
Tu-Anh Nguyen-Hoang et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5913 – 5920

5913

ABSTRACT

Nowadays, link prediction in the networks is one of the fields

of greatest attraction in data mining. In link prediction, graph

stream has become an essential model to represent interactive

elements in the massive networks. It is a promising key to

performing many real-world applications and can be applied

in many fields, such as social networks, Ecommerce

networks, and telecommunication networks. However, the

most exciting link prediction methods just center on studying

predicted the existence of links in snapshot graphs, while most

recent applications in the form of the graph streams. When

applying these methods to graph streams, we have two

challenges: the large amount of links and the rapid

evolvement of graph streams. This paper introduces an

efficient method to predict real-time existence link in graph

streams. We propose an efficient Graph Stream Distributed

Computation framework (GSDC) which is directly

amendable to parallelization, facilitating a scalable distributed

execution on the Apache Spark platform. With our

framework, we present the Distributed Computation Score

feature (DCS) and Gradient Boosted Trees (GBT) which are

designed to distribute computation approach. Our

experimental results on three realistic social networks prove

our method can reduce the feature extraction time by 3x times

and the errors always below 9%. Additionally, our method

can increase the prediction precision by 21% over the baseline

methods.

Key words: Link prediction, distributed method, data mining,

social network, graph stream.

1. INTRODUCTION

The network is a method of expressing connections and

interactions of objects in a collection. In the network, objects

(nodes) are connected by pairwise interactions (links). In

recent years, the Internet, social networks, transport networks,

and biological networks... have been built as network systems.

The links are expressed in many different ways, such as

friendships, collaborations, and marriages as in the social

network and airlines and railways as the transportation

network. This simple idea can be used to describe most

applications whose systems can range from simple to

extremely complex. The basis of recommended systems in

social networks, Ecommerce services, and online marketing is

developed by link prediction. Link prediction can support to

decrease the cost and time of researching protein-protein

interactions, the interaction of biological cells, and genetic

inheritance. In several situations, link prediction proposes an

effective transport network and detects the structure of the

criminal network. However, the applications will expand over

time, which makes the networks grow more in size and speed.

This most applications are in the form of the graph streams,

bringing new challenges and opportunities in data mining

field.

Link prediction studies the existence of new links (unaware

interactions or new relationships) between pairs of nodes

based on their features and the present considered links. The

real-world network is a graph stream with the large amount of

noisy and dynamic links. Essentially, the link prediction

problem discovers knowledge and remodels topology on this

dataset. Additionally, link prediction discovers the structure

of the real-world network in the future. However, the datasets

of the real-world networks are commonly dynamic, changing

with the new links appear over time and become

unobservability. These datasets are in the graph streams, not

in snapshot graphs.

The most previous researches of exciting link prediction just

concentrate studying link prediction in snapshot graphs, while

most recent applications in the form of the graph streams.

When predicting the existence of link in graph streams, we

have two challenges: a) a large number of nodes, which

produce possible links, resulting in significant complexity

and b) the rapid evolvement of graph stream. To increase the

applicability, we research the link existence prediction subject

in a more realistic context. Given a graph stream, this network

has the large amount of links and has the rapid evolvement. To

solve this problem, we present GSDC framework – an

efficient framework can easily perform parallel computation

and scale up the distributed system when necessary. GSDC

framework can be used to compute the distributed similarity

scores between nodes by the distribution of the information

about edges and distributed machine learning. The outputs of

GSDC framework are a DCS feature and a GBT method. DCS

feature is a general feature that outperforms most features in

Distributed Computation Approach for Link Prediction in

Graph Stream using DCS Features and

Gradient Boosted Trees

Tu-Anh Nguyen-Hoang1, Khanh-Duy Le-Trinh2, Anh-Thu Nguyen-Thi3
1 University of Information Technology, Vietnam National University HCMC, Vietnam, anhnht@uit.edu.vn

2 University of Information Technology, Vietnam National University HCMC, Vietnam,

15520159@gm.uit.edu.vn
3 University of Information Technology, Vietnam National University HCMC, Vietnam, thunta@uit.edu.vn

ISSN 2278-3091

Volume 9, No.4, July – August 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse254942020.pdf

https://doi.org/10.30534/ijatcse/2020/254942020

http://www.warse.org/IJATCSE/static/pdf/file/ijatcse254942020.pdf
https://doi.org/10.30534/ijatcse/2020/254942020

Tu-Anh Nguyen-Hoang et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5913 – 5920

5914

criteria such as precision, generalization, and speed. GBT

method is a distributed method to deal with the massive

datasets available today.With DCS feature and GBT method,

we can use them to predict real-time existence links in graph

stream. We experiment on three real-world networks. Our

results on these datasets prove that our approach can be

applied to various applications which require real-time

computation.

The remaining of this paper is setting as follows. Sections 2

discusses related work. We present our proposed method

called GSDC framework with DCS feature and GBT method

in section 3. We show the results of experiment and

discussion in section 4. The ending of this paper is the

conclude in section 5.

2. RELATED WORK

Over the last decade, the scientific research community has

had a particular interest in the link prediction problem [1]-[2].

It can be applied in any applications which can be modelled

into a network. There are various research studies aimed to

resolve the problems of link prediction [3]-[4]. Most of these

studies have focused of a static graph [5]-[6].

The datasets of the real-world networks are commonly

dynamic, changing with the new links appear over time and

become unobservability. This real-world datasets are in the

form of the graph streams. However, the number of research

studies on link prediction in graph streams [7]-[8] is smaller

than that of the static graph. The approaches to link prediction

in graph streams include approximate matching, connectivity

properties, frequencies of subgraphs, and graph distances.

There are a few recently published studies related to the

approximate matching approach, such as the cost-effective

method proposed by Zhao et al [7]. This method is based on

the neighborhood-based measures to calculate the accurate

estimation similarity scores between any two nodes in graph

streams. This is a great online approximate estimation method

to trade accuracy for time and space cost.

Distributed Computing is a popular scientific field of

computer science major with the target of data explosion (like

Big Data), which has inspired researchers and developers to

develop Distributed Systems in recent years [9]-[10].

Distributed Systems have solved many issues of data

explosion or data mining, such as the massive volume and the

high rate of evolving data [11]-[12].

Thus, we apply Distributed Systems to solve similar issues in

link prediction in the graph stream problem. We present

GSDC framework – an efficient framework can easily

perform parallel computation and scale up the distributed

system when necessary. Figure 1 shows the brief overview of

the framework that we propose. The outputs of GSDC

framework are a DCS feature and a GBT method.

Figure 1: Graph Stream Distributed Computation framework

GSDC framework can be used to compute the distributed

similarity scores between nodes by the distribution of the

information about edges and distributed machine learning.

With GSDC framework, we can use them to predict real-time

existence links in graph stream.

3. THE PROPOSED METHOD

In this section, we describe a proposed method for link

prediction in the graph stream problem. For the link prediction

in the graph stream problem, we introduce the formal

definitions firstly. Secondly, we introduce our features for the

link prediction in the graph stream problem. Finally, we

propose GBT method is a distributed method to deal with the

massive datasets available today.

3.1 Problem Formulation

We assume a graph stream which contains the

sequence of vertices and edges. We let indicates the set of

vertices, indicates the set of edges and is a graph

stream at time with a sequence of edges

, where is the edge

created by the interaction of two vertices and at the time

with .

In this paper, we study the link prediction in terms of

predicting the existence of unobserved links or future links

between pairs of nodes in a network. The overview of the

whole link existence prediction in graph stream is given in the

Figure 2. Link existence prediction in graph stream is defined

with the following input and output:

• Input: The set of links in a graph stream at time with

.

• Output: The set of links will exist in the future .

Tu-Anh Nguyen-Hoang et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5913 – 5920

5915

Figure 2: Link prediction in graph stream

The training phase uses the information of a graph stream at

time with . The testing phase and evaluation

are at time .

3.2 Proposed Features

The most previous researches of exciting link prediction just

focused research on link existence prediction problems in

snapshot graphs. In snapshot graph, with the exact matching

method, the similarity scores of two vertices computed by the

formulas below:

 (1)

(2)

(3)

However, in a graph stream, the massive sizes of the adjacent

vertex and result in inefficient computation cost

for all pairwise vertices. So the main concept of our

Distributed Computing splits the Graph Stream into multiple

partitions, each of which is used to execute separate tasks in

the system. Each task we present is used to compute the

following similarity scores: approximation Common

Neighbor (aCN), approximation Sorensen Index (aSI), and

approximation Jaccard (aJC). We propose a Distributed

Computation Score (DCS) feature which is constructed by

combining these three indexes (aCN, aSI, and aJC). Our

workflow using the Distributed Computing approach is shown

in Figure 3 where the output is a DCS feature of all pairwise

vertices in the graph stream.

Figure 3: Illustration of the Distributed Computing Approach for

DCS feature

To compute DCS feature, the paper describes two

computation steps which are vertex vectorization and

similarity score computation.

A. Vertex vectorization

In the vertex vectorization step, we split a big graph stream

into the smaller partitions

and each partition is computed by an executor. In a partition,

we map a sequence of edges into a sequence of vectors. Each

vector is called the vectorial vertex and managed by a

determined vertex. The dimension of these vectorial vertices

is much smaller than that of adjacent vertices of raw edges.

These vectorial vertices are the inputs for calculating the

target similarity scores (DCS Feature in the next step). DCS

Feature has aCN, aSI, and aJC score. We build vectorization

methods suitable to compute each of these similarity scores.

These methods are Sampling and MinHash method.

The Sampling method for link prediction in graph stream has

been published in [7]. This idea is combined with our

distributed computation idea to extend link prediction in the

graph stream problem. In aCN and aSI score, we use the

method of sampling the adjacent vertex to reduce the space of

the adjacent vertex. In graph stream, most vertices are

high-degree, and hence, getting the sample in the traditional

ways (like a reservoir sampling) is inefficient. Those reservoir

sampling methods help us choose the same vertices in a

sequence of adjacent vertices without knowing exactly their

size. However, this traditional method can’t choose the

identical vertices from different adjacent vertices of each

vertex so we propose to use a variant of reservoir sampling.

This variant sampling is a biased-sampling, where each

vectorial vertex is forced to be dependant on a hash function.

We choose a vectorial vertex for each vertex with the lowest

values generated by the hash function

 where is an identified vertex in the

adjacent vertex. We set the number as the budget for

choosing the vertices of the vectorial vertex. The size of the

vectorial vertex will be equal to or less than . Then we also

record the size of the actual adjacent vertices as

for a computation approximation similarity score in the next

step.

MinHash method [13] is an efficient technique that estimates

the similarity (aJC) between two adjacent vertices. We choose

 as the number of hash functions as well as the dimension of

the vectorial vertex. Each element in the vector is a minimum

adjacent hash value created by mapping adjacent identified

vertices into adjacent hash values. For example, vectorial

vertex is a collection of elements . With each edge in

a partition, the hash functions map the identified vertices

and into two vectors managed by vertices and . The

computed result of each partition is a collection of the distinct

- dimensional vectorial vertices.

At the end of the process mentioned above, we have a

collection of distinct vectorial vertices in each partition. The

dimension of the vectorial vertice is shown in Figure 4. After

that, we use aggregation operators to collect all vectorial

Tu-Anh Nguyen-Hoang et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5913 – 5920

5916

vertices.

Figure 4: Illustration of the dimension of the vectorial vertices

B. Similarity score computation

After the vertex vectorization step, we will go through the

similarity score computation step. We use the first

elements of vectorial vertex computed after vertex

vectorization step to estimate the approximation Jaccard

similarity score between two vertices with the following

formula:

(4)

In vectorial vertex, we have the remaining elements with the

budget elements. We use these elements to compute the

aCN and aSI score. We also propose to add a fraction

for preparing the next similarity score computation:

(5)

We compute the remaining similarity scores using a

distributed computation method with the following formulas.

After that, we combine these scores with the aJC score into

DCS feature.

(6)

(7)

3.3 Distributed machine learning

In graph stream, we present Gradient Boosted Trees (GBT)

method which can use to predict real-time existence links.

GBT is a distributed machine learning method. We borrow the

Gradient boosting from J. H. Friedman (2001) [14] to design

the distributed computation approach (GBT method).

Gradient descent and Boosting are two techniques and are

incorporated into gradient boosting. Gradient boosting is also

called as steepest descent method. To understand gradient

boosting clearly, we introduce Gradient-descent optimization

[14] and Boosting [14] first. Then, we explain on Gradient

boosting for classification in this section.

A. Gradient-descent optimization

Deterministic and stochastic approaches can be separately

used in the optimization problems. In these problems,

deterministic methods are confirmed that it normally quicker

than stochastic ones. However, deterministic methods are at

higher risk of being stranded in a local minima than stochastic

ones. Some stochastic methods use to turn hyperparameterand

threshold. The gradient-descent is a deterministic

nonparametric iterative approach. This approach has normally

been used to decrease the experienced risk by numerical

function optimization [15].

With a function , we have:

(8)

The gradient is an only vector field. It is a result of applying

the nabla operator on function . We chose a starting point

 as an initial evaluate. This step is a first step for

decreasing function . In iteration , the starting point

will be improved with:

 for (9)

Where can change and manage the step size towards the

steepest descent after each iteration. This helps minimize the

objective function:

(10)

In this line search function, the algorithm reachesan

 with after the

iterations. Then, a local minima is reached.

B. Boosting

Valiant [16] and Kearns [17] presented the Boosting in their

PAC-learning framework. Then, Robert E. Schapire et al. [18]

developed it and demonstrated that we can train additional

ones to appreciate the performance of a weak learner. In

predictive performance problem, the random chance has

lower performance than weak learners with such required

property. In the modeling phase, this concept is the basis of

Boosting. The goal is to minimize the empirical risk:

(11)

The parameters , parameters and the learners

 affect . Thus, the needs to be scaled down in

terms of parameters by

using the loss function . Following J. H. Friedman (2001)

[14], the iterative modeling approach can more optimization.

The front models are not readjusted and become invariable

when supplement each component phase. In the machine

learning context, it is called the Boosting and improve the

predictive performance strongly.

C. Gradient boosting for classification

Gradient descent and Boosting are two techniques and are

incorporated into the gradient boosting. This algorithm use

gradient descent to minimize the empirical risk . The target

variable does not accommodate consecutive. This variable has

only two other class levels, e.g. . This is the

difference with regression. The function will

set discrete predictable results if the model’s output gives real

values. The positive value is determined as class 1 and the

negative value is determined as class 0.

Tu-Anh Nguyen-Hoang et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5913 – 5920

5917

The tree models predict the pseudo residuals in each

iteration . In districts , each tree has

terminal nodes to corresponding update

(12)

With

This formula is approximated by a single Newton-Raphson

step because there is no closed solution. This formula is split

into individual calculations for each terminal node, following

J. Friedman et al. [14].

(13)

which serves for the update

(14)

Finally, after steps, is returned as final model. A

formal description of K-class Classification Gradient Tree

Boosting Algorithm [14] is given in Table 1.

Table 1: K-class Classification Gradient Tree Boosting Algorithm

Algorithm 1: K-class Classification Gradient Tree Boosting

Algorithm.

 Initialize:

1 for do

2 Set for do

3 Calculate

4
Fit regression tree to the pseudo-residuals

given terminal regions

5 for do

6

7 end

8

Update

9 end

10 end

 Output:

This algorithm is designed and executed on the distributed

computation system. This method is called Gradient Boosted

Trees (GBT) method, facilitating a scalable distributed

execution on the Apache Spark platform. The overview of the

whole our predictive execution system is given in the Figure

5.

Figure 5: Simulate predictive execution system

The entire proposed model is based on distributed computing.

Each Worker machine will assume a role in computing the

distributed operators. Worker workstations do their own tasks,

then aggregate and send them to the Master server.

4. EXPERIMENTS

This section evaluates our link prediction approach by the

experimental studies. We introduce three real-world graph

streams datasets. Then, we briefly present the evaluation

methods and experimental settings. After conducting

experiments, we show experimental results and discussions.

4.1 Datasets

We choose three real-world graph streams datasets:

1) DBLP[19]: This dataset is a bibliographic information

dataset on major computer science publications. We extracted

all conference papers from 1940 to 2015. This graph includes

1,411,376 vertices and 10,597,380 edges.

2) Wikipedia [20]: This graph stream represents the

development of the Wikipedia knowledge base. This graph

stream contains 1,870,709 vertices and 39,953,145 edges. In

this graph, vertices are articles in Wikipedia, and edges define

the relationship between articles.

3) Amazon [21]: This graph stream gets information about

various products (Books, music CDs, DVDs and VHS video

tapes). It includes these product metadata. There is a total of

410,271 vertices and 11,179,587 edges in the graph streams.

Table 2 present the properties of the three networks.

Table 2: The properties of the three networks
Network Vertices Edges

DBLP 1,411,376 10,597,380

Wikipedia 1,870,709 39,953,145

Amazon 410,271 11,179,587

Tu-Anh Nguyen-Hoang et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5913 – 5920

5918

4.2 Evaluation Methods

Our method is evaluated by three criteria:

A. Differences between values

We use the root-mean-square error (RMSE). This measure is

used to assess the difference between sample and population

values. As our evaluation, RMSE shows the difference

between approximate similar score and exact similar score. It

is defined as follows:

(15)

B. Precision

The precision evaluates the classify model by the ratio

between tp is the amount of true positives and fp the amount

of false positives. The formula for this measurement is

calculated as follows:

 (16)

C. Computation cost

Our distributed computation framework aim to predict

realtime existence link graph stream, so the computation cost

is an important element for efficient evaluation. We measure

the execution time of the methods.

4.3 Experimental Settings

We install nine methods on two stages for evaluating

experiment.

A. The feature extraction:

• The exact matching method: Using CN, SI and JC to

measure the similarity scores of two vertices.

• DCS feature (our feature): Using aCN, aSI and aJC to

measure the similarity scores of two vertices.

B. Predicting the existence of links:

• CN+GBT: Using CN score with GBT method.

• SI+GBT: Using SI score with GBT method.

• JC+GBT: Using JC score with GBT method.

• aCN+GBT: Using aCN score with GBT method.

• aSI+GBT: Using aSI score with GBT method.

• aJC+GBT: Using aJC score with GBT method.

• DCS+GBT (our approach): Using DCS feature with GBT

method.

To prove the efficiency of our approach, we execute all

experiments, differences between values and precision, and

the scalability when the data evolves. Our experiment setup is

implemented in the distributed mode on the cluster. We use

Apache Spark [22] – a unified analytics engine to perform our

experiment studies on this cluster.

This cluster includes 4 cloud servers on Open Stack as 1

master and 3 workers. Each worker runs on the Ubuntu Server

operating system and comes with the following specifications:

Intel Xeon E3-12xx v2 3.0GHz, 8 virtual processors, 32 GB

RAM. We set 100 to the value of both (the number of hash

functions) and (the reservoir budget).

4.4 Experiments Results and Discussions

A. The feature extraction

We evaluate the computation cost of our approach through

each step. We present the execution time of the whole process

of similarity feature extraction which is a DCS feature (our

feature) to compare to the feature of the exact matching

method. Figure 6shows the runtime cost of similarity feature

extraction of two methods.

Figure 6: Runtime cost (s) of similarity feature extraction between

DCS feature and the feature of the exact matching method

In Table 3, we show the error of similarity score computation.

Table 3: The RMSE of similarity score feature computation
Dataset

Score
DBLP Wikipedia Amazon

aCN 5.89% 3.13% 4.24%

aSI 4.56% 2.68% 4.71%

aJC 8.42% 8.81% 5.25%

DCS feature is the output of GSDC framework which is

directly amendable to parallelization, facilitating a scalable

distributed execution on the Apache Spark platform. Thus,

this distributed systems have solved two challenges in link

prediction in the graph stream problem.

In comparison with the exact matching method, Figure 6and

Table 3 show that our feature can reduce the execution time

by 3x times and the errors always below 9%. So GSDC

framework can be used to figure out the distributed similarity

scores between nodes by the distribution of the information

about edges in real-time.

B. Predicting the existence of links

The Precision score is used to evaluate our approach for link

prediction problem. In Figure 7, we present the Precision of

CN+GBT, SI+GBT, JC+GBT, aCN+GBT, aSI+GBT,

aJC+GBT and DCS+GBT on three real-world graph streams

datasets.

Tu-Anh Nguyen-Hoang et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5913 – 5920

5919

Figure 7: Precision of existing link prediction

The DCS feature that is the output of GSDC framework has

the errors always below 9%. The GBT method is a distributed

method to deal with the massive datasets available today.

Therefore, DCS+GBT (our approach) uses DCS feature with

GBT method have high precision.

Figure 7shows that our method is 21% more precision than the

baseline method. With DCS feature and GBT method, we can

use them to predict real-time existence links in graph stream.

5. CONCLUSION

We researched link prediction problem in graph stream using

the distributed computation approach in this paper. We focus

how to effectively real-time existence link in graph streams.

We propose an efficient Graph Stream Distributed

Computation framework (GSDC) which is directly

amendable to parallelization, facilitating a scalable distributed

execution on the Apache Spark platform. With our

framework, we present the Distributed Computation Score

feature (DCS) and Gradient Boosted Trees (GBT) which are

designed to distribute computation approach. Our method

significantly improves on advance methods in two criteria

precision and speed. The results of experiments on three

networks DBLP, Wikipedia and Amazon prove it. Our

approach has solved two challenges in link prediction in the

graph stream problem.

ACKNOWLEDGEMENT

This research is funded by Vietnam National University Ho

Chi Minh City (VNU-HCM) under grant number

C2018-26-10.

REFERENCES

1. Z. Huang, X. Li and H. Chen,Link prediction approach

to collaborative filtering, In Proceedings of the 5th

ACM/IEEE-CS joint conference on Digital libraries,

141142, New York, USA, 2005.

2. W. Q. Wang, Q. M. Zhang and T. Zhou,Evaluating

network models: A likelihood analysis, Europhys. Lett.

98, 28004, 2012.

3. D. Liben-Nowell and J. Kleinberg,The link-prediction

problem for social networks, J. Am. Soc. Inf. Sci. Tec.

58, 10191031, 2007.

4. A. Clauset, C. Moore and M. E. Newman,Hierarchical

structure and the prediction of missing links in

networks, Nature 453, 98101, 2008.

https://doi.org/10.1038/nature06830

5. P. Wang, B. Xu, Y. Wu and X. Zhou,Link prediction in

social networks: the state-of-the-art, Science China

Information Sciences 2015; 58(1):138.

6. L. L and T. Zhou,Link prediction in complex

networks: A survey, Physica A 390, 11501170, 2011.

7. P. Zhao, C. Aggarwal and G. He,Link prediction in

graph streams, 2016 IEEE 32nd International

Conference on Data Engineering (ICDE). IEEE, 2016,

pp. 553–564.

8. S. Chang, Y. Zhang, J. Tang, D. Yin, Y. Chang,

Hasegawa-Johnson and M.A. Huang,Positive-unlabeled

learning in streaming networks, Proceedings of the

22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 755–764,

2016.

9. Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin

and J. M. Hellerstein,Distributed Graphlab: A

framework for machine learning and data mining in

the cloud, In PVLDB, 2012.

https://doi.org/10.14778/2212351.2212354

10. J. Ahn, S. Hong, S. Yoo, O. Mutlu and K. Choi,A

scalable processing-in-memory accelerator for

parallel graph processing, Proc. ISCA, 2015.

11. Syed.Karimunnisa, Dr.Vijaya Sri Kompalli, Cloud

Computing: Review on Recent Research Progress

and Issues, In IJATCSE, Volume 8, No.2, pp. 216-223,

2019.

https://doi.org/10.30534/ijatcse/2019/18822019

12. Saida EL MENDILI, Younès EL BOUZEKRI EL

IDRISSI, Nabil HMINA, Big Data Processing Platform

on Intelligent Transportation Systems, In IJATCSE,

Volume 8, No.4, pp. 1099-1109, 2019.

https://doi.org/10.30534/ijatcse/2019/16842019

13. Broder and Z. Andrei,On the resemblance and

containment of documents, Compression and

Complexity of Sequences, Italy, June 11-13, 1997.

14. J. H. Friedman,Greedy function approximation: A

gradient boosting machine, Ann. Statist. 29.5, pp.

1189–1232, 2001.

15. G. E. Hinton, J. L. McClelland & D. E.

Rumelhart,Parallel distributed processing:

Explorations in the microstructure of cognition, Vol.

I: Foundations, ed. D. E. Rumelhart, J. L. McClelland &

the PDP. Research Group, pp. 77–109, 1986.

https://doi.org/10.1038/nature06830
https://doi.org/10.14778/2212351.2212354
https://doi.org/10.30534/ijatcse/2019/18822019
https://doi.org/10.30534/ijatcse/2019/16842019

Tu-Anh Nguyen-Hoang et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 5913 – 5920

5920

16. L. G. Valiant,A Theory of the Learnable, Commun.

ACM 27.11, pp. 1134–1142, 1984.

17. J. K. Michael and V. Umesh,An Introduction to

Computational Learning Theory, Cambridge, MA,

USA: MIT Press, 1994.

18. E. S. Robert, F. Yoav, B. Peter and S. L. Wee,Boosting

the margin: a new explanation for the effectiveness of

voting methods, Ann. Statist. 26.5, pp. 1651–1686, 1998.

19. M. Ley,Dblp: some lessons learned, Proc. VLDB

Endow., 2(2):1493–1500, Aug. 2009.

20. A. Mislove,Online social networks: Measurement,

analysis, and applications to distributed information

systems, Ph.D. dissertation, Department of Computer

Science, Rice University, 2009.

21. J. Leskovec, L. Adamic and B. Adamic,The Dynamics

of Viral Marketing, ACM Transactions on the Web

(ACM TWEB), 1(1), 2007.

https://doi.org/10.1145/1232722.1232727

22. M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker

and I. Stoica,Spark: Cluster computing with working

sets, in Proc. 2nd USENIX Conf. Hot Topics Cloud

Comput., vol. 10 , p. 10, Boston, MA, USA, 2010.

https://doi.org/10.1145/1232722.1232727

