
159


ABSTRACT

This paper presents a genetic algorithm with online learning
approach for improving loop closure detection of a visual
simultaneous localisation and mapping (SLAM) technique.
The reality gap issue in evolutionary robotics field is known
as the main factor that degrades the quality of simulated
solutions when transferring to a real robot. The proposed
method can optimise the parameter of a visual SLAM in
real-time. The aim is to evolve and search for the best Bayes
filter parameters of the loop closure detection using online
data gathered directly from a connected robot. A fitness
function calculation utilising real-time images and robot
motion is proposed to evaluate the performance of candidate
solutions throughout the learning session. The experimental
results show that SLAM with the optimised loop closure
detection parameters outperforms SLAM with the default
parameters for about 90% improvement.

Key words: Evolutionary robotics, genetic algorithm, loop
closure detection, visual SLAM.

1. INTRODUCTION

Constructing a learning method for an evolutionary robotics
application such as simultaneous localisation and mapping
(SLAM) is a non-trivial task. This is due to the fact that the
application of evolutionary computation algorithms in the
robotics field are vast and there is no standard learning
method for most applications.

This work aims to adopt an evolutionary computation (EC)
algorithm known as genetic algorithm (GA) to optimise the
performance of a visual SLAM by improving the loop closure
detection component of the SLAM. This aim can be achieved
by choosing either a virtual or physical based learning
method. The former method, also known as offline method

Research supported by The Ministry of Education Malaysia under the grant
number FRGS/1/2017/TK04/UKM/02/10.

utilises simulation environment to find and test solutions.
However, a common issue known as the reality gap cannot be
simply ignored 1. The reality gap is a problem of maintaining
the exact performance of solution found in the learning phase
based on a simulated environment into the application phase
of a real robot environment 1.

Comparatively, physical based or online learning method
uses real robots to perform evolution. It has an advantage that
a discovered solution can be applied directly in the
application phase without comprising the quality of the
solution. Taking into account this advantage, this paper
presents a GA with online learning approach for improving
loop closure detection of a visual SLAM known as
RTAB-Map or real-time appearance based mapping 2.

Our proposed approach utilises online data gathered from a
connected Turtlebot 2 robot to learn near-optimal parameters
of RTAB-Map loop closure detection. Fitness evaluation is
done via real-time loop closure count given depth images
taken from a Kinect sensor while the robot performing motion
actions.

The contribution of this work is two-fold. First, the utilization
of a GA technique with real-time real-data fitness calculation
for SLAM optimisation. Second, the generation of GA
chromosome for RTAB-Map Bayes filter parameters
configuration.

The next section discusses related works on evolutionary
computation on SLAM. Section 3 describes the methodology
of our proposed approach. Then, the experimental results and
discussion are presented in Section 4 before concluded with a
conclusion section in Section 5.

2. RELATED WORKS

The argument to choose either a virtual or physical learning
method for evolving a robotic system has been debated since
the early implementation of EC techniques in robotic area in

A Genetic Algorithm with Online Learning Approach for
Improving Loop Closure Detection of a Visual SLAM

Arif Haikal Ahmad Hassan Ayoppan1, Mohd Faisal Ibrahim*1,2, Mohd Hairi Mohd Zaman1,2
1Department of Electrical, Electronic and Systems Engineering,

2Centre for Integrated Systems Engineering and Advanced Technologies (Integra),
Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia.

*Corresponding author: faisal.ibrahim@ukm.edu.my

 ISSN 2278-3091
Volume 8, No.1.6, 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse2581.62019.pdf

https://doi.org/10.30534/ijatcse/2019/2581.62019

Arif Haikal Ahmad Hassan Ayoppan et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 159 - 166

160

90’s [4], [5]. EC is a family of algorithms in machine learning
inspired by the concept of biological evolution process [6],
[7]. The preference can be based on a proper system
architecture selection considering three attributes that are
type of learning method, evolution phase and components to
evolve 7.
Some works choose offline evolution over online evolution
because evaluation time (fitness calculation) can be sped up
using a simulation model of an evolved robotic system 8. This
is useful when the robotic system can be modelled using either
first principle or sampled-data procedures. For an example, a
work in 9 has solved a bi-objective nonlinear nonconvex and
multimodal problem of a robotic gripper movement. Offline
evolution is used to find seven parameters of link lengths and
joint angles of the gripper based on force analysis and link
geometry analysis.

Another reason for using offline evolution is to cater a
complex environment. A deep belief network (DBN)
controller has been proposed in 10 for mapless robot
navigation. The DBN controller was trained using a hybrid
EC and support vector machine (SVM) technique where
datasets for model development were gathered from robot’s
sensors.

Although the abovementioned examples of virtual-based
evolution work well in a simulated environment, this
approach suffers from the reality gap problem. The
performance of an optimal solution in a simulated
environment degrades significantly when the solution is
transferred to the real environment 11. Such condition
happens due to imprecise or simplified simulation models
such as neglecting sensory noise or coarse discretization of
data. Experimental results have shown that the degradation of
performance due to transferring process can be as high as
30% reduction 12.

On another hand, online evolution is chosen on some other
works. Online evolution is not prone to the reality gap
problem, however has difficulty in controlling evaluation
time. Few attempts to control the evaluation time were
proposed. First approach is to use time-sharing mechanism
13. The method cuts short evaluation time of bad individual
while giving longer time for good individual. Another
approach is based on parallel computing mechanism. A work
in 14 presented four processors configuration to decompose
the main evolution into four small series of co-evolution.

Online evolution can be extended for SLAM tasks in many
ways. Evolution of SLAM can be considered as a complex
optimisation problem containing few local minima and huge
search space 15. Differential Evolution (DE) technique is
used in 16 to develop a localization filter of a grid-based
SLAM. Online evolution is applied to re-estimate the position

of robot in two levels of processes i.e. local level and loop
closure detection. Evolution Strategy (ES) is used in 17 to
solve the problem of localisation for multiple robots and
multiresolution maps settings. Experimental results show that
the robots successfully updated their position while
performing map generation in 50ms sampling interval. In
contrast, virtual-based evolution of SLAM is proposed in 18
for miniature autonomous sensory agents that have limited
onboard computational power. Non-dominated sorting GA
(NSGA) is used to estimate the accuracy of a proposed map
and the total energy consumption by the robots. This work
differs from the above works on SLAM in that online
evolution is chosen to improve the loop closure detection
efficiency to ensure better SLAM performance.

3. METHODOLOGY

In this section, the detailed description of our proposed online
GA to optimise the loop closure detection of RTAB-Map
SLAM is presented. The next sub-section first explains Bayes
filter used in detecting loop closure and parameters in the
filter that will be tuned by GA. Then, the following
sub-section describes our proposed GA method in detail.

3.1 Bayes Filter

RTAB-Map applies a Bayesian filter to estimate the
probability of a new location matches any visited locations.
The filter estimates the full posterior probability ρ(St|Lt). St is
a variable describing the state of all loop closure hypotheses at
time t. Meanwhile Lt is the sequence of locations L-1,…,Lt. in
working memory (WM) and short-term memory (STM) of
RTAB-Map used for real-time processing 19. The full
posterior probability is calculated using (1) as follows:

(1)

where η is a normalisation term, Lt is the current location and
St-1 = i is the probability that location Lt-1 closes a loop with a
past location Li.

The attention of the process of evolution made by GA is the
transition model ρ(St| St-1 = i) in (1). The transition model is a
part of prior probability calculation that is used to estimate the
probability of Lt as a new location or a past location, given the
state of loop closure hypotheses at t-1. While other parts in (1)
can be calculated straightforward with other auxiliary
equations, the transition model is defined heuristically based
on a discretised Gaussian curve. The Gaussian curve is used
to predict ρ(St=i| St-1=j) with i,j∈[0;tn], the probability that a
loop closure occurred at t, given there is a loop closure on a

Arif Haikal Ahmad Hassan Ayoppan et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 159 - 166

161

neighbour location at t-1 for a maximum of 16 neighbour
locations. Identifying the best Gaussian curve is typically
based on trial-and-error approach. Thus, finding the best
Gaussian curve’s shape by using GA is promising to get
near-optimal configuration. A default Gaussian curve set in
RTAB-Map package as in Figure 1. In this figure, the highest
probability is set at location 0 or j. Meanwhile, the probability
of neighbour locations (j-16, …, j+16) decreases gradually
approaching zero probability for the farthest neighbors.
Getting the right shape for the above Gaussian curve can
improve the prediction of loop closure detection.

Figure 1: A default Gaussian curve used for transition model
calculation

3.2 Proposed Online GA

GA is a subset of Evolutionary Algorithms (EA) which is
based on Darwinian theory of natural selection 20 that
increases an individual's ability to compete, survive and
reproduce. Figure 2 shows an algorithm of the proposed GA
with online or real-time fitness evaluation for each possible
solution. For a GA, a possible solution is considered as an
individual represented in the form of a chromosome.

Figure 2: An algorithm of the proposed online GA to optimise loop
closure parameters of RTAB-Map SLAM

The algorithm begins with the initialisation of GA
parameters. These parameters determine the type and
configuration of GA to be used. Table 1 describes the GA
parameters.

Table 1: GA Parameters
GA Parameter Value

Type of GA Binary GA
Number of generations 10
Population size 3
Type of selection Tournament
Type of crossover 2-Point Crossover
Probability of crossover, ρc 0.9
Type of mutation Point mutation
Probability of mutation, ρm 0.01

After the initialisation, the GA processes start with the
generation of the first population of chromosomes. In this
work, a chromosome constitutes an array of variables that can
be used to re-construct the shape of Gaussian curve explained
in section 3.1. Note that, to construct the discretised Gaussian
curve, the following array of numerical values, N in (2) are
required to be set up in RTAB-Map.

N = [VP, LC, N1, N2, N3, ..., N16] (2)

where VP is the probability Lt is a new location given a loop
closure was detected on the last iteration ρ(St=-1|St-1=j). LC is
the probability Lt closes a loop at j and N1, N2, N3 until N16 are
the 16 probability of loop closure at neighbours j+1. j+2, j+3
until j+16, respectively. Thus, a GA chromosome is
configured such that the best numerical values in (2) except
VP can be searched. VP is an exception since the graph
concerns on ρ(St=i| St-1=j) only. Here, VP is fixed with 0.1.

N1 value should be lower than LC and N2 value should be
lower than N1. This pattern continues and persists until N16,
thus encoding those probabilities directly into the
chromosome is not practical. To ensure that this probability
values decreases gradually and forms a valid discretised
Gaussian curve, an array of intermediate variables D as in (3)
is introduced. A variable in array D represents a relative
distance value of probabilities between two adjacent
neighbours. LC and array D are concatenated to form a
chromosome structure as in Figure 3.

D = [D1, D2, D3, …, D16] (3)

The relationship between a chromosome and Gaussian curve
parameters can be linked by using (4) and (5).

 (4) 1ܦ − ܥܮ = 1ܰ
 K∈[2;16] (5) ܭܦ − 1−ܭܰ = ܭܰ

Since Binary GA is chosen in this work, all variables in the
chromosome were converted into their corresponding binary
value before performing GA operations. Table 2 presents the
value range and number of bits required for each variable.

Arif Haikal Ahmad Hassan Ayoppan et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 159 - 166

162

After the conversion, each bit is considered as gene of the
chromosome, thus a total of concatenated genes is 272 genes
(16 bits x 17 variables).

The third process in the algorithm of Figure 2 is the
evaluation of generated individuals or chromosomes. This is a
crucial process in this work where an online fitness evaluation
is proposed. A real robot situated in a static environment is
connected to the GA learning algorithm. A Turtlebot2 robot
with a Kinect camera and a Kobuki differential-drive plaform
is used. Kinect camera captures RGB-D images with depth
information as input to RTAB-Map. Meanwhile, Kobuki
platform allows the robot to turn in-place to provide circular
motion needed for the evaluation process.

Table 2: Configuration of Chromosome’s Variables

Variable Value Range No. of Bits Min. Max.
LC 0.3 1.0 16 bit

D1, D2 0.0 0.3 16 bit
D3, D4 0.0 0.1 16 bit
D5, D6 0.0 0.05 16 bit
D7, D8 0.0 0.005 16 bit
D9, D10 0.0 0.0005 16 bit
D11, D12 0.0 0.00005 16 bit
D13, D14 0.0 0.000005 16 bit
D15, D16 0.0 0.0000005 16 it

Figure 3: Chromosome representation to construct a discretised
Gaussian curve.

Figure 4 describes the detailed flowchart of online fitness
evaluation to calculate fitness value for each chromosome.
First, chromosome’s variables were converted into Gaussian
curve’s parameters. RTAB-Map with the given setting of
Bayes filter was executed to perform SLAM operation. Robot
is pre-programmed to perform in-place rotation of 360O for
three times once RTAB-Map was established.
Simultaneously, another program to monitor the number of
loop closure count from RTAB-Map is executed. The time
taken to complete the task was approximately 1 minute. After
the task is completed, robot will stop and the final value of
loop closure count is returned to the GA algorithm.

After all chromosomes have been evaluated, GA operations
were performed in sequence – selection, crossover, mutation
and reproduction. There are a few techniques of GA selection
such as roulette wheel selection and tournament selection.
Tournament selection is chosen in this work because it
provides stronger selection pressure over the entire search
procedure and prone to noise especially for small population
size 21. Parents are selected based on comparison of fitness
values of randomly selected chromosomes.

For GA crossover operation, a 2-Point crossover method with
crossover probability, ρc set to 0.9 was selected. This method
interchanges the head and tail of binary string from two
selected parents and produces two new offspring as illustrated
in Figure 5 22.

Next, GA mutation operation was performed to all produced
offspring. Point mutation was used in which all gene’s values
are changed from 0 to 1 or vice versa with mutation
probability, ρm of 0.01.

Figure 4: Flowchart of online fitness evaluation

Finally, a simple reproduction procedure was adopted where
all produced offspring will form a new population and replace
the current population to be fed into the next generation.
Then, the online fitness evaluation function and GA
operations were repeated until the maximum number of
generations. In this work, the experiment was conducted
using a personal computer with the specification of Intel i5
processor, 1.6 GHz clock and 8 GB RAM. ROS software 23
was used to establish the control platform of the robot as well
as executing the RTAB-Map package. GAlib 24 was
integrated to the ROS system to provide the proposed online
GA algorithm. A complete cycle to run all generations took
approximately 30 minutes.

Figure 5: Example of 2-point crossover

LC D1 D2 D3 ……………… D16

Arif Haikal Ahmad Hassan Ayoppan et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 159 - 166

163

4. RESULTS AND DISCUSSION

This section is divided into two sub-sections. The first
sub-section discusses the results obtained during the learning
phase and the later sub-section presents the results in the
testing phase.

4.1 Learning Phase

RTAB-Map and online GA programs with parameters setting
as in Table 1 were run simultaneously. Using ROS as the
platform to integrate all functional programs, it provided
robust data transfer via messages exchange within nodes with
publish-and-subscribe method. Turtlebot2 was connected to
the system to allow real data being captured by the programs.
A static indoor environment of a laboratory at the Faculty of
Engineering and Built Environment, Universiti Kebangsaan
Malaysia as in Figure 6 was chosen for running the
experiment.

Figure 7 shows the learning results after executing the
abovementioned set up. At the initial generation, the best
fitness found was only 17 loop closure detection events. The
number increases gradually until generation 4 with 21 loop
closure events. Then, no increment of the best fitness at
generation 5. After that, the convergence continues until the
final generation with the final best fitness is at 29 loop closure
detection events.

Using RTAB-Map in ROS package, loop closure detection
event is gathered by establishing the GA program to echo a
topic called /rtabmap/info/LoopClosureId. Non-zero value
returned by the topic will be summed up and stored after the
robot has finished rotating. This summed value is the number
of loop closure detection events that is directly converted as
the fitness value of a chromosome.

Figure 6: A static environment for GA learning phase

Figure 7: GA learning results presented the best and average fitness

in each generation.

Figure 8 shows an example of loop closure detection event
from the experiment. Frame 7 was the first image
encountered by the robot. RTAB-Map uses bag-of-words
approach to detect loop closure, thus visual features are
extracted from every processed image. When Frame 18 comes
in to the system, RTAB-Map detects there were few similar
visual features between Frame 7 and Frame 18 (indicated by
green lines in the figure). The threshold number of visual
features is set at 8 for accepting a loop closure hypothesis.
Based on this requirement, Frame 7 and Frame 18 has
exceeded the minimum number of similar visual features,
therefore the hypothesis is accepted.

4.2 Testing Phase
Next, we conducted an experiment to test and validate the
evolved Bayes filter in another environment within the same
laboratory. The setup is mostly similar in the learning phase
except in a new environment. The robot was allowed to turn
in-place (circular motion) within 1 minute.

Figure 8: An example of loop closure detected on Frame 18 that
matches Frame 7. The threshold number of visual features is set at 8

for accepting a loop closure hypothesis. The green lines show
matched features and are more than 8, thus the hypothesis is

accepted.

Arif Haikal Ahmad Hassan Ayoppan et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 159 - 166

164

In this phase, the best evolved Bayes filter obtained in the
learning phase was evaluated and compared with the default
Bayes filter. The performance of both filters were measured in
terms of the true number of loop closure detection within the
same testing environment. A filter with higher number of true
loop closure detection was considered as having better
performance.

The parameters of Gaussian curve of the default Bayes filter is
shown in Figure 1. Figure 9 presents the parameters of
Gaussian curve of the evolved Bayes filter. Note that, the
evolved curve suggests the probability value are given only to
LC and N1, meanwhile the probability for other neighbours
are set to zero.

Each filter was evaluated to detect loop closure events by
running three repeated experiment runs to get average
performance. Figure 10 tabulates the results of the experiment
runs for both filters. Numbers of loop closure were measured
at the end of each run. Based on the graphs, the evolved Bayes
filter outperformed the default Bayes filter in three test runs.
Improvement of loop closure detection is consistent where the
evolved Bayes filter found 26 to 28 loop closure events
compared to the default Bayes filter that found only between
12 to 16 events on the same environment. Table 3 records the
average loop closure performance for both filters. Note that,
the performance improvement made by the evolved Bayes
filter is approximately 90.5% from the default Bayes filter.

Figure 9: Evolved Bayes filter

Figure 10: Testing phase results comparing the loop closure
detection performance between the evolved Bayes filter and the

default Bayes filter.

Table 3: Average Performance of the Evolved Bayes Filter and the
Default Bayes Filter

Average no. of loop
closure detection

Evolved Bayes filter Default Bayes filter
26.67 14.00

Validation of the performance can be observed qualitatively
from one of RTAB-Map outputs that is from a
three-dimensional (3D) occupancy grid map. The example of
this visual output can be seen in Figure 11(a) for the default
Bayes filter and Figure 11(b) for the evolved Bayes filter.

Using these maps for comparison, the most significant area
was focused on three objects namely two chairs and one
cabinet. It can be seen that the map generated by the default
Bayes filter shows objects’ duplication effect where those
objects are blurred and appear to have more than three
objects. This is because the loop closing process is not
successful in the area so the robot recognized the place as a
new area each time it passes through the same area. When a
robot recognized the place as a different area, it re-engraved
the image on the map, causing the entire map to see the object
overlap between two or three images.

In contrast, the evolved Bayes filter produces a map with
chairs and cabinet images as solid objects. This is an evidence
that the loop closure process is successfully detected that
allows map graphs to be updated correctly each time the robot
passes the same area.

Figure 11: Visual observation of RTAB-Map 3D occupancy grid
maps generated from (a) the default Bayes filter, and (b) the evolved

Bayes filter.

(a) 3D occupancy grid visual with Default Bayes filter

(b) 3D occupancy grid visual with Evolved Bayes filter

Arif Haikal Ahmad Hassan Ayoppan et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 159 - 166

165

5. CONCLUSION

Based on the results, it is concluded that changing the Bayes
filter parameters, specifically the discrete Gaussian curve,
changes the performance of RTAB-Map to detect the loop
closure count. The proposed GA with online learning
approach allows the parameters to be evolved in real-time
using a real robot to minimize the reality gap problem. The
experimental results shows that the evolved Bayes filter
outperforms the default Bayes filter in terms of the number of
loop closure count. Thus, RTAB-Map with the evolved Bayes
filter produces accurate outputs such as a 3D occupancy grid
map for the robot to utilise it for autonomous navigation or
other related tasks.

ACKNOWLEDGEMENT

We would like to thank JKEES and Integra, FKAB, UKM for
the facility and supports especially for the usage of Project
laboratory and Control laboratory.

REFERENCES

1. J.C. Bongard. Evolutionary Robotics, Communications

of the ACM, vol. 56(8), pp. 74-83, 2013.
https://doi.org/10.1145/2492007.2493883

2. D.N. Hofstadler, M. Wahby, M. K. Heinrich, H.
Hamann, P. Zahadat, P. Ayres and T. Schmickl. Evolved
Control of Natural Plants: Crossing the Reality Gap
for User-Defined Steering of Growth and Motion,
ACM Transactions on Autonomous and Adaptive
Systems (TAAS) - Special Issue on SASO, vol. 12(3), pp.
15:1 – 15:24, 2017.

3. M. Labbé and F. Michaud. RTAB-Map as an
Open-Source Lidar and Visual SLAM Library for
Large-Scale and Long-Term Online Operation,
Journal of Field Robotics, vol. 36(2), pp. 416-446, 2018.

4. F. Silva, M. Duarte, S.M. Oliveira and A.L. Christensen.
Open Issues in Evolutionary Robotics, Journal of
Evolutionary Computation, vol. 24(2), pp. 205-236,
2016.
https://doi.org/10.1162/EVCO_a_00172

5. P.A. Vargas,E.A. Di-Paolo, I. Harvey and P. Husbands.
Context and Challenges for Evolutionary Robotics. in
The Horizons of Evolutionary Robotics, MIT Press,
2014, ch. 1, pp. 1-16.

6. D.L.C. Guillermo, F.R.C. Dim, S.M.L. Fernando and
L.Y.C. Young. A study on how evolution simulator
utilizes the windows operating system to demonstrate
artificial intelligence learning, International Journal of
Advanced Trends in Computer Science and Engineering,
vol.8(3): 764-771, 2019.
https://doi.org/10.30534/ijatcse/2019/67832019

7. R.J. Alattas, S.Patel, T.M. Sobh. Evolutionary Modular
Robotics: Survey and Analysis, Journal of Intelligent &
Robotic Systems, vol. 95(3-4): 815–828, 2018.
https://doi.org/10.1007/s10846-018-0902-9

8. M. Jelisavcic, M. de-Carlo, E. Hupkes, P. Eustratiadis, J.
Orlowski, E. Haasdijk, J.E. Auerbach, A.E. Eiben.
Real-World Evolution of Robot Morphologies: A
Proof of Concept, Artificial Life, vol. 23(2), pp.
206-235, 2017.

9. J. Gomes, P. Mariano and A.L. Christensen. Challenges
in Cooperative Coevolution of Physically
Heterogeneous Robot Teams, Natural Computing, vol.
18(1), pp. 29-46, 2019.
https://doi.org/10.1007/s11047-016-9582-1

10. R. Datta, S. Pradhan and B. Bhattacharya. Analysis and
Design Optimization of a Robotic Gripper Using
Multiobjective Genetic Algorithm, IEEE Transactions
on Systems, Man and Cybernetics, vol. 46(1), pp. 16-26,
2016.

11. P. Jiang, C. Chen and X. Liu. Time Series Prediction
for Evolutions of Complex Systems: A Deep Learning
Approach, in Proc. 2016 IEEE International
Conference on Control and Robotics Engineering
(ICCRE), 2016.

12. V. Trianni and M. López-Ibáñez. Advantages of

Task-Specific Multi-Objective Optimisation in
Evolutionary Robotics, PLoS ONE, vol. 10(8), pp.
2015.

13. K.Y.W. Scheper, S. Tijmons, C.C. de Visser and
G.C.H.E de Croon. Behavior Trees for Evolutionary
Robotics, Journal of Artificial Life vol. 22(1), pp. 23-48,
2016.

14. A.Q. Arif, D.G. Nedev and E. Haasdijk. Controlling
Evaluation Duration in On-Line, On-Board
Evolutionary Robotics, in Proc. 2013 IEEE Conference
on Evolving and Adaptive Intelligent Systems (EAIS),
2013, pp. 84-90.
https://doi.org/10.1109/EAIS.2013.6604109

15. K.B. Lee, H. Myung and J.H. Kim. Online
Multiobjective Evolutionary Approach for
Navigation of Humanoid Robots, Journal of IEEE
Transactions on Industrial Electronics, vol. 62(9), pp.
5586-5597, 2015.

16. M. Zemzami, N. Elhami, M. Itmi and N. Hmina. An
evolutionary hybrid algorithm for complex
optimization problems, International Journal of
Advanced Trends in Computer Science and Engineering,
vol. 8(2): 126-133, 2019.
https://doi.org/10.30534/ijatcse/2019/05822019

17. L. Moreno, S. Garrido, F. Martín and M.L. Muñoz.
Differential evolution approach to the grid-based
localization and mapping problem, in Proc. IEEE
International Conference on Intelligent Robots and
Systems (IROS), 2007, pp. 3479-3484.

18. Y. Toda and N. Kubota. Self-localization based on
multiresolution map for remote control of multiple

Arif Haikal Ahmad Hassan Ayoppan et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 159 - 166

166

mobile robots, IEEE Transactions on Industrial
Informatics, vol. 9(3), pp. 1772-1781, 2013.

19. S. Schlupkothen, A. Hallawa and G. Ascheid.
Evolutionary Algorithm Optimized Centralized
Offline Localization and Mapping, in Proc. 2018
International Conference on Computing, Networking
and Communications (ICNC), 2018, pp. 625-631.

20. M. Labbé and F. Michaud. Appearance-Based Loop
Closure Detection for Online Large-Scale and
Long-Term Operation, IEEE Transactions on
Robotics, vol. 29(3), 2013, pp. 734-745.

21. A.M. Aibinu, H.B. Salau, N. Arthur, M.N. Nwohu and
C.M. Akachukwu. A Novel Clustering based Genetic
Algorithm for Route Optimization. International
Journal of Engineering Science and Technology, vol.
19(4), pp. 2022–2034, 2016.
https://doi.org/10.1016/j.jestch.2016.08.003

22. B. L. Miller and D. E. Goldberg. Genetic Algorithms,
Tournament Selection, and the Effects of Noise,
Complex Systems, vol.9, pp. 193–212, 1995.

23. L. Haldurai, T. Madhubala and R. Rajalakshmi. A Study
on Genetic Algorithm and its Applications,
International Journal of Computer Sciences and
Engineerin, vol. 4(10), pp. 1-5. 2016.

24. Y. Pyo, H. Cho, R. Jung and T. Lim. ROS Robot
Programming. ROBOTIS Co. Ltd., Seoul, 2017.

25. Lancet.mit.edu. GAlib: A C++ Library of Genetic
Algorithm. [Online]. Available:
http://lancet.mit.edu/ga. [Accessed: 29 August 2019].

