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ABSTRACT 
 
This paper explores an Auxiliary Classifier Generative 
Adversarial Networks (AC-GAN) model to address 
imbalanced data classifications. More specifically, debit card 
transaction data from a private Indonesian bank were 
categorized into fraudulent and non-fraudulent transactions.  
Training and testing datasets were then analyzed. Due to its 
architectural similarity, this study explores the learning 
performance of an AC-GAN Discriminator model and 
compares it with the learning performance of a Convolutional 
Neural Network (CNN) model, as a baseline model. The 
experimental results illustrate that the training and testing 
accuracy of the AC-GAN discriminator model (i.e., 81.1% 
and 93.0%, respectively) outperformed the CNN model (i.e., 
68.1% and 67.7%). Given the similar structures of AC-GAN 
discriminators and CNN models, it is hypothesized that 
AC-GAN discriminators can perform better than CNNs.  This 
is because the effect of the adversarial training approach 
embedded up-sampling techniques into the model-training 
process.  
 
Key words : adversarial training, Auxiliary Classifier 
Generative Adversarial Networks, imbalanced data 
classification..  
 
1. INTRODUCTION 
 

Imbalanced data classification is an interesting problem in 
the machine learning research field. Imbalanced data is a 
term which refers to the skewed number of class samples over 
other class samples. Learning under imbalanced datasets 
results in problems. These problems are not discovered when 
the classifier models are trained on relatively balanced data. 
The models learn more patterns from majority class samples 
than minority class samples.  As such, the trained classifier 
tends to exhibit bias towards the majority class samples. That 
is, the imbalanced data may make the trained classifier unable 
to recognize the minority class.   

Imbalanced data classification problems can be found in 

 
 

various research areas, ranging from engineering, 
bioinformatics, and banking transactions to the field of 
medicine. With the wide breadth of potential applications, 
finding solutions to imbalanced data classification problems 
has gained extensive attention from various research 
communities. Over the past decade, a plethora of methods 
have been proposed to address imbalanced data classification 
problems.  

Reference [1] broadly categorized the methods for 
addressing imbalanced data into two categories: data 
manipulation methods and algorithm-oriented methods [1].  
Data manipulation methods rely on sampling-based 
techniques (e.g., duplicating minority class samples, creating 
new samples by corrupting existing samples with artificial 
noise, up-sampling (i.e., Synthetic Minority Over-sampling 
Technique (SMOTE) [2]).   

One technique is to eliminate over-sized class samples at 
random until its size matches the size of the other class 
techniques.  This technique is used to reduce the disparity 
between the number of samples among the classes and the 
down-sampling [3]. The drawback of this approach is that it 
either leads to over-fitting or it ignores the majority class, 
resulting in a loss of information. 

Algorithm oriented methods focus on developing learning 
algorithms which are insensitive to a class samples 
distribution in the training dataset [4]-[6]. 

In the banking industry, recognizing fraudulent debit card 
transactions is a well-known, but challenging, problem.  This 
problem is due to the imbalanced data in nature [7]. In this 
context, the term ‘fraudulent transactions’ refers to a class of 
illegal transactions made by someone who impersonates a 
debit card holder. Fraudulent transactions cause financial 
losses and erode the prudent image of the card issuer banks.   

To address this problem, many models have been proposed 
to solve the imbalanced data classification problem.  These 
models include extended decision tree models with 
resampling techniques [8], the combination of machine 
learning and deep learning models with resampling 
techniques [1][9]-[10], and game theoretic-based models [6].  

The primary purpose of this paper is to address imbalanced 
data classifications using the adversarial learning algorithm 
that unifies data treatment with learning algorithms. To 
achieve this objective, this research explores Auxiliary 
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Classifier Generative Adversarial Network (AC-GANs) 
models to solve an imbalanced binary data classification.  The 
classification is comprised of two classes: fraudulent and 
non-fraudulent transactions.  
This investigation adopts an adversarial training approach for 
training classifiers that is similar to the model proposed in 
[6]. Our model differs from the Zeager [6] model in two 
primary ways. Firstly, the former research proposed logistic 
regression models as classifiers, which were trained in 
adversarial ways. This research proposes an AC-GAN model. 
Secondly, for the data dimensional reduction, the former 
study implemented Gaussian Mixture Models (GMMs). This 
research uses a stack of convolution layers, rectified linear 
units, and pooling. 
 
2. LITERATURE REVIEW 
 
2.1 Imbalanced data classification 
 

The imbalanced data classification problem has drawn 
extensive interest from researchers.  This has resulted in a 
plethora of proposed methods that can be used to address this 
problem. The imbalanced data might only have a small 
impact on classifications when the data is linearly separable. 
However, in general, the trained classifier tends to be biased 
towards the majority classes [11]. This effect is not favorable 
for data classifications in various domains.  

Many models have been proposed to solve the imbalanced 
data classification problem.  These models include: k-NN [8] 
[12], SVM [13], SVM and HMM Hybrids [14]-[15], HMMs 
[16] [8]-[9], Neural Networks and CNN models [1] [17]. 

Over the past ten years, many research studies have 
reported various successful results in relation to adopting 
deep learning models to address classification problems.  
These models are based on the premise that the training 
dataset is balanced [18]-[23]. Most of the proposed models in 
these prominent research articles are extended Convolutional 
Neural networks (CNN) using a variety of techniques.  These 
techniques include increasing the number of layers [24], 
increasing the layer size [24] [25], introducing a dropout layer 
[26], and combining discriminators and generator models 
[27]-[28]. 

A recent study by Zeager et al. [6] reports on imbalanced 
data classification methods. The authors propose a learning 
algorithm based on an adversarial game theoretical approach. 
In the proposed method, an adversarial training algorithm is 
designed using a logistic regression, Gaussian Mixture 
Models (GMM) and a Synthetic Minority Oversampling 
Technique (SMOTE). The empirical results show that the 
proposed approach is promising in addressing the imbalanced 
data classification problem.  

 
2.2 Convolutional Neural Networks 
 

Convolutional neural networks (CNN) are a class of neural 
network models with standard structures. LeNet-5 proposed 
by [29] is the first well known CNN model.  

The CNN architecture is comprised of the following layers: 
1. Convolutional layer: A layer to capture the local 

dependencies in the original image by preserving the spatial 
relationship between the pixels.   

2. Non-linearity layer: A layer to introduce non-linearity in 
CNN.   

3. Pooling or subsampling layer: A layer aimed at reducing 
the dimensionality of each feature map, but retaining the most 
important information.   

4. Classification or fully connected layer: One or several 
layers used for classifying the input image into various 
classes, based on the training dataset.   

A sample of the CNN architecture is presented in Figure 1. 

 
Figure 1: General Configuration of a CNN Model [30]. 
 
The objective function L, of the CNN model training, is 

formulated as follows: 

                           (1) 
where: tij is the actual class of the jth sample of the ith 

training batch and oij is the predicted class of the jth sample of 
the ith training batch. The performance of the trained CNN 
model is measured using an accuracy metric formulated as 
follows: 

                                                         (2) 

where: TF is the true positive; TN is the true negative; and 
N is the total number of training or testing samples. 

Over the past two decades, a vast number of studies in 
various domains have established CNN as a robust class of 
models.  These models are used to address various pattern 
recognition problems (e.g., identifying faces and objects, 
traffic sign detection and recognition, image segmentation, 
image retrieval).  Other problems include large video datasets 
for video classifications [31], the fusion of several image 
modalities from a large image dataset for pedestrian 
recognition [32], and a large text dataset for sentence 
classification and modeling [33]-[34]. These studies resulted 
in many variations of CNN models, which have become 
ubiquitous, those are not only in the image/video 
classification literature. Surprisingly, these models illustrate 
outstanding perform for classifications using several 
benchmark datasets (e.g., MNIST, CIFAR, ImageNet 
datasets).  

The popularity of ImageNet challenges has motivated 
many researchers to develop variations in the CNN 
architecture to solve classification problems using large-scale 
datasets. Many of these models have been categorized as top 
image classifiers in the ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) (e.g., AlexNet[19], 
GoogleNet [24], VGG [35], and ResNet [36]). 
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Karpathy, Toderici, Shetty, Leung, Sukthankar, and 
Fei-Fei [31] argue that the high performance of CNN-based 
models for image classification is mainly due to its 
architecture.  This architecture enables researchers to build 
neural networks with many parameters to learn from a given 
input dataset. This study uses the CNN model in Karpathy, 
Toderici, Shetty, Leung, Sukthankar, & Fei-Fei [31], a 
baseline model for recognizing patterns from imbalanced 
datasets. The CNN model is then compared with an AC-GAN 
discriminator model that has a similar structure. 

 
2.3 Generative Adversarial Networks 
 

   Generative Adversarial Networks (GANs) were proposed 
for the first time in Goodfellow et al. [37]-[38].  GANs were 
initially designed as an image synthesis model which was 
trained using an adversarial technique. Some studies 
illustrate evidence that GAN models perform well in 
generating considerable image samples on datasets with low 
variability and low resolutions [39]-[40]. 

GAN architecture (Figure 2a) is comprised of two neural 
networks acting as a generator (G) and a discriminator (D). 
The discriminator model of a GAN is trained to recognize 
data from the original training dataset and the synthesized 
data generated by the generator. To achieve that objective, the 
two neural networks are trained in opposition to one another 
(the adversarial way) as follows: 

 The generator G takes, as an input, a random noise 
vector z. It then outputs an image Xfake=G(z).  Hence, Xfake is 
an image produced by the generator G with a random noise 
vector z as an input. 
 The discriminator D receives an input, either as a training 
image or a synthesized image from the generator. The 
discriminator then outputs a probability distribution 
P(S|X)=D(X), over possible image sources, where P(S|X) is 
the probability of the given input as a fake/non-fake image.  

                         
Figure 2:  (a) General Architecture of the GAN Model and 
(b) the AC-GAN Model [26] 

In adversarial training, the discriminator is trained under 
supervision to maximize a log-likelihood. On the other hand, 
the generator is trained to minimize that same quantity. The 
lost function for a GAN model is formulated as:  

L = E[log P(S=real | Xreal)] + E[log P(S=fake|Xfake)]        (3) 
where: P(S|X) is the probability distribution over the source 
image, given the X image as an input. The input images can 
be training images or synthesized images. The results of the 
GANs training process are trained generators (G) and trained 
discriminators (D). 

2.4 Auxiliary Classifier Generative Adversarial Networks 
 

The Auxiliary Classifier Generative Adversary Network 
(AC-GAN), proposed by [26], is a variant of the GAN model. 
Like previous GANs, the AC-GAN model is comprised of 
discriminator and generator models (Figure 2b).  These 
models are trained with conflicting learning objectives or 
adversarial ways.   

In contrast to previous GANs, in which the discriminator is 
only designed to categorize the input data as a fake/non-fake 
class, the AC-GAN discriminator model is extended to 
become a general classifier. Given original and synthesis data 
as inputs, the discriminator, as an auxiliary classifier, is 
designed to categorize input into: a fake/non-fake class and a 
label of the data class. Whilst the theoretical aspect of 
AC-GAN continues to gain research attention [39], some 
experiments illustrate that the AC-GAN model is powerful 
enough to solve classification problems in many areas. 

In AC-GANs, every generated sample has a corresponding 
class label c, with a distribution function pc, c~pc, in addition 
to the noise z.  
1. The generator G model uses class labels and noise to 

generate images Xfake=G(c,z).  
2. The discriminator D gives both a probability distribution 

over sources P(S|X) and a probability distribution over 
the class labels P(C|X)=D(X). The objective function has 
two parts: the log-likelihood of the correct source (LS ) 
and the log-likelihood of the correct class (LC ), where: 

LS= E[log P(S = real | Xreal)] + E[log P(S=fake | Xfake)]     (4) 
LC= E[log P(C = c | Xreal)]+E[log P(C=c | Xfake)]               (5) 

 
The adversarial training of AC-GAN trains the D model to 

maximize LS+LC and trains the G model to maximize LC-LS. 
With such adversarial learning objectives, we hypothesized 
that the discriminator of AC-GAN achieved stronger learning 
performance than CNN, which is trained separately. 

In recent years, researchers have been experiencing some 
successful results in generating close-to-natural synthetic 
images, due to the improvement in AC-GANs. One common 
challenge is improving the performance of globally 
synthesizing coherent and high-resolution image samples 
from datasets with high variability as an input. Odena, Olah, 
and Shlens [26] argue that adding more structure to the 
AC-GAN latent space and modifier cost function will 
improve the quality of its generated samples.  
Despite many studies adopting the strength of AC-GAN 
models in addressing classification problems, to the best of 
our knowledge, little has been said on the other strength of 
this model in addressing imbalanced data classifications. 
Imbalanced data treatment by AC-GAN can be described as 
follows. As part of the discriminator training process, the 
generator keeps producing synthetic images. Due to the added 
noise, these images are different from the original data. 
Therefore, producing synthetic images can be viewed as an 
up-sampling process.  
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3.  METHODS 
 
3.1 Research Framework 
 

The research process blocks of this study are represented in 
the following diagram (Figure 3). As can be seen in Figure 3, 
both classifier models in this investigation are trained under 
supervision using a variation of the stochastic gradient 
descent algorithms. However, the discriminator of the 
AC-GAN model is trained in adversarial ways, as compared 
to its generator model counterpart. 

 
Figure 3: Research Framework. 
 

3.2 Dataset 
 

Data for debit card transactions collected during the period 
of 2016-2017 were analyzed.  The data were obtained from 
the data warehouse of a local Indonesian bank. Each 
transaction was labeled by the bank as either fraudulent or 
non-fraudulent. Permission for the limited use of the data for 
this research was granted by the management of the bank. For 
banking confidentiality reasons, confidential data (e.g., 
cardholder identities, place and time of transaction, device 
information, and bank-added codes) are excluded from the 
dataset.  

This research represents debit card transactions by a 
sequence of daily transactions over a monthly period as 
transaction features [41]-[45]. In this study, we added 9 
derivative features (Figure 4).  In this way, a data unit is 
comprised of 40 features. To simplify the processing of the 
data, each month is assumed to have 31 days. Zero transaction 
amounts are added as padding for the transactions in a 
calendar month with fewer than 31 days (e.g., February, 
April, and November).  

For active debit cards, a unit of data with the NF 
(non-fraudulent) label is represented as a list of the past 
31-day transactions. In contrast, for a blocked debit card, its 
last 31-day transaction (cross calendar month) is used to form 
the unit data with the F (fraudulent) label. For unit data with a 
fraudulent label, the last daily transaction is the fraudulent 
transaction. In this research, it is assumed that the previous 
history of credit card transactions is non-fraudulent, unless 
deemed so by the bank. 

The following are the additional features and labels used to 
capture short and middle range transaction patterns.  These 

were all averages: 2-days (2d-avg), 3-days (3d-avg), 4-days 
(4d-avg), 5-days (5d-avg), 6-days (6d-avg), 7-days (1w-avg), 
2-weeks (2w-avg), 3-weeks (3w-avg), and 1-month (1m-avg). 
The final transaction feature can be represented using the 
following figure.   

 
Figure 4: The Debit Card Transaction Features 
 
The dataset was comprised of 22,683 data unit transactions 

represented by a 22,683×40 matrix, T=[Tij], where i 
represents the index of the debit card samples and j is the jth 
transaction feature. A 22,683×1 transaction label R=[Ri] 
represents the category of the Tij transaction. Each raw matrix 
element is an integer ranging from 0 to 100,000,000 
(maximum transaction allowed by the bank). The data 
pre-processing (data normalization) transforms the raw data 
x using the following steps: transformation, x(i) =log(xi+1), 
followed by  where x is the raw data and xn

(i) is 

the ith normalized data (i=1,2,..,N). The normalized data 
ranges from [0, 1].  

The observations reveal that the dataset has the following 
characteristics: 
1. The sample distribution is skewed. The dataset for this 

research is comprised of: (1) non-fraudulent (13,405 
(59%) samples); and (2) fraudulent data (9,278 (41%) 
samples). That is, there are more non-fraudulent samples 
than fraudulent samples. 

2. The transaction matrix is highly sparse. The data illustrates 
that most debit card holders do not make transactions 
every day. However, the amount of the transaction varies 
significantly. 
 

3.3 Module Training and Cross-Validation 
 

The models explored in this study include Auxiliary 
Classifier Generating Adversarial Networks (AC-GAN) [26]. 
Convolutional neural networks (CNN) [28] were used as the 
baseline model (Figure 1). 

In this research, all data were represented as 1×40 vectors. 
The architectural components of the CNN, as well as the 
AC-GAN discriminator, were a stack of several layers. 
 Convolutional layer: 100×1×4 
 Convolutional layer: 100×1×4 
 Non-linearity layer: LeakReLU function 
 Pooling layer: maxpooling function 
 Dropout layer 
 Convolutional layer: 50×1×4 
 Non-linearity layer: LeakReLU function 
 Pooling layer: maxpooling function 
 Dropout layer 
 Convolutional layer: 30×1×4 
 Pooling layer: maxpooling function 
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 Dropout layer 
 Fully connected layer: dense layer of 500 nodes and 

sigmoid activation function. 
The dropout layers in the above structure were added to 
handle the over-fitting model (model regularization). 

Following [26], the general architecture of the AC-GAN 
follows the structure illustrated in Figure 2b. The main 
components of an AC-GAN model include the generator (G) 
and the discriminator (D) models. In this research, the 
structure of the generator can be summarized as follows: 
 Dense layer: 1024 nodes  
 Non-linearity layer: ReLU function 
 Dense layer: 128 ×1×5 nodes 
 Non-linearity layer: ReLU function 
 Up-sampling layer: 1×3. 
 Dense Layer: 256 nodes 
 Non-linearity layer: ReLU function 
 Up-sampling layer: 1×2 factor. 
 Fully connected layers: dense layer of 128 nodes, ReLU 

layer, and tanh activation function. 
Both the CNN and AC-GAN models were trained using a 

labeled dataset of two classes: fraudulent and non-fraudulent. 
A random uniform function between the intervals of [-1,1] is 
used to generate random noise for generating synthetic data or 
simulating the up-sampling process.  

In this research, AC-GAN models are trained using an 
adversarial training technique.  The AC-GAN and CNN 
models are optimized using the Adam algorithm. In this 
study, Adam’s hyper parameter values include: learning rate 
(lr) = 0.0001 and beta1 = 0.1.  The training process is 
implemented by stopping early. That is, the training process 
is stopped whenever the value of the validation loss is not 
decreasing.  

To compare the performance of the AC-GAN discriminator 
model and the CNN, a loss function is measured during 
AC-GAN’s discriminator training.  This function is 
formulated equally with equation number 1.  Finally, the 
performance of the AC-GAN discriminator model for the 
classification is measured using the accuracy metric, which is 
formulated equally with in equation number 2. Both the CNN 
and AC-GAN model training are cross-validated using the 
leave-one out technique.  In this way, the dataset is divided 
into 18,146 samples (80%), as a training dataset, and 3,537 
samples (20%), as the testing dataset. For simplification 
reasons, the performance metrics in this experiment were 
training loss and accuracy, as well as testing loss and 
accuracy. 
Due to its complete function libraries available for the deep 
learning model implementation, the models in this research 
were implemented using Keras [43] and TensorFlow [13]. 
  
4. RESULTS AND DISCUSSIONS 
 

The training and testing results of the CNN and AC-GAN 
discriminator models are described in the following figures. 
As can be seen in Figure 5, the training and testing of the 
CNN model produces a convergent training and testing loss. 

Similarly, the training and testing accuracy of the CNN 
model increases gradually by the training and testing epochs 
(Figure 6). 

In contrast to the training and testing loss of the CNN 
model, the training and testing loss of the AC-GAN 
discriminator model needs more time to converge (Figure 7).  
This is the result of the random noise in generating the 
synthetic data by the generator. However, the high testing loss 
of the CNN model shows that the trained CNN model is less 
capable of generalizing the patterns learned from the training 
dataset, rather than that of the AC-GAN discriminator model. 

 
 
Figure  5:   Training and Testing Loss of the CNN Model 
 
In contrast to the training and testing loss of the CNN 

model, the training and testing loss of the AC-GAN 
discriminator model needs more time to converge (Figure 7).  
This is the result of the random noise in generating the 
synthetic data by the generator. However, the high testing loss 
of the CNN model shows that the trained CNN model is less 
capable of generalizing the patterns learned from the training 
dataset, rather than that of the AC-GAN discriminator model. 

The high training and testing accuracy of the AC-GAN 
discriminator model (Figure 8) illustrates that the model has 
strong performance in generalizing patterns from its training 
dataset. 

  
Figure 6:  Training and Testing Accuracy of the CNN Model 
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Figure 7: Training and Testing Loss of the AC-GAN 

Discriminator Model 

 
Figure 8:  Training and Testing Accuracy of the AC-GAN 

Discriminator Model 
 
Both results are summarized in Table 1. Surprisingly, as 

can be seen in Table 1, the AC-GAN discriminator model 
achieves higher training and testing accuracies than the CNN 
model. It is speculated that the high accuracy of the training 
and testing of the AC-GAN is partially due to the adversarial 
training algorithm used during the AC-GAN model training. 
In contrast to CNN, which is trained to learn patterns from the 
imbalanced data as an input, the AC-GAN discriminator 
model is trained to learn patterns from both the original and 
synthetic datasets in an adversarial way. As a result, the 
AC-GAN discriminator model learned a larger number of 
richer patterns to generalize the patterns from the training 
dataset. 

Loss and Accuracy Comparison of the CNN and AC-GAN 
Discriminator Models 

 
Table 1: Loss and Accuracy Comparison of the CNN and 

AC-GAN Discriminator Models 
Model Training Testing 

Loss 
(%) 

Accuracy 
(%) 

Loss 
(%) 

Accuracy 
(%) 

CNN 59.57 68.13 60.71 67.69 
AC-GAN 
Discriminator 59.57 81.06 18.02 93.01 

In addition, the adversarial training algorithm has 
contributed to the reduction effect of the imbalanced dataset 
during the AC-GAN training and testing process. As such, it 
reduces the bias towards the majority class. 

5. CONCLUSION 
 

The performance of a classifier to solve imbalanced data 
classification problems can highly benefit from the learning 
performance of the classifier or the capability of a classifier to 
generalize patterns from samples. Imbalanced data, however, 
can become a hindering factor for a classifier, in terms of 
achieving high learning performance from samples, as the 
training classifier will be biased to the pattern of the majority 
classes. Our experiment’s results show that the AC-GAN 
discriminator model, which is trained in an adversarial way 
with the AC-GAN generator model counterpart, can achieve 
higher learning performance than the CNN with a similar 
architecture, but is trained separately.   

Different models and different techniques can be used to 
address the imbalance in the data. However, this research 
finding validates the claim by Zeager et al. (2017)Zeager, 
Sridhar, Fogal, Adams, Brown, & Beling (2017), in that 
learning algorithms, based on the adversarial or game theory 
approach, have the potential to leverage the performance of 
deep learning models for a classification. The adversarial 
learning algorithm of the AC-GAN model enriches the 
learning patterns that will be learned by the discriminator 
model by introducing new patterns from the synthetic 
datasets. In contrast, the CNN training algorithm only learns 
patterns from the original data. In addition, the synthetic data 
added into the training dataset by the generator model in the 
AC-GAN reduces the bias in the trained discriminator model 
from only recognizing the majority class. 
The experimentation results are only preliminary results used 
to address the imbalanced data classification further. 
Directions to improve this research include: exploring 
different performance metrics, increasing the number of 
samples, and exploring the different GAN models. 
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