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ABSTRACT 
 
In this advanced world the usage of cutting-edge technologies 
in daily life increase day by day, whereby, acoustics noise also 
increases thereby affecting our life. So, an urgent requirement 
is to reduce this noise and improve the quality of life.  Several 
Active noise control (ANC) systems using Artificial Neural 
Networks (ANN) are present but in limited performance. This 
paper is focused to develop an adaptive all-pass filtered x least 
square algorithm for a single-channel narrowband active 
noise control system using Nonlinear autoregressive with 
external (exogenous) input (NARX). The novelty of this 
research is that the All-pass filtered x LMS (APFxLMS) 
algorithm is introduced to the system without the need to 
identify the secondary path. Here the first-order all-pass 
filters with a single parameter are used to improve the 
convergence of the LMS algorithm. The results show that the 
proposed method performance is better in terms of regression 
and mean square error and on comparison with the recent 
method through numerical simulation shows that the 
proposed method is simpler to implement, and it achieves fast 
convergence speed. 
 
Key words: Adaptive system, Active noise control (ANC), 
All-Pass Filtered x Least Means Square Algorithm 
(APFxLMS) and Artificial Neural Network (ANN), 
Nonlinear Autoregressive with External (Exogenous) Input 
(NARX). 
 
1. INTRODUCTION 

ANC framework is a system to reduce acoustic noise using a 
signal which is exactly in opposite phase of the unwanted 
noise signal but same in amplitude [1,2]. There are many 
kinds of adaptive ANC systems developed in this modern age 
because of the exponential increment of noise pollution and 
ineffectiveness of passive procedures for noise attenuation 
[1–6]. This procedure has been effectively connected to 
warming, ventilating, and cooling frameworks [4,5], exhaust 
and engine noise [4,6], headsets [4,6], and planes [4]. The 

 
 

most popular ANC system filtered x least mean square 
(FxLMS) algorithm using linear finite impulse response 
(FIR) filter [2] with secondary path identification, work well 
in some cases but performs poorly and even fails to work for 
nonlinear cases [7]. Several ANC systems are developed in 
recent era which does not required secondary path 
identification, also perform poorly in some cases. Some of 
researcher used fuzzy logic methodology to reduces the noise 
[3], fuzzy logic also used in numerous research work for 
example it can be used in voltage stability [25] or risk 
management system [26] etc.  To solve these nonlinear cases 
in ANC system, several nonlinear structures and algorithms 
are proposed over past fifteen years [8-20]. Most widely used 
ANN system is functional link artificial neural network 
(FLANN) filter. FLANN filter is used in many cases, such as 
feedforward ANC, feedback ANC, single channel ANC, 
multichannel ANC. There are other different kinds of 
nonlinear ANN system for ANC system such as NARX 
system, Volterra system, bilinear system, etc. discussed 
widely in section 2. However, these systems have their 
limitations and the performance is not accurate and sometime 
fail to work and create computational complexity. Therefore, 
there is an urgent need to develop a robust and accurate ANN 
system for ANC. To simplify the computational complexity of 
APFxLMS algorithms [12] without secondary path 
identification is used to update the controller and corrective 
filter weights. This paper is focused to develop a robust 
NARX system using APFxLMS algorithm to reduce the 
inherent assurance between nonlinear coefficients and 
improve the performances of FLANN and its other modified 
versions. ANN widely used in many different areas such as 
legal procedure research work [27] and forecasting data file 
[28] also. This paper is organized by the introduction of 
historical development of ANN systems in Section 2. The 
proposed algorithm and the methodology are presented in 
section 3. In section 4, numerical simulation results are 
discussed, with the conclusion in Section 5. 
 
2. HISTORICAL DEVELOPMENT 
 
Use Snyder and Tanaka (1995) [8] proposed a versatile 
algorithm which empowers stable adjustment of the neural 
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controller while giving the ability to keep up causality inside 
the control plan utilizing essential speculation of the linear 
filtered-x LMS algorithm. The neural network controller was 
demonstrated to have the option to make up for the 
presentation of sounds by the control actuator by creating a 
control signal, obtained from an unadulterated tone reference 
signal, which contains some degree of sounds. Likewise, the 
neural controller supposedly was ready to make up for a 
misshaped reference signal in a way better than that of a 
linear controller. The fundamental disadvantage concerning 
the utilization of the nonlinear neural network controller was 
an absence of consistency throughout and its presentation. 
Pavisic et. al. (1996) [9] built up a neural active noise 
controller which performs better compared to existing 
systems. They utilized a dynamic intermittent neural network 
to show the conduct of a current controller that uses a Least 
Mean Squares algorithm to limit an error signal. The neural 
controller adapts much better noise-reducing even for cases 
for which the network was not tailored. It also performs well 
with noisy functions and even with pure white noise. Debi 
Prasad Das and Ganapati Panda (2004) [10] proposed a novel 
filtered S least mean square (FSLMS) algorithm-based ANC 
structure, which perform as a nonlinear controller, utilizing 
the FLANN as the essential structure. They improved their 
proposed algorithm with a fast implementation scheme. The 
proposed fast FSLMS based nonlinear ANC is better than 
other proposed algorithms both regarding the steady state 
mean square error and computational complexity. Krukowicz 
(2010) [11] introduced an active noise control algorithm 
dependent on a neural network. It was based on a nonlinear 
input-output framework identification model with a nonlinear 
primary path, utilizing the NARMAX framework 
identification model. In various convenient applications, the 
acoustic noise delivered from dynamical structures is 
nonlinear and deterministic or stochastic, concealed, and 
non-Gaussian. It has been observed that the primary 
frameworks used to control such noise show degradation in 
execution. Moreover, the actuators of ANC framework have a 
nonminimum phase response. A straight controller under 
such conditions cannot demonstrate the opposite of the 
actuator and yields poor execution. In numerous applications, 
the acoustic noise produced from dynamical frameworks is 
nonlinear and deterministic or stochastic, hued, and 
non-Gaussian. It has been accounted for that the linear 
procedures used to control such noise display errors in 
execution. Also, the actuators of ANC framework throughout 
have a nonminimum-stage reaction. A linear controller under 
such circumstances cannot show the reverse of the actuator, 
and thus yields erroneous results. To maintain a strategic 
distance from this approach there are some new research 
which are now being discussed. 
 
Tsuyama and Maeda (2002) [13] connected a neural network 
for active noise control and utilized the simultaneous 

perturbation method. It was used as a learning standard of the 
neural network which does not require an estimation of the 
secondary-path to decrease a 200Hz sinusoidal wave noise 
and a hand-constrained white noise. Zhou et.al. (2009) [14] 
proposed a novel FLANN based simultaneous perturbation 
stochastic approximation (SPSA) algorithm. The algorithm 
performs as a nonlinear mode-free (MF) controller utilizing 
the FLANN as the fundamental structure and improves noise 
work without utilizing subordinate of the noise work. It also 
does not require any estimation of the secondary path. Zhang 
and Ren (2010) [15] proposed a novel ANC framework 
dependent on neural networks. It performs for nonlinear ANC 
frameworks without the identification of secondary path, by 
presenting virtual primary noises with the assistance of neural 
networks. This approach does not necessitate to constrict the 
noise and does not require the elements information of the 
primary and secondary path model. On comparison with 
old-style noise control performance, it has a simple structure 
and minimal calculation unpredictability. The security of the 
entire framework is demonstrated by the Lyapunov 
hypothesis. Sicuranza and Carini (2011) [16] proposed an 
augmentation of the notable FLANN channel utilizing 
trigonometric developments. It incorporates reasonable 
cross-terms, i.e., results of info tests with various time steps. 
The resulting FLANN channel still has a place with the class 
of filters whose yield depends linearly on the filter coefficients 
and whose nonlinear extensions fulfill the time-step property. 
Behera et.al. (2014) [17] exhibited the partition of tonal and 
the disordered signal is rectified by a versatile waveform 
union technique. In this approach anti-noise of tonal segment 
is delivered by another waveform synthesizer to sustain a 
nonlinear controller. It utilizes FLANN or Volterra channel 
to create the anti-noise of the disordered part of the noise 
which first isolates the disordered signal from the noise 
mixture. The evaluated turbulent signal was utilized in a 
FLANN/Volterra based nonlinear controller. This algorithm 
utilized a narrow band controller and a broadband controller. 
Subsequently, it is called a hybrid controller and it 
demonstrated more noteworthy noise reduction capacity 
contrasted with numerous recently developed algorithms, 
like, FXLMS, FSLMS, mixture ANC. 
Zhao et. al. (2016) [18] proposed CNFSLMS algorithm-based 
FLANN filter, leading to control the tradeoff between 
convergence speed and steady-state mean square error of the 
NFSLMS algorithm. It offers both fast convergence rate and 
low steady-state error, by supplanting the sigmoid capacity 
with the altered Versorial work. The tailored CNFSLMS 
(MCNFSLMS) algorithm with low computational complexity 
is a better choice than others. It includes two new adaptive 
algorithms with various step sizes, CNFSLMS and 
MCNFSLMS algorithms. The MCNFSLMS algorithm is in 
the same class as the CNFSLMS, with less computational 
unpredictability for nonlinear ANC frameworks with the LSP 
and NSP. Le et. al. (2018) [19] proposed a novel bilinear 
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FLANN (BFLANN) channel for the nonlinear ANC and 
displayed the dependability of the BFLANN channel and 
generalized FLANN (GFLANN) channels based nonlinear 
ANC. The outcome of the nonlinear ANC framework 
dependent on the BFLANN channel is superior to that of the 
GFLANN and FLANN channels. Li et.al (2018) [20] 
additionally presented the nonlinear adaptive exponential 
functional link artificial neural networks(E-FLANN) channel 
to improve the noise reduction ability of the useful connection 
FLANN in nonlinear active noise control (NANC) 
framework. The proposed algorithm was developed to stay 
away from substantial computational weight at the nonlinear 
secondary path (NSP) and poor intermingling result in solid 
nonlinearity frameworks with the channel-diminished askew 
structure (GE-FLANN-CRD) for NANC framework. The 
outcome of the channel has been upgraded by adjusting the 
reasonable cross-terms and versatile exponential factor. In 
view of the askew channel structure, this GE-FLANN-CRD 
channel was effectively incorporated with the channel bank 
structure. The proposed GE-FLANN-CRD channel offers 
preferable control execution over the FLANN, E-FLANN and 
GFLANN channels. Luo et. al. (2018) [21] improved FLANN 
(IFLANN) channel and simplified IFLANN (SIFLANN) 
channel to diminish the computational complexity. Further, 
the filtered-error least mean square (FELMS) algorithm is 
considered in the NANC framework by including a remedial 
channel before trigonometric capacity extension. It offers 
reasonable cross-term defer tests and balance the coefficients 
of nonlinear estimation, IFLANN and SIFLANN channels 
outperforms FLANN, GFLANN, CFLANN and second 
request EMFN channels. Md. Z. Zakaria et al. (2018) [22] 
presented the expansion of the MOODE algorithm to get an 
adequate and adjusting nonlinear auto-regressive moving 
average with exogenous input (NARMAX) model. They 
(2018) [23] also presented the identification of a flexible 
beam system using Nonlinear Autoregressive Moving 
Average with Exogenous input (NARMAX) model. The 
methodology integrates with Multi-Objective Optimization 
Differential Evolution (MOODE) algorithm. Guo et al. 
(2018) [24] developed new control algorithm that resulted in 
reduction of computational complexity. It showed the noise at 
the canceling point might be approximated by the function 
expansion filters when the secondary path is modeled because 
the second order Volterra series. In addition, two new 
function expansion forms, the even mirror Fourier nonlinear 
filter with a linear finite-impulse response section and 
therefore the Chebyshev filter, are explored. They are 
incorporated to process the nonlinearities in the NANC 
system using the filtered-x least mean square and filtered 
error least mean square algorithm structures.  
 
 
 

3.  APFXLMS USING NARX 
 
The novelty of the proposed APFxLMS system [12] is the use 
of the all-pass filter in place of the estimated secondary path 
transfer function. The all-pass filter is generally an IIR 
(Infinite Impulse Response) filter. Here the magnitude 
response does not change over its entire frequency, but its 
phase response is changeable. For this reason, the all-pass 
filter is known as a phase shifter or equalizer. Now this 
proposed system is realized with the help of the NARX and 
the block diagram is shown in fig. 1. Here the primary-path 
P(Z) is from the noise source to the error microphone, and the 
secondary path S(Z) is from the canceling loudspeaker to the 
error microphone. The NARX controller is used to generate 
the control signal y(n) without the secondary path 
identification. Fig. 2 shows the schematic diagram of the 
NARX controller and the step of the design of this network is 
analysis below. 

 
Figure 1:   Block diagram of APFxLMS using NARX 

 

 
Figure 2:    Schematic diagram of NARX 

 
3.1   Steps of preparing NARX 

 
The steps of preparing the NARX in Neural Network (NN) 
system:  

1. Selection of the system  
2. Arrangement of the system.  
3. Preparing the system 
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3.2   Selection of the system 
 
First, the system needs to select. To do this, the command to 
open the NN Start the GUI with this command: nnstart. The 
NN fitting tool compartment is shown (Fig. 3). The next step 
is to choose the NARX after selecting the dynamic time series 
and it is shown in Fig. 4 and after that need to provide the 
input and the output datas in NARX. 

 
Figure 3:    NN fitting tool compartment 

    
Figure  4 :  Choosing the NARX Control System 

 
3.3  Arrangement of the system 
 
These include a methodical process and evaluation that 
incorporates the inheritance of functions. To build up the 
estimation models, a back-proliferation neural network was 
used in this exploration. A preparation set of 26 esteems; a 
testing set of 7 esteems and an approval set of 7 esteems. Here 
the training set at 70%, Validation at 15% and testing also at 
15% (see Fig. 5) and in Fig. 6 the design of NARX has 
appeared. 

 
Figure 5:   Collecting data in NARX 

 
Figure 6:    The Architecture of NARX 

 
3.4 Preparing the system 
 
This system starts by including choices of picking a ton of 
affiliation loads for each layer. Every neuron decides its total 
capacity and hence registers its exchange capacity system, 
which relates to its outcome. This process works in forward 
direction only. 
 
A lot of registered results are interpreted in the result layer. 
For each planning part in the result layer, an error is 
addressed, each focus on a deviation of the modified result 
from the perfect result. 
 
Utilizing a learning rule, the errors are brought back through 
the covered-up layer(s) and the association necessities are 
balanced and refreshed accordingly. 
 
Feed-forward algorithm starts from the very beginning once 
more. New result regard registered and the abovementioned 
cycle proceeds until an ideal setting of preliminaries is 
obtained. The outcome of the leadup was to setup loads that 
restricts the mistakes as the result neurons initially produce 
factors that differ fundamentally from the proper results. 
During the process of preparation, both the information 
sources (communicating to point parameters) and yields 
(communicating to the setups) are shown to the system 
typically for numerous cycles (Fig. 7)abbreviation “e.g.,” 
means “for example” (these abbreviations are not italicized). 
 

 
Figure 7:    Preparing of NARX 
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4. RESULTS AND DISCUSSIONS 
4.1 Performance Test 
 
When the training of multilayer neural networks was 
completed, the network performance was checked to work out 
if any changes got to be made to the training process, the 
specification, or the data sets. First, the training record, tr, 
returned from the training function. Then the value tr.best 
epoch indicated the iteration at which the validation 
performance reached a minimum. The training for this 
network continued for 27 more iterations before the training 
was stopped. This result did not indicate any major problems 
with the training as seen in Figure 8. Similarly, the validation 
and test curves are very similar. If the test curve had increased 
significantly before the validation curve increased, then it's 
possible that some over fitting may need occurred. This is 
however not the case during this model. From the Fig. 8, a 
good validation result has been obtained. 
 

 
Figure 8:   Results of Mean Squared Error (MSE) 

 
4.2 Mean Squared Error and Regression Results 
 
The mean squared error is that the average squared difference 
between outputs and targets. The system is better if the 
estimation is lower and if it is zero that means no error. On the 
other hand, Regression values measure the relationship with 
outputs and targets. If the value of R is nearly 1 or 1 that 
means, there is a very close relationship, if it is 0 then there is 
an irregular relationship. The smaller the value of the 
regression, the smaller the difference between the outputs and 
targets. The regression values are near to zero thus showing 
better execution results shown in table 1. 
 

Table 1:      Mean Squared and Regression Results 

Validation Stages Mean squared and regression results  
 Mean Squared 

Error  Regression 

Training 1.04672 0.96837 
Validation 0.91482 0.93833 
Testing 0.84314 0.92921 

In this section in validating the network is to get a regression 
plot which measure the connection between outputs and 
targets. If the training was perfect, the network outputs and 
the targets would be exactly equal, but the relationship is 
rarely perfect in practice. Fig. 9 illustrates the regression 
results. The following regression plots display the network 
outputs with reference to targets for training, validation, and 
test sets. For the best result, the data should be making a 
45-degree line, where the framework output data are equal to 
the target. In this case, the fit is reasonably good for all data 
sets, with R values in each case is 0.92 or above of it.  

 
Figure 9:    Results of Regression 

 
The above figure shows the result of the training, validation, 
and testing data. The dashed line in each plot addresses the 
perfect correlation between the difference of result and 
outputs which leads to targets. The solid line addresses the 
best fit linear regression line among outputs and targets. The 
R value is a sign of the connection between the outputs and 
targets. If R = 1, this means that there's a linear relationship 
between outputs and targets. If R is on the brink of zero, then 
there's no linear relationship between outputs and targets. In 
this instance, the training data indicates an honest fit. The 
validation and test results also show R values that are greater 
than 0.9. 
 
4.3 Error Autocorrelation 
 
Fig. 10 demonstrates the results of error autocorrelation 
function. It determines how the forecast errors are interrelated 
in time. For a perfect forecast model, there must just be one 
non-zero value of the error autocorrelation function, and it 
should happen at zero lag. This implies that the forecast 
errors were entirely uncorrelated with one another. If there 
was substantial relationship in the forecast errors, then it 
would improve the forecast possibly by increasing the number 
of delays in the tapped delay lines. For the case, the error 
autocorrelation function falls roughly within the 100% 
confidence limits of zero, but only for the one at zero lag, so 
the model is satisfactory. 
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Figure 10:     Results of Autocorrelation 

 
4.4 Validation 
 
The proposed APFxLMS algorithm has been validated 
against Guo et. al. [24]. For this aim the following methods 
are applied. 

i. Proposed APFxLMS  
ii. FELMS algorithm by Guo et. al. [24] 
Figure 14, 15, and Figure 16 show the results of 
i. APFxLMS algorithm with α = -0.4 and µ = 0.04, 
ii. FELMS algorithm with µ = -0.04 

 
The parameter α and step size in the first case are determined 
so that the error should be small via trial and error approach. 
In the same way, step size and its sign are experimentally 
determined. However, in case of APFxLMS the step size µ = 
0.04, while in case of FELMS if the step size µ = 0.04 is used 
it results in divergence. Therefore, the step size of FELMS 
algorithm must be reduced to µ = -0.04. The convergence 
speed of all these methods may appear in the tap weight 
trajectory in Fig. 11. These plots of the filter coefficients show 
the stability of the proposed algorithm. The algorithm of Guo 
takes much oscillating trajectory to converge, meanwhile the 
proposed system takes faster and relatively straight way to the 
optimal position. Finally, the proposed algorithm obtains 
lower finite residual noise power (RNP) lower than -20dB, on 
the other hand, Guo algorithm only attains -18.9 dB at the 
final update shown in Fig. 12. From these results it is 
observed that the algorithm Guo et al. have slow residual 
noise decreasing speed, whereas the proposed method in this 
study present reasonably fast convergence speed, which is 
generally the outcome in ANC. 
 

  
(a) (b) 

Figure 11: Tap Weight Trajectory, by (a) APFxLMS 
algorithm (α = -0.4 and µ = 0.04), (b) FELMS algorithm (µ = 

-0.04) 

  
(a) (b) 

Figure 12:   RNP by (a) APFxLMS algorithm (α = -0.4 and µ 
= 0.04), (b) FELMS algorithm (µ = -0.04) 

 
Table 2 shows the comparison of the proposed APFxLMS 
with ANCs in terms of Reduction Noise Power Level (RNPL) 
and Noise Reduction Speed (NRS) [12]. 

 
Table 2     Validation of the proposed APFxLMS  

 
 RNPL(db) NRS 

APFxLMS -20.0 47 

FELMS -18.9 48 

5. CONCLUSION 
 
There are a few noteworthy favorable circumstances related to 
the proposed methodology. Right off the bat, it gives a 
methodical strategy to ANC framework plan by a first-order 
all-pass filter reference LMS algorithm rather than estimation 
of the secondary path. The primary advantage to utilize the 
all-pass filter is that it changes the phase shift only while the 
magnitude of the response is not changing. It likewise does 
not need to execute Hilbert transform for changing over the 
algorithm into the frequency domain. Besides, it tends to be 
effectively executed progressively computerized separating 
activity. This gives a moderately straightforward approach to 
execute the technique in real time applications. The 
utilization of this examination set up an association with 
genuine issues. At last, a solitary parameter α can control 
stage an incentive for guaranteeing assembly conditions. 
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