltage signals were first acquired. The load 
transient test was conducted by abruptly changing the LVR’s 
output current through disturbance signal injection. If the 
output current was changed from low to high, then the output 
voltage suddenly dropped and produced an undershoot. After 
that, the undershoot was measured and judged during failure 
analysis to determine whether it was within the specification. 
Subsequently, the ESR tunnel graph was plotted for each 
operating point based on the failure status. If an operating 
point passed, i.e., the undershoot was within the specification; 
then, a blue circle was plotted in the graph. Otherwise, a red 
cross was plotted to represent a failed operating point. The 

LVR failure region was determined after all the operating 
points were tested and marked in the ESR tunnel graph. In 
this case, the failure region boundaries that separated the 
passing and failure regions should be accurately determined. 
Therefore, additional data points were acquired and analyzed 
around these failure region boundaries. However, a 
considerable number of data points also increases manual 
FRD processing time, and consequently, reduces efficiency. 
 

 
Figure 4: Flowchart of Manual FRD 

3.2 Virtual Sensing through DDA 
In this work, improvement to FRD was implemented based on 
the virtual sensing concept, either through DDA or MBA. 
Both improved FRD processes considered two primary 
performance criteria, namely, efficiency and effectiveness, in 
determining the LVR failure region. One of the approaches to 
improve the efficiency of FRD is to reduce the number of 
operating points that require manual data acquisition. That is, 
only a certain number of operating points should be acquired 
and analyzed. For the remaining operating points, data were 
estimated using the FRD methods proposed in this work. 
Simultaneously, the effectiveness of the proposed methods 
must be guaranteed when determining the failure region. The 
failure region boundaries obtained using the three proposed 
methods must approximate or be equal to the failure region 
benchmark. 
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The first proposed method is DDA-DIM. In this method, data 
that are required to be acquired manually only involve a 
certain number of operating points to improve FRD 
efficiency. The essential datum obtained from the transient 
response was the output voltage undershoot. The remaining 
data were interpolated using an NN to estimate the 
undershoot without acquiring manual data. The NN structure 
was trained based on the dataset developed using the reduced 
number of operating points. Then, the trained NN was 
utilized to estimate the undershoot for the remaining 
operating points. 
 
DDA-DIM used two types of NN: (a) a multilayer perceptron 
(MLP) NN (MLPNN) and (b) a radial basis function (RBF) 
NN (RBFNN). The input signals applied to the NN structure 
were output current and ESR, and the NN target or output was 
the output voltage undershoot. MLPNN and RBFNN consist 
of three layers: the input, hidden, and output layers, as 
depicted in Figure 5. The input layer receives the input 
signals before propagating through the hidden layer. In 
MLPNN, the hidden layer has neurons with specific 
functions, such as the sigmoid function. The weight of the 
hidden layer neuron represents the input signal features. The 
final process in NN involves the output layer producing the 
output signal.  
 

 
Figure 5: Basic NN Structure 

 
Meanwhile, a typical RBF used as the activation function of 
the hidden layer neuron in RBFNN is the Gaussian function 
(), which can be described as, 
 

2

22( , )
x

dx e


 


 ,       (1) 
 
where x is the input signal, µ is the mean or center of the input 
signal, and d is the Gaussian function distribution or the 
distance from the center of  to the outer portion of the 
bell-shaped Gaussian curve. Therefore, two critical 
parameters, µ, and d, are related to the hidden neuron of 

RBFNN. That is, the hidden layer neuron is more sensitive to 
the data approaching the center of the Gaussian curve. After 
completing the NN training process, the trained NN structure 
can be used to estimate the output voltage undershoot for any 
operating point without acquiring the LVR’s transient 
response. Then, the estimated undershoot was analyzed to 
determine whether the operating point being tested passed or 
failed, providing the failure status. This failure status is one of 
the information used to plot the ESR tunnel graph. Moreover, 
the time to complete the entire process starting from data 
acquisition until the completion was recorded to measure 
efficiency. 

3.3 Virtual Sensing through MBA  
Another category of the virtual sensing approach, namely, 
MBA, is based on system modeling. In this work, two 
methods based on MBA, i.e., (a) input–output-based model 
(MBA-IOMM) and (b) circuit analysis-based model 
(MBA-CAMM), were developed. The two methods use 
different modeling techniques to model an LVR circuit. 

A. MBA-IOMM 
MBA-IOMM estimated the LVR circuit model using an SI 
technique to derive the model transfer function (TF). SI is 
performed based on the standard polynomial model structure 
and the acquired input and output signals. These signals were 
manually acquired from the LVR circuit for a certain number 
of operating points. The LVR circuit was modeled using 
MBA-IOMM because manual FRD and DDA-DIM did not 
analyze the dynamic characteristics.  
 
MBA-IOMM involves four subprocesses: data acquisition, 
system modeling, parameter estimation, and FRD. During 
data acquisition, LVR circuit simulation was performed to 
generate the required input and output signals for LVR circuit 
modeling using SI. The selected input signal injected into the 
LVR circuit was a pseudorandom binary sequence (PRBS) 
signal that can be abruptly and randomly changed with a 
broad frequency spectrum. The PRBS signal can excite the 
dynamic behavior of the LVR circuit during the test. Hence, 
many transient response parameters, such as overshoot, 
undershoot, and rise time, can be obtained with higher 
accuracy using the estimated LVR model in the form of the 
output impedance TF.  
 
In the modeling phase of MBA-IOMM using SI, several 
procedures, namely preprocessing, data division, model 
structure selection, model estimation, and model validation, 
should be applied. Preprocessing eliminates the unwanted 
mean value and trend in the acquired data during the data 
acquisition phase. Then, the data were divided into estimation 
and validation data. Approximately 70% of the acquired data 
were estimation data, and the remaining data were used for 
model validation. 
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Subsequently, the SI model structure was selected. In this 
work, four types of model structures were tested, namely, the 
autoregressive with exogenous input (ARX), output error 
(OE), autoregressive moving average with exogenous input 
(ARMAX), and Box–Jenkins (BJ) model structures [22], 
[23], [34]. Then, the LVR circuit models were estimated for 
all the four model structures using the estimation data. Thus, 
four TFs with their corresponding coefficients were estimated 
for each selected LVR operating point. Then, each estimated 
LVR circuit model was validated in terms of model fitness 
using the validation data. However, this case of LVR circuit 
modeling in MBA-IOMM only involved a certain number of 
LVR operating points in achieving effective FRD. For the 
remaining operating points, the TF coefficients were 
estimated. 
 
An NN was utilized in MBA-IOMM to estimate the TF 
coefficients. MLPNN was used in this work. For example, if 
the model estimated using SI has five TF coefficients, then 
five separate NN structures are trained. Each NN structure 
estimated only one TF coefficient. The input signals for NN 
were the output current and ESR. The TF coefficient was the 
target or output signal. After the NN structures were trained, 
they were used to estimate the TF coefficients for the 
remaining LVR operating points. 
  
For each operating point, the estimated TF coefficients were 
combined to generate a complete TF. Then, TF was simulated 
to generate the LVR’s transient response. Subsequently, the 
undershoot was measured from the transient response and 
used to evaluate an operating point, i.e., whether it passed or 
failed. Lastly, the ESR tunnel graph was plotted for all the 
operating points, and the failure region boundaries were 
extracted from the plotted graph. 

B. MBA-CAMM 
MBA-CAMM performs LVR modeling by deriving the LVR 
model through linear regression and small-signal circuit 
analysis, e.g., using nodal and mesh analysis. The LVR 
circuit model derived in MBA-IOMM was a black-box model 
that did not consider or manipulate the measurable 
component values in the LVR circuit, such as the output 
capacitor. That is, although several components can be easily 
measured, MBA-IOMM does not use them because the 
number of parameters that should be estimated will increase. 
Thus, MBA-CAMM fully utilized and manipulated the 
measurable components by reducing the number of estimated 
parameters while increasing parameter estimation accuracy. 
MBA-CAMM consists of four critical processes: data 
acquisition, circuit modeling, physical parameter estimation, 
and FRD. 

 
Suitable data were first acquired from the circuit, as shown in 
Figure 6. In this case, the input signal was the input voltage, 
and the output voltage was the output signal. A sinusoidal 

signal was selected as the input signal to excite the circuit in 
MBA-CAMM to estimate the linear regression (LR) model. 
Each sinusoidal signal can simultaneously excite two 
frequency components or TF coefficients. For example, if six 
TF coefficients are required to be estimated using LR, then 
three sinusoidal signals with different frequencies are 
necessary. In this work, the LR model in MBA-CAMM is 
described as,  

1 2
0 1 2

1 2
1 2

( )
1
LR LR LR

VLR
LR LR

b b z b z
A z

a z a z

 

 

 


 

.         (2) 

 
The small-signal analysis was performed during circuit 
modeling in MBA-CAMM because the disturbance that 
occurred in the LVR’s output during the abrupt change in 
output current has a small magnitude. Two circuit models, 
namely, the voltage gain and the output impedance models, 
should be derived in MBA-CAMM. The voltage gain model 
was used to estimate the unmeasurable parameters in the LVR 
circuit. Meanwhile, the output impedance model was utilized 
in the load transient test to generate transient response based 
on the previously estimated unmeasurable parameters. Figure 
6 shows the small-signal analysis circuit for deriving the 
voltage gain model, and that for deriving the output 
impedance model is depicted in Figure 3. 

 

 
Figure 6: LVR Circuit for Small-signal Analysis to Generate the 

Voltage Gain Model 
 

After that, the unmeasurable parameters in the LVR circuit 
were approximated based on the estimated LR model and the 
derived voltage gain model. In MBA-CAMM, the 
simultaneous equation technique was used to obtain the 
unmeasurable parameters. All the measurable parameters 
were first substituted into the voltage gain model. Then, each 
TF coefficient in the LR model was equated with each 
corresponding expression in the voltage gain model. Lastly, 
the simultaneous equation technique was used to obtain the 
unmeasurable parameters in the LVR circuit.  
 
The estimated unmeasurable parameters were substituted into 
the output impedance model’s TF. Simultaneously, the 
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measurable parameters were substituted into the TF. 
Thereafter, the TF was simulated using MATLAB to analyze 
the transient response of the LVR circuit. The undershoot was 
measured based on the response, and whether each 
corresponding point passed or failed was determined. The 
ESR tunnel graph was then plotted. These processes were 
repeated until all the operating points were completed. Lastly, 
the failure region was extracted from the graph and compared 
with the benchmark from manual FRD. 

3.4 Performance Measurement Criteria 
The performance of all the developed methods, namely, 
DDA-DIM, MBA-IOMM, and MBA-CAMM, were 
measured based on two primary criteria: effectiveness and 
efficiency. Both criteria were computed following the 
identified failure regions using all the developed methods and 
the benchmark from manual FRD. The developed methods 
were effective if the failure region boundaries that separated 
the passing region with the failure region were equal or 
similar to the benchmark. Moreover, they were useful when 
the time taken to complete the entire FRD process was less 
than that of the benchmark. 
 
An ESR tunnel graph, which consisted of the upper and lower 
failure region boundaries, was plotted for each FRD method. 
These boundaries were also the upper and lower limits of the 
ESR for the LVR. The limits extracted from each developed 
FRD method were compared with the benchmark based on 
five performance criteria, namely, mean absolute error 
(MAE), mean squared error (MSE), root MSE (RMSE), 
regression coefficient (R2), and relative error (RE). 
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where y is the ESR limit benchmark from manual FRD, and 
yp is the ESR limit obtained from the FRD methods developed 
in this work using the virtual sensing concept. Meanwhile, n 
is the number of ESR limits, and i is the output current index. 
The developed methods were effective when the MAE, MSE, 
and RMSE values were the minimum, R2 was approaching 1, 
and RE was approaching 0%. Meanwhile, the efficiency of 
the developed methods was computed as follows: 

 

2

1

( )1 100%
( )

t iEfficiency
t i

 
   
 

,       (7) 

 
where t1 is the processing time of manual FRD, and t2 is the 
processing time of the developed methods based on virtual 
sensing. 
 
4. RESULTS AND DISCUSSION 
 
The failure region extracted from the ESR tunnel graph 
obtained using manual FRD was used as the benchmark to 
measure the effectiveness of the methods developed in this 
work. Figure 7 presents the ESR tunnel graph from manual 
FRD. As shown in the graph, two failure region boundaries 
separate the failure regions at the upper and lower parts of the 
graph with the passing region in the middle of the graph. 
Furthermore, these boundaries form the upper and lower 
limits of the ESR. These limits were used as the benchmark in 
this work.    

 

 
Figure 7: ESR Tunnel Graph of the Failure Region Determined 

Using the Manual Process (Benchmark in This Work) 
 

The results of the three developed FRD methods (DDA-DIM, 
MBA-IOMM, and MBA-CAMM) regarding the ESR limits 
extracted from the ESR tunnel graph are depicted in Figures 8 
and 9. The computed performance metrics are provided in 
Table 1. Overall, the ESR limits obtained using the three 
developed methods are similar to the benchmark. These 
outcomes indicate that the developed methods are useful in 
determining the LVR’s failure regions. However, the ESR 
lower limit extracted using DDA-DIM is not equal to the 
benchmark when the output current is low, as shown in 
Figure 8. This result is attributed to DDA-DIM being entirely 
based on the acquired data from the LVR circuit. In such case, 
high output current in the LVR’s output with high ESR 
results in a more stable output voltage compared with low 
output current and low ESR.  
 
The best performance of each developed FRD method was 
achieved using the optimum configuration. For DDA-DIM, 
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the RBFNN with an RBF function distribution of 8 and 76% 
data reduction produced the best performance compared with 
MLPNN. Two hidden neurons were implemented in this case, 
and the NN structure was trained using the least-squares 
training algorithm. 

 

 
Figure 8: ESR Lower Limits Obtained Using the Developed Virtual 

Sensing-based FRD Methods Compared with the Benchmark 
 

 
Figure 9: ESR Upper Limits Obtained Using the Developed Virtual 

Sensing-based FRD Methods Compared with the Benchmark 
 
Table 1: Performance Metrics Based on Output Voltage Undershoot 

in the Developed Virtual Sensing-based FRD Methods 

 
 

For MBA-IOMM, the OE model structure was adopted to 
obtain its best performance. The OE model has the highest 
cross-correlation values, i.e., 0.0745 compared with the ARX, 
ARMAX, and BJ models, with values of 0.0681, 0.0660, and 
0.0639, respectively. Figure 10 showed an example of a 

cross-correlation plot when the OE model was used in 
MBA-IOMM to present the LVR circuit model with an output 
current of 10 mA and an ESR of 1 Ω. In this case, MLPNN 
with ten hidden neurons and a Bayesian regularization 
training algorithm was used.  
 
 
MBA-CAMM successfully estimated the unmeasurable 
parameters shown in Table 2. Three sets of unmeasurable 
parameters were tested, and the estimated values were reliable 
and exhibited high accuracy with minimum estimation errors. 
This work used a sinusoidal signal as the input signal in the 
circuit to generate the output signal, as shown in Figure 11. In 
this case, the input signal is a multi-frequency signal. Lastly, 
Figure 12 depicts the efficiency of all the developed FRD 
methods compared with the benchmark. MBA-CAMM 
reduced the time required to determine the LVR failure region 
by up to 80%. 
 

 
Figure 10: Cross-correlation Plot for the OE Model in MBA-IOMM 

with an Output Current of 10 mA and an ESR of 1 Ω 
 

Table 2: Performance Metrics for the Three Sets of Physical 
Parameters in the LVR Circuit in MBA-CAMM 
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Figure 11: Multifrequency Input Signal Injected into the LVR 
Circuit in MBA-CAMM and its Generated Output Voltage 

 

 
Figure 12: Time Reduction Percentage of the Developed Virtual 

Sensing-based FRD Methods 

5. CONCLUSION 
All the FRD methods developed using the virtual sensing 
concept, namely, DDA-DIM, MBA-IOMM, and 
MBA-CAMM, are efficient and effective in determining the 
LVR failure region. Among the developed methods, 
MBA-CAMM is the most efficient and effective. Therefore, 
the virtual sensing concept can be used to develop alternative 
methods for determining the failure region. 
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