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 
ABSTRACT 
 
This paper presents a genetic algorithm with online learning 
approach for improving loop closure detection of a visual 
simultaneous localisation and mapping (SLAM) technique. 
The reality gap issue in evolutionary robotics field is known 
as the main factor that degrades the quality of simulated 
solutions when transferring to a real robot. The proposed 
method can optimise the parameter of a visual SLAM in 
real-time. The aim is to evolve and search for the best Bayes 
filter parameters of the loop closure detection using online 
data gathered directly from a connected robot. A fitness 
function calculation utilising real-time images and robot 
motion is proposed to evaluate the performance of candidate 
solutions throughout the learning session. The experimental 
results show that SLAM with the optimised loop closure 
detection parameters outperforms SLAM with the default 
parameters for about 90% improvement. 
 
Key words: Evolutionary robotics, genetic algorithm, loop 
closure detection, visual SLAM.  
 
1. INTRODUCTION 
 
Constructing a learning method for an evolutionary robotics 
application such as simultaneous localisation and mapping 
(SLAM) is a non-trivial task. This is due to the fact that the 
application of evolutionary computation algorithms in the 
robotics field are vast and there is no standard learning 
method for most applications. 
 
This work aims to adopt an evolutionary computation (EC) 
algorithm known as genetic algorithm (GA) to optimise the 
performance of a visual SLAM by improving the loop closure 
detection component of the SLAM. This aim can be achieved 
by choosing either a virtual or physical based learning 
method. The former method, also known as offline method 
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utilises simulation environment to find and test solutions. 
However, a common issue known as the reality gap cannot be 
simply ignored 1. The reality gap is a problem of maintaining 
the exact performance of solution found in the learning phase 
based on a simulated environment into the application phase 
of a real robot environment 1.  
 
Comparatively, physical based or online learning method 
uses real robots to perform evolution. It has an advantage that 
a discovered solution can be applied directly in the 
application phase without comprising the quality of the 
solution. Taking into account this advantage, this paper 
presents a GA with online learning approach for improving 
loop closure detection of a visual SLAM known as 
RTAB-Map or real-time appearance based mapping 2. 
 
Our proposed approach utilises online data gathered from a 
connected Turtlebot 2 robot to learn near-optimal parameters 
of RTAB-Map loop closure detection. Fitness evaluation is 
done via real-time loop closure count given depth images 
taken from a Kinect sensor while the robot performing motion 
actions. 
 
The contribution of this work is two-fold. First, the utilization 
of a GA technique with real-time real-data fitness calculation 
for SLAM optimisation. Second, the generation of GA 
chromosome for RTAB-Map Bayes filter parameters 
configuration. 
 
The next section discusses related works on evolutionary 
computation on SLAM. Section 3 describes the methodology 
of our proposed approach. Then, the experimental results and 
discussion are presented in Section 4 before concluded with a 
conclusion section in Section 5. 
 
2. RELATED WORKS 
 
The argument to choose either a virtual or physical learning 
method for evolving a robotic system has been debated since 
the early implementation of EC techniques in robotic area in 
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90’s [4], [5]. EC is a family of algorithms in machine learning 
inspired by the concept of biological evolution process [6], 
[7]. The preference can be based on a proper system 
architecture selection considering three attributes that are 
type of learning method, evolution phase and components to 
evolve 7. 
Some works choose offline evolution over online evolution 
because evaluation time (fitness calculation) can be sped up 
using a simulation model of an evolved robotic system 8. This 
is useful when the robotic system can be modelled using either 
first principle or sampled-data procedures. For an example, a 
work in 9 has solved a bi-objective nonlinear nonconvex and 
multimodal problem of a robotic gripper movement. Offline 
evolution is used to find seven parameters of link lengths and 
joint angles of the gripper based on force analysis and link 
geometry analysis.  
 
Another reason for using offline evolution is to cater a 
complex environment. A deep belief network (DBN) 
controller has been proposed in 10 for mapless robot 
navigation. The DBN controller was trained using a hybrid 
EC and support vector machine (SVM) technique where 
datasets for model development were gathered from robot’s 
sensors. 
 
Although the abovementioned examples of virtual-based 
evolution work well in a simulated environment, this 
approach suffers from the reality gap problem. The 
performance of an optimal solution in a simulated 
environment degrades significantly when the solution is 
transferred to the real environment 11. Such condition 
happens due to imprecise or simplified simulation models 
such as neglecting sensory noise or coarse discretization of 
data. Experimental results have shown that the degradation of 
performance due to transferring process can be as high as 
30% reduction 12. 
 
On another hand, online evolution is chosen on some other 
works. Online evolution is not prone to the reality gap 
problem, however has difficulty in controlling evaluation 
time.  Few attempts to control the evaluation time were 
proposed. First approach is to use time-sharing mechanism 
13. The method cuts short evaluation time of bad individual 
while giving longer time for good individual. Another 
approach is based on parallel computing mechanism. A work 
in 14 presented four processors configuration to decompose 
the main evolution into four small series of co-evolution. 
 
Online evolution can be extended for SLAM tasks in many 
ways. Evolution of SLAM can be considered as a complex 
optimisation problem containing few local minima and huge 
search space 15.  Differential Evolution (DE) technique is 
used in 16 to develop a localization filter of a grid-based 
SLAM. Online evolution is applied to re-estimate the position 

of robot in two levels of processes i.e. local level and loop 
closure detection. Evolution Strategy (ES) is used in 17 to 
solve the problem of localisation for multiple robots and 
multiresolution maps settings. Experimental results show that 
the robots successfully updated their position while 
performing map generation in 50ms sampling interval. In 
contrast, virtual-based evolution of SLAM is proposed in 18 
for miniature autonomous sensory agents that have limited 
onboard computational power. Non-dominated sorting GA 
(NSGA) is used to estimate the accuracy of a proposed map 
and the total energy consumption by the robots. This work 
differs from the above works on SLAM in that online 
evolution is chosen to improve the loop closure detection 
efficiency to ensure better SLAM performance.  
 
3.  METHODOLOGY 
 
In this section, the detailed description of our proposed online 
GA to optimise the loop closure detection of RTAB-Map 
SLAM is presented. The next sub-section first explains Bayes 
filter used in detecting loop closure and parameters in the 
filter that will be tuned by GA. Then, the following 
sub-section describes our proposed GA method in detail.  
 
3.1 Bayes Filter 
 
RTAB-Map applies a Bayesian filter to estimate the 
probability of a new location matches any visited locations. 
The filter estimates the full posterior probability ρ(St|Lt). St is 
a variable describing the state of all loop closure hypotheses at 
time t. Meanwhile Lt is the sequence of locations L-1,…,Lt. in 
working memory (WM) and short-term memory (STM) of 
RTAB-Map used for real-time processing 19. The full 
posterior probability is calculated using (1) as follows: 
 

 
(1) 

where η is a normalisation term, Lt is the current location and 
St-1 = i is the probability that location Lt-1 closes a loop with a 
past location Li. 
 
The attention of the process of evolution made by GA is the 
transition model ρ(St| St-1 = i) in (1). The transition model is a 
part of prior probability calculation that is used to estimate the 
probability of Lt as a new location or a past location, given the 
state of loop closure hypotheses at t-1. While other parts in (1) 
can be calculated straightforward with other auxiliary 
equations, the transition model is defined heuristically based 
on a discretised Gaussian curve. The Gaussian curve is used 
to predict ρ(St=i| St-1=j) with i,j∈[0;tn], the probability that a 
loop closure occurred at t, given there is a loop closure on a 
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neighbour location at t-1 for a maximum of 16 neighbour 
locations. Identifying the best Gaussian curve is typically 
based on trial-and-error approach. Thus, finding the best 
Gaussian curve’s shape by using GA is promising to get 
near-optimal configuration. A default Gaussian curve set in 
RTAB-Map package as in Figure 1. In this figure, the highest 
probability is set at location 0 or j. Meanwhile, the probability 
of neighbour locations (j-16, …, j+16) decreases gradually 
approaching zero probability for the farthest neighbors. 
Getting the right shape for the above Gaussian curve can 
improve the prediction of loop closure detection. 
 
 

 

 

 

Figure 1: A default Gaussian curve used for transition model 
calculation 

3.2 Proposed Online GA 
 
GA is a subset of Evolutionary Algorithms (EA) which is 
based on Darwinian theory of natural selection 20 that 
increases an individual's ability to compete, survive and 
reproduce. Figure 2 shows an algorithm of the proposed GA 
with online or real-time fitness evaluation for each possible 
solution. For a GA, a possible solution is considered as an 
individual represented in the form of a chromosome. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: An algorithm of the proposed online GA to optimise loop 
closure parameters of RTAB-Map SLAM 

The algorithm begins with the initialisation of GA 
parameters. These parameters determine the type and 
configuration of GA to be used. Table 1 describes the GA 
parameters. 

Table 1: GA Parameters 
GA Parameter Value 

Type of GA Binary GA 
Number of generations 10 
Population size 3 
Type of selection Tournament 
Type of crossover 2-Point Crossover 
Probability of crossover, ρc 0.9 
Type of mutation Point mutation 
Probability of mutation, ρm 0.01 

 

After the initialisation, the GA processes start with the 
generation of the first population of chromosomes. In this 
work, a chromosome constitutes an array of variables that can 
be used to re-construct the shape of Gaussian curve explained 
in section 3.1. Note that, to construct the discretised Gaussian 
curve, the following array of numerical values, N in (2) are 
required to be set up in RTAB-Map. 

N = [VP, LC, N1, N2, N3, ..., N16]                    (2) 

where VP is  the probability Lt is a new location given a loop 
closure was detected on the last iteration ρ(St=-1|St-1=j). LC is 
the probability Lt closes a loop at j and N1, N2, N3 until N16 are 
the 16 probability of loop closure at neighbours j+1. j+2, j+3 
until j+16, respectively. Thus, a GA chromosome is 
configured such that the best numerical values in (2) except 
VP can be searched. VP is an exception since the graph 
concerns on ρ(St=i| St-1=j) only. Here, VP is fixed with 0.1. 
 
N1 value should be lower than LC and N2 value should be 
lower than N1. This pattern continues and persists until N16, 
thus encoding those probabilities directly into the 
chromosome is not practical. To ensure that this probability 
values decreases gradually and forms a valid discretised 
Gaussian curve, an array of intermediate variables D as in (3) 
is introduced. A variable in array D represents a relative 
distance value of probabilities between two adjacent 
neighbours. LC and array D are concatenated to form a 
chromosome structure as in Figure 3.  
 

D = [D1, D2, D3, …, D16]                               (3) 
 
The relationship between a chromosome and Gaussian curve 
parameters can be linked by using (4) and (5). 

 (4)                                             1ܦ − ܥܮ = 1ܰ
 K∈[2;16]                              (5)    ܭܦ − 1−ܭܰ = ܭܰ

 
Since Binary GA is chosen in this work, all variables in the 
chromosome were converted into their corresponding binary 
value before performing GA operations. Table 2 presents the 
value range and number of bits required for each variable. 
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After the conversion, each bit is considered as gene of the 
chromosome, thus a total of concatenated genes is 272 genes 
(16 bits x 17 variables). 
 
The third process in the algorithm of Figure 2 is the 
evaluation of generated individuals or chromosomes. This is a 
crucial process in this work where an online fitness evaluation 
is proposed. A real robot situated in a static environment is 
connected to the GA learning algorithm. A Turtlebot2 robot 
with a Kinect camera and a Kobuki differential-drive plaform 
is used. Kinect camera captures RGB-D images with depth 
information as input   to   RTAB-Map.   Meanwhile, Kobuki 
platform allows the robot to turn in-place to provide circular 
motion needed for the evaluation process.  

 

Table 2: Configuration of Chromosome’s Variables 

Variable Value Range No. of Bits Min. Max. 
LC 0.3 1.0 16 bit 

D1, D2 0.0 0.3 16 bit 
D3, D4 0.0 0.1 16 bit 
D5, D6 0.0 0.05 16 bit 
D7, D8 0.0 0.005 16 bit 
D9, D10 0.0 0.0005 16 bit 
D11, D12 0.0 0.00005 16 bit 
D13, D14 0.0 0.000005 16 bit 
D15, D16 0.0 0.0000005 16 it 

 
 
 

Figure 3: Chromosome representation to construct a discretised 
Gaussian curve. 

Figure 4 describes the detailed flowchart of online fitness 
evaluation to calculate fitness value for each chromosome. 
First, chromosome’s variables were converted into Gaussian 
curve’s parameters. RTAB-Map with the given setting of 
Bayes filter was executed to perform SLAM operation. Robot 
is pre-programmed to perform in-place rotation of 360O for 
three times once RTAB-Map was established. 
Simultaneously, another program to monitor the number of 
loop closure count from RTAB-Map is executed. The time 
taken to complete the task was approximately 1 minute. After 
the task is completed, robot will stop and the final value of 
loop closure count is returned to the GA algorithm.   
 
After all chromosomes have been evaluated, GA operations 
were performed in sequence – selection, crossover, mutation 
and reproduction. There are a few techniques of GA selection 
such as roulette wheel selection and tournament selection. 
Tournament selection is chosen in this work because it 
provides stronger selection pressure over the entire search 
procedure and prone to noise especially for small population 
size 21. Parents are selected based on comparison of fitness 
values of randomly selected chromosomes. 

For GA crossover operation, a 2-Point crossover method with 
crossover probability, ρc set to 0.9 was selected. This method 
interchanges the head and tail of binary string from two 
selected parents and produces two new offspring as illustrated 
in Figure 5 22.  
 
Next, GA mutation operation was performed to all produced 
offspring. Point mutation was used in which all gene’s values 
are changed from 0 to 1 or vice versa with mutation 
probability, ρm of 0.01.  
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 4: Flowchart of online fitness evaluation 

Finally, a simple reproduction procedure was adopted where 
all produced offspring will form a new population and replace 
the current population to be fed into the next generation. 
Then, the online fitness evaluation function and GA 
operations were repeated until the maximum number of 
generations. In this work, the experiment was conducted 
using a personal computer with the specification of Intel i5 
processor, 1.6 GHz clock and 8 GB RAM. ROS software 23 
was used to establish the control platform of the robot as well 
as executing the RTAB-Map package. GAlib 24 was 
integrated to the ROS system to provide the proposed online 
GA algorithm. A complete cycle to run all generations took 
approximately 30 minutes. 
 

 

 

 

 

 

 

 
Figure 5: Example of 2-point crossover 

LC D1 D2 D3 ……………… D16 
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4. RESULTS AND DISCUSSION 
 
This section is divided into two sub-sections. The first 
sub-section discusses the results obtained during the learning 
phase and the later sub-section presents the results in the 
testing phase. 
 
4.1 Learning Phase 
 
RTAB-Map and online GA programs with parameters setting 
as in Table 1 were run simultaneously. Using ROS as the 
platform to integrate all functional programs, it provided 
robust data transfer via messages exchange within nodes with 
publish-and-subscribe method. Turtlebot2 was connected to 
the system to allow real data being captured by the programs. 
A static indoor environment of a laboratory at the Faculty of 
Engineering and Built Environment, Universiti Kebangsaan 
Malaysia as in Figure 6 was chosen for running the 
experiment. 
 
Figure 7 shows the learning results after executing the 
abovementioned set up. At the initial generation, the best 
fitness found was only 17 loop closure detection events. The 
number increases gradually until generation 4 with 21 loop 
closure events. Then, no increment of the best fitness at 
generation 5. After that, the convergence continues until the 
final generation with the final best fitness is at 29 loop closure 
detection events.  
 
Using RTAB-Map in ROS package, loop closure detection 
event is gathered by establishing the GA program to echo a 
topic called /rtabmap/info/LoopClosureId. Non-zero value 
returned by the topic will be summed up and stored after the 
robot has finished rotating. This summed value is the number 
of loop closure detection events that is directly converted as 
the fitness value of a chromosome.  
 
 
 

 

 

 

 

 

 

 

 

Figure 6: A static environment for GA learning phase 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: GA learning results presented the best and average fitness 

in each generation. 

Figure 8 shows an example of loop closure detection event 
from the experiment. Frame 7 was the first image 
encountered by the robot. RTAB-Map uses bag-of-words 
approach to detect loop closure, thus visual features are 
extracted from every processed image. When Frame 18 comes 
in to the system, RTAB-Map detects there were few similar 
visual features between Frame 7 and Frame 18 (indicated by 
green lines in the figure). The threshold number of visual 
features is set at 8 for accepting a loop closure hypothesis. 
Based on this requirement, Frame 7 and Frame 18 has 
exceeded the minimum number of similar visual features, 
therefore the hypothesis is accepted. 
 
4.2 Testing Phase 
Next, we conducted an experiment to test and validate the 
evolved Bayes filter in another environment within the same 
laboratory. The setup is mostly similar in the learning phase 
except in a new environment. The robot was allowed to turn 
in-place (circular motion) within 1 minute.  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: An example of loop closure detected on Frame 18 that 
matches Frame 7. The threshold number of visual features is set at 8 

for accepting a loop closure hypothesis. The green lines show 
matched features and are more than 8, thus the hypothesis is 

accepted. 
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In this phase, the best evolved Bayes filter obtained in the 
learning phase was evaluated and compared with the default 
Bayes filter. The performance of both filters were measured in 
terms of the true number of loop closure detection within the 
same testing environment. A filter with higher number of true 
loop closure detection was considered as having better 
performance. 
 
The parameters of Gaussian curve of the default Bayes filter is 
shown in Figure 1. Figure 9 presents the parameters of 
Gaussian curve of the evolved Bayes filter. Note that, the 
evolved curve suggests the probability value are given only to 
LC and N1, meanwhile the probability for other neighbours 
are set to zero. 
 
Each filter was evaluated to detect loop closure events by 
running three repeated experiment runs to get average 
performance. Figure 10 tabulates the results of the experiment 
runs for both filters. Numbers of loop closure were measured 
at the end of each run. Based on the graphs, the evolved Bayes 
filter outperformed the default Bayes filter in three test runs. 
Improvement of loop closure detection is consistent where the 
evolved Bayes filter found 26 to 28 loop closure events 
compared to the default Bayes filter that found only between 
12 to 16 events on the same environment. Table 3 records the 
average loop closure performance for both filters. Note that, 
the performance improvement made by the evolved Bayes 
filter is approximately 90.5% from the default Bayes filter. 
 

 

 

 

 

 

Figure 9: Evolved Bayes filter 

 

 

   

 

 

 

 

 

Figure 10: Testing phase results comparing the loop closure 
detection performance between the evolved Bayes filter and the 

default Bayes filter. 

Table 3: Average Performance of the Evolved Bayes Filter and the 
Default Bayes Filter 

Average no. of loop 
closure detection 

Evolved Bayes filter Default Bayes filter 
26.67 14.00 

 
Validation of the performance can be observed qualitatively 
from one of RTAB-Map outputs that is from a 
three-dimensional (3D) occupancy grid map. The example of 
this visual output can be seen in Figure 11(a) for the default 
Bayes filter and Figure 11(b) for the evolved Bayes filter. 
 
Using these maps for comparison, the most significant area 
was focused on three objects namely two chairs and one 
cabinet. It can be seen that the map generated by the default 
Bayes filter shows objects’ duplication effect where those 
objects are blurred and appear to have more than three 
objects. This is because the loop closing process is not 
successful in the area so the robot recognized the place as a 
new area each time it passes through the same area. When a 
robot recognized the place as a different area, it re-engraved 
the image on the map, causing the entire map to see the object 
overlap between two or three images. 
 
In contrast, the evolved Bayes filter produces a map with 
chairs and cabinet images as solid objects. This is an evidence 
that the loop closure process is successfully detected that 
allows map graphs to be updated correctly each time the robot 
passes the same area. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Visual observation of RTAB-Map 3D occupancy grid 
maps generated from (a) the default Bayes filter, and (b) the evolved 

Bayes filter. 

 

 
(a) 3D occupancy grid visual with Default Bayes filter 

 

 
(b) 3D occupancy grid visual with Evolved Bayes filter 
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5. CONCLUSION 
 
Based on the results, it is concluded that changing the Bayes 
filter parameters, specifically the discrete Gaussian curve, 
changes the performance of RTAB-Map to detect the loop 
closure count. The proposed GA with online learning 
approach allows the parameters to be evolved in real-time 
using a real robot to minimize the reality gap problem. The 
experimental results shows that the evolved Bayes filter 
outperforms the default Bayes filter in terms of the number of 
loop closure count. Thus, RTAB-Map with the evolved Bayes 
filter produces accurate outputs such as a 3D occupancy grid 
map for the robot to utilise it for autonomous navigation or 
other related tasks.    
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