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ABSTRACT 

Nowadays, link prediction in the networks is one of the fields 

of greatest attraction in data mining. In link prediction, graph 

stream has become an essential model to represent interactive 

elements in the massive networks. It is a promising key to 

performing many real-world applications and can be applied 

in many fields, such as social networks, Ecommerce 

networks, and telecommunication networks. However, the 

most exciting link prediction methods just center on studying 

predicted the existence of links in snapshot graphs, while most 

recent applications in the form of the graph streams. When 

applying these methods to graph streams, we have two 

challenges: the large amount of links and the rapid 

evolvement of graph streams. This paper introduces an 

efficient method to predict real-time existence link in graph 

streams. We propose an efficient Graph Stream Distributed 

Computation framework (GSDC) which is directly 

amendable to parallelization, facilitating a scalable distributed 

execution on the Apache Spark platform. With our 

framework, we present the Distributed Computation Score 

feature (DCS) and Gradient Boosted Trees (GBT) which are 

designed to distribute computation approach. Our 

experimental results on three realistic social networks prove 

our method can reduce the feature extraction time by 3x times 

and the errors always below 9%. Additionally, our method 

can increase the prediction precision by 21% over the baseline 

methods. 

 

Key words: Link prediction, distributed method, data mining, 

social network, graph stream. 

 

1. INTRODUCTION 

 

The network is a method of expressing connections and 

interactions of objects in a collection. In the network, objects 

(nodes) are connected by pairwise interactions (links). In 

recent years, the Internet, social networks, transport networks, 

and biological networks... have been built as network systems. 

The links are expressed in many different ways, such as 

friendships, collaborations, and marriages as in the social 

network and airlines and railways as the transportation 

network. This simple idea can be used to describe most 

 
 

applications whose systems can range from simple to 

extremely complex. The basis of recommended systems in 

social networks, Ecommerce services, and online marketing is 

developed by link prediction. Link prediction can support to 

decrease the cost and time of researching protein-protein 

interactions, the interaction of biological cells, and genetic 

inheritance. In several situations, link prediction proposes an 

effective transport network and detects the structure of the 

criminal network. However, the applications will expand over 

time, which makes the networks grow more in size and speed. 

This most applications are in the form of the graph streams, 

bringing new challenges and opportunities in data mining 

field. 

 

Link prediction studies the existence of new links (unaware 

interactions or new relationships) between pairs of nodes 

based on their features and the present considered links. The 

real-world network is a graph stream with the large amount of 

noisy and dynamic links. Essentially, the link prediction 

problem discovers knowledge and remodels topology on this 

dataset. Additionally, link prediction discovers the structure 

of the real-world network in the future. However, the datasets 

of the real-world networks are commonly dynamic, changing 

with the new links appear over time and become 

unobservability. These datasets are in the graph streams, not 

in snapshot graphs. 

 

The most previous researches of exciting link prediction just 

concentrate studying link prediction in snapshot graphs, while 

most recent applications in the form of the graph streams. 

When predicting the existence of link in graph streams, we 

have two challenges: a) a large number of  nodes, which 

produce  possible links, resulting in significant complexity 

and b) the rapid evolvement of graph stream. To increase the 

applicability, we research the link existence prediction subject 

in a more realistic context. Given a graph stream, this network 

has the large amount of links and has the rapid evolvement. To 

solve this problem, we present GSDC framework – an 

efficient framework can easily perform parallel computation 

and scale up the distributed system when necessary. GSDC 

framework can be used to compute the distributed similarity 

scores between nodes by the distribution of the information 

about edges and distributed machine learning. The outputs of 

GSDC framework are a DCS feature and a GBT method. DCS 

feature is a general feature that outperforms most features in 
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criteria such as precision, generalization, and speed. GBT 

method is a distributed method to deal with the massive 

datasets available today.With DCS feature and GBT method, 

we can use them to predict real-time existence links in graph 

stream. We experiment on three real-world networks. Our 

results on these datasets prove that our approach can be 

applied to various applications which require real-time 

computation. 

 

The remaining of this paper is setting as follows. Sections 2 

discusses related work. We present our proposed method 

called GSDC framework with DCS feature and GBT method 

in section 3. We show the results of experiment and 

discussion in section 4. The ending of this paper is the 

conclude in section 5. 

 

2. RELATED WORK 

 

Over the last decade, the scientific research community has 

had a particular interest in the link prediction problem [1]-[2]. 

It can be applied in any applications which can be modelled 

into a network. There are various research studies aimed to 

resolve the problems of link prediction [3]-[4]. Most of these 

studies have focused of a static graph [5]-[6]. 

 

The datasets of the real-world networks are commonly 

dynamic, changing with the new links appear over time and 

become unobservability. This real-world datasets are in the 

form of the graph streams. However, the number of research 

studies on link prediction in graph streams [7]-[8] is smaller 

than that of the static graph. The approaches to link prediction 

in graph streams include approximate matching, connectivity 

properties, frequencies of subgraphs, and graph distances. 

There are a few recently published studies related to the 

approximate matching approach, such as the cost-effective 

method proposed by Zhao et al [7]. This method is based on 

the neighborhood-based measures to calculate the accurate 

estimation similarity scores between any two nodes in graph 

streams. This is a great online approximate estimation method 

to trade accuracy for time and space cost. 

 

Distributed Computing is a popular scientific field of 

computer science major with the target of data explosion (like 

Big Data), which has inspired researchers and developers to 

develop Distributed Systems in recent years [9]-[10]. 

Distributed Systems have solved many issues of data 

explosion or data mining, such as the massive volume and the 

high rate of evolving data [11]-[12]. 

 

Thus, we apply Distributed Systems to solve similar issues in 

link prediction in the graph stream problem. We present 

GSDC framework – an efficient framework can easily 

perform parallel computation and scale up the distributed 

system when necessary. Figure 1 shows the brief overview of 

the framework that we propose. The outputs of GSDC 

framework are a DCS feature and a GBT method. 

 

 
Figure 1: Graph Stream Distributed Computation framework 

 

GSDC framework can be used to compute the distributed 

similarity scores between nodes by the distribution of the 

information about edges and distributed machine learning. 

With GSDC framework, we can use them to predict real-time 

existence links in graph stream. 

 

3. THE PROPOSED METHOD 

 

In this section, we describe a proposed method for link 

prediction in the graph stream problem. For the link prediction 

in the graph stream problem, we introduce the formal 

definitions firstly. Secondly, we introduce our features for the 

link prediction in the graph stream problem. Finally, we 

propose GBT method is a distributed method to deal with the 

massive datasets available today. 

3.1 Problem Formulation 

We assume a graph stream  which contains the 

sequence of vertices and edges. We let  indicates the set of 

vertices,  indicates the set of edges and  is a graph 

stream at time  with a sequence of edges 

, where  is the edge 

created by the interaction of two vertices  and  at the time  

with . 

 

In this paper, we study the link prediction in terms of 

predicting the existence of unobserved links or future links 

between pairs of nodes in a network. The overview of the 

whole link existence prediction in graph stream is given in the 

Figure 2. Link existence prediction in graph stream is defined 

with the following input and output: 

• Input: The set of links in a graph stream at time  with 

. 

• Output: The set of links will exist in the future . 
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Figure 2: Link prediction in graph stream 

 

The training phase uses the information of a graph stream at 

time  with . The testing phase and evaluation 

are at time . 

3.2 Proposed Features 

The most previous researches of exciting link prediction just 

focused research on link existence prediction problems in 

snapshot graphs. In snapshot graph, with the exact matching 

method, the similarity scores of two vertices computed by the 

formulas below: 

 (1) 

 
(2) 

 
(3) 

 

However, in a graph stream, the massive sizes of the adjacent 

vertex  and  result in inefficient computation cost 

for all pairwise vertices. So the main concept of our 

Distributed Computing splits the Graph Stream into multiple 

partitions, each of which is used to execute separate tasks in 

the system. Each task we present is used to compute the 

following similarity scores: approximation Common 

Neighbor (aCN), approximation Sorensen Index (aSI), and 

approximation Jaccard (aJC). We propose a Distributed 

Computation Score (DCS) feature which is constructed by 

combining these three indexes (aCN, aSI, and aJC). Our 

workflow using the Distributed Computing approach is shown 

in Figure 3 where the output is a DCS feature of all pairwise 

vertices in the graph stream. 

 

 
Figure 3: Illustration of the Distributed Computing Approach for 

DCS feature 

 

To compute DCS feature, the paper describes two 

computation steps which are vertex vectorization and 

similarity score computation. 

A. Vertex vectorization 

In the vertex vectorization step, we split a big graph stream 

into the smaller partitions  

and each partition is computed by an executor. In a partition, 

we map a sequence of edges into a sequence of vectors. Each 

vector is called the vectorial vertex and managed by a 

determined vertex. The dimension of these vectorial vertices 

is much smaller than that of adjacent vertices of raw edges. 

These vectorial vertices are the inputs for calculating the 

target similarity scores (DCS Feature in the next step). DCS 

Feature has aCN, aSI, and aJC score. We build vectorization 

methods suitable to compute each of these similarity scores. 

These methods are Sampling and MinHash method. 

 

The Sampling method for link prediction in graph stream has 

been published in [7]. This idea is combined with our 

distributed computation idea to extend link prediction in the 

graph stream problem. In aCN and aSI score, we use the 

method of sampling the adjacent vertex to reduce the space of 

the adjacent vertex. In graph stream, most vertices are 

high-degree, and hence, getting the sample in the traditional 

ways (like a reservoir sampling) is inefficient. Those reservoir 

sampling methods help us choose the same vertices in a 

sequence of adjacent vertices without knowing exactly their 

size. However, this traditional method can’t choose the 

identical vertices from different adjacent vertices of each 

vertex so we propose to use a variant of reservoir sampling. 

This variant sampling is a biased-sampling, where each 

vectorial vertex is forced to be dependant on a hash function. 

We choose a vectorial vertex for each vertex with the lowest 

values generated by the hash function 

 where  is an identified vertex in the 

adjacent vertex. We set the number  as the budget for 

choosing the vertices of the vectorial vertex. The size of the 

vectorial vertex will be equal to or less than . Then we also 

record the size of the actual adjacent vertices  as  

for a computation approximation similarity score in the next 

step. 

MinHash method [13] is an efficient technique that estimates 

the similarity (aJC) between two adjacent vertices. We choose 

 as the number of hash functions as well as the dimension of 

the vectorial vertex. Each element in the vector is a minimum 

adjacent hash value created by mapping adjacent identified 

vertices into adjacent hash values. For example, vectorial 

vertex  is a collection of elements . With each edge in 

a partition, the hash functions map the identified vertices  

and  into two vectors managed by vertices  and . The 

computed result of each partition is a collection of the distinct 

- dimensional vectorial vertices. 

At the end of the process mentioned above, we have a 

collection of distinct vectorial vertices in each partition. The 

dimension of the vectorial vertice is shown in Figure 4. After 

that, we use aggregation operators to collect all vectorial 
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vertices. 

 

 
Figure 4: Illustration of the dimension of the vectorial vertices 

 

B. Similarity score computation 

After the vertex vectorization step, we will go through the 

similarity score computation step. We use the first  

elements of vectorial vertex computed after vertex 

vectorization step to estimate the approximation Jaccard 

similarity score between two vertices with the following 

formula: 

 
(4) 

 

In vectorial vertex, we have the remaining elements with the 

budget  elements. We use these elements to compute the 

aCN and aSI score. We also propose to add a fraction  

for preparing the next similarity score computation: 

 
(5) 

 

We compute the remaining similarity scores using a 

distributed computation method with the following formulas. 

After that, we combine these scores with the aJC score into 

DCS feature. 

 
(6) 

 
(7) 

3.3 Distributed machine learning 

In graph stream, we present Gradient Boosted Trees (GBT) 

method which can use to predict real-time existence links. 

GBT is a distributed machine learning method. We borrow the 

Gradient boosting from J. H. Friedman (2001) [14] to design 

the distributed computation approach (GBT method). 

Gradient descent and Boosting are two techniques and are 

incorporated into gradient boosting. Gradient boosting is also 

called as steepest descent method. To understand gradient 

boosting clearly, we introduce Gradient-descent optimization 

[14] and Boosting [14] first. Then, we explain on Gradient 

boosting for classification in this section. 

A. Gradient-descent optimization 

Deterministic and stochastic approaches can be separately 

used in the optimization problems. In these problems, 

deterministic methods are confirmed that it normally quicker 

than stochastic ones. However, deterministic methods are at 

higher risk of being stranded in a local minima than stochastic 

ones. Some stochastic methods use to turn hyperparameterand 

threshold. The gradient-descent is a deterministic 

nonparametric iterative approach. This approach has normally 

been used to decrease the experienced risk by numerical 

function optimization [15]. 

 

With a function , we have: 

 
(8) 

 

The gradient is an only vector field. It is a result of applying 

the nabla operator  on function . We chose a starting point 

 as an initial evaluate. This step is a first step for 

decreasing function . In iteration , the starting point 

will be improved with: 

 for  (9) 

 

Where  can change and manage the step size towards the 

steepest descent after each iteration. This helps minimize the 

objective function: 

 
(10) 

 

In this line search function, the algorithm reachesan 

 with  after the 

iterations. Then, a local minima is reached. 

B. Boosting 

Valiant [16] and Kearns [17] presented the Boosting in their 

PAC-learning framework. Then, Robert E. Schapire et al. [18] 

developed it and demonstrated that we can train additional 

ones to appreciate the performance of a weak learner. In 

predictive performance problem, the random chance has 

lower performance than weak learners with such required 

property. In the modeling phase, this concept is the basis of 

Boosting. The goal is to minimize the empirical risk: 

 

(11) 

 

The parameters , parameters  and the learners 

 affect . Thus, the  needs to be scaled down in 

terms of parameters by 

using the loss function . Following J. H. Friedman (2001) 

[14], the iterative modeling approach can more optimization. 

 

The front models are not readjusted and become invariable 

when supplement each component phase. In the machine 

learning context, it is called the Boosting and improve the 

predictive performance strongly. 

C. Gradient boosting for classification 

Gradient descent and Boosting are two techniques and are 

incorporated into the gradient boosting. This algorithm use 

gradient descent to minimize the empirical risk . The target 

variable does not accommodate consecutive. This variable has 

only two other class levels, e.g. . This is the 

difference with regression. The function  will 

set discrete predictable results if the model’s output gives real 

values. The positive value is determined as class 1 and the 

negative value is determined as class 0. 
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The  tree models predict the pseudo residuals   in each 

iteration . In districts , each tree has  

terminal nodes to corresponding update 

 
(12) 

With  

 

This formula is approximated by a single Newton-Raphson 

step because there is no closed solution. This formula is split 

into individual calculations for each terminal node, following 

J. Friedman et al. [14]. 

 

(13) 

 

which serves for the update 

 

(14) 

 

Finally, after  steps,  is returned as final model. A 

formal description of K-class Classification Gradient Tree 

Boosting Algorithm [14] is given in Table 1. 

 
Table 1: K-class Classification Gradient Tree Boosting Algorithm 

Algorithm 1: K-class Classification Gradient Tree Boosting 

Algorithm. 

 Initialize:  

1 for  do 

2 Set for  do 

3 Calculate  

4 
Fit regression tree to the pseudo-residuals  

given terminal regions  

5 for  do 

6  

7 end 

8 

Update 

 

9 end 

10 end 

 Output:  

 
This algorithm is designed and executed on the distributed 

computation system. This method is called Gradient Boosted 

Trees (GBT) method, facilitating a scalable distributed 

execution on the Apache Spark platform. The overview of the 

whole our predictive execution system is given in the Figure 

5. 

 

 
 

Figure 5: Simulate predictive execution system 

 

The entire proposed model is based on distributed computing. 

Each Worker machine will assume a role in computing the 

distributed operators. Worker workstations do their own tasks, 

then aggregate and send them to the Master server. 

 

4. EXPERIMENTS 

 

This section evaluates our link prediction approach by the 

experimental studies. We introduce three real-world graph 

streams datasets. Then, we briefly present the evaluation 

methods and experimental settings. After conducting 

experiments, we show experimental results and discussions. 

4.1 Datasets 

We choose three real-world graph streams datasets: 

1) DBLP[19]: This dataset is a bibliographic information 

dataset on major computer science publications. We extracted 

all conference papers from 1940 to 2015. This graph includes 

1,411,376 vertices and 10,597,380 edges. 

2) Wikipedia [20]: This graph stream represents the 

development of the Wikipedia knowledge base. This graph 

stream contains 1,870,709 vertices and 39,953,145 edges. In 

this graph, vertices are articles in Wikipedia, and edges define 

the relationship between articles. 

3) Amazon [21]: This graph stream gets information about 

various products (Books, music CDs, DVDs and VHS video 

tapes). It includes these product metadata. There is a total of 

410,271 vertices and 11,179,587 edges in the graph streams. 

Table 2 present the properties of the three networks. 

Table 2: The properties of the three networks 
Network Vertices Edges 

DBLP 1,411,376 10,597,380 

Wikipedia 1,870,709 39,953,145 

Amazon 410,271 11,179,587 
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4.2 Evaluation Methods 

Our method is evaluated by three criteria: 

A. Differences between values 

We use the root-mean-square error (RMSE). This measure is 

used to assess the difference between sample and population 

values. As our evaluation, RMSE shows the difference 

between approximate similar score and exact similar score. It 

is defined as follows: 

 
(15) 

B. Precision 

The precision evaluates the classify model by the ratio 

between tp is the amount of true positives and fp the amount 

of false positives. The formula for this measurement is 

calculated as follows: 

 (16) 

C. Computation cost 

Our distributed computation framework aim to predict 

realtime existence link graph stream, so the computation cost 

is an important element for efficient evaluation. We measure 

the execution time of the methods. 

4.3 Experimental Settings 

We install nine methods on two stages for evaluating 

experiment. 

A. The feature extraction: 

• The exact matching method: Using CN, SI and JC to 

measure the similarity scores of two vertices. 

• DCS feature (our feature): Using aCN, aSI and aJC to 

measure the similarity scores of two vertices. 

B. Predicting the existence of links: 

• CN+GBT:  Using CN score with GBT method. 

• SI+GBT: Using SI score with GBT method. 

• JC+GBT: Using JC score with GBT method. 

• aCN+GBT:  Using aCN score with GBT method. 

• aSI+GBT: Using aSI score with GBT method. 

• aJC+GBT: Using aJC score with GBT method. 

• DCS+GBT (our approach): Using DCS feature with GBT 

method. 

 

To prove the efficiency of our approach, we execute all 

experiments, differences between values and precision, and 

the scalability when the data evolves. Our experiment setup is 

implemented in the distributed mode on the cluster. We use 

Apache Spark [22] – a unified analytics engine to perform our 

experiment studies on this cluster. 

 

This cluster includes 4 cloud servers on Open Stack as 1 

master and 3 workers. Each worker runs on the Ubuntu Server 

operating system and comes with the following specifications: 

Intel Xeon E3-12xx v2 3.0GHz, 8 virtual processors, 32 GB 

RAM. We set 100 to the value of both  (the number of hash 

functions) and  (the reservoir budget). 

4.4 Experiments Results and Discussions 

A. The feature extraction 

We evaluate the computation cost of our approach through 

each step. We present the execution time of the whole process 

of similarity feature extraction which is a DCS feature (our 

feature) to compare to the feature of the exact matching 

method. Figure 6shows the runtime cost of similarity feature 

extraction of two methods. 

 

 
Figure 6: Runtime cost (s) of similarity feature extraction between 

DCS feature and the feature of the exact matching method 

 

In Table 3, we show the error of similarity score computation. 

Table 3: The RMSE of similarity score feature computation 
Dataset 

Score 
DBLP Wikipedia Amazon 

aCN 5.89% 3.13% 4.24% 

aSI 4.56% 2.68% 4.71% 

aJC 8.42% 8.81% 5.25% 

DCS feature is the output of GSDC framework which is 

directly amendable to parallelization, facilitating a scalable 

distributed execution on the Apache Spark platform. Thus, 

this distributed systems have solved two challenges in link 

prediction in the graph stream problem. 

 

In comparison with the exact matching method, Figure 6and 

Table 3 show that our feature can reduce the execution time 

by 3x times and the errors always below 9%. So GSDC 

framework can be used to figure out the distributed similarity 

scores between nodes by the distribution of the information 

about edges in real-time. 

B. Predicting the existence of links 

The Precision score is used to evaluate our approach for link 

prediction problem. In Figure 7, we present the Precision of 

CN+GBT, SI+GBT, JC+GBT, aCN+GBT, aSI+GBT, 

aJC+GBT and DCS+GBT on three real-world graph streams 

datasets. 
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Figure 7: Precision of existing link prediction 

 

The DCS feature that is the output of GSDC framework has 

the errors always below 9%. The GBT method is a distributed 

method to deal with the massive datasets available today. 

Therefore, DCS+GBT (our approach) uses DCS feature with 

GBT method have high precision. 

 

Figure 7shows that our method is 21% more precision than the 

baseline method. With DCS feature and GBT method, we can 

use them to predict real-time existence links in graph stream. 

 

5. CONCLUSION 

 

We researched link prediction problem in graph stream using 

the distributed computation approach in this paper. We focus 

how to effectively real-time existence link in graph streams. 

We propose an efficient Graph Stream Distributed 

Computation framework (GSDC) which is directly 

amendable to parallelization, facilitating a scalable distributed 

execution on the Apache Spark platform. With our 

framework, we present the Distributed Computation Score 

feature (DCS) and Gradient Boosted Trees (GBT) which are 

designed to distribute computation approach. Our method 

significantly improves on advance methods in two criteria 

precision and speed. The results of experiments on three 

networks DBLP, Wikipedia and Amazon prove it. Our 

approach has solved two challenges in link prediction in the 

graph stream problem. 
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